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Abstract  

Tuberculosis (TB) afflicts over 10 million people every year and its global burden is projected to 
increase dramatically due to multidrug-resistant TB (MDR-TB). The Covid-19 pandemic has 
resulted in reduced access to TB diagnosis and treatment, reversing decades of progress in 
disease management globally. It is thus crucial to analyze real-world multi-domain information 
from patient health records to determine personalized predictors of TB treatment outcome and 
drug resistance. We conduct a retrospective analysis on electronic health records of 5060 TB 
patients spanning 10 countries with high burden of MDR-TB including Ukraine, Moldova, 
Belarus and India available on the NIAID-TB portals database. We analyze over 200 features 
across multiple host and pathogen modalities representing patient social demographics, disease 
presentations as seen in cChest X rays and CT scans, and genomic records with drug 
susceptibility features of the pathogen strain from each patient. Our machine learning model, 
built with diverse data modalities outperforms models built using each modality alone in 
predicting treatment outcomes, with an accuracy of 81% and AUC of 0.768. We determine 
robust predictors across countries that are associated with unsuccessful treatmentclinical 
outcomes, and validate our predictions on new patient data from TB Portals. Our analysis of 
drug regimens and drug interactions suggests that synergistic drug combinations and those 
containing the drugs Bedaquiline, Levofloxacin, Clofazimine and Amoxicillin see more success 
in treating MDR and XDR TB. Features identified via chest imaging such as percentage of 
abnormal volume, size of lung cavitation and bronchial obstruction are associated significantly 
with pathogen genomic attributes of drug resistance. Increased disease severity was also 
observed in patients with lower BMI and with comorbidities. Our integrated multi-modal analysis 
thus revealed significant associations between radiological, microbiological, therapeutic, and 
demographic data modalities, providing a deeper understanding of personalized responses to 
aid in the clinical management of TB. 
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1. Introduction 
     Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), is currently 
the world’s deadliest infectious disease due to a bacterial infection and the second leading 
infectious disease killer after Covid-19. Of the 10 million new cases of TB in 2021, nearly 5% of 
infections were accounted for by multidrug resistant tuberculosis (MDR-TB) or extensively drug 
resistant (XDR) strains (Chakaya et al., 2021), with the highest burden seen in the WHO 
European Region including Ukraine, Moldova, Belarus and Russia. The ongoing war and 
humanitarian crisis in Ukraine and bordering countries is predicted to result in increased MDR-
TB cases and disruption of healthcare services (Holt, 2022). Additionally, the Covid-19 
pandemic has resulted in reduced access to TB diagnosis and treatment, reversing decades of 
progress in disease management globally. The WHO has now called for entirely new strategies 
to meet the goals for ‘End TB’, which aims to reduce TB deaths by 95% by 2035 (Chakaya et 
al., 2021).   
 
While there have been significant new developments in TB diagnosis and drug discovery, the 
duration of TB treatment is extremely long (6-12 months for drug-susceptible TB, 12+ months 
for XDR) (Chakaya et al., 2021; Prasad and Gupta, 2015), often leading to treatment 
noncompliance. This, coupled with other factors including presence of comorbidities, patient 
health and socioeconomic status and increasing drug resistance make it imperative to 
understand early predictors of unsuccessful TB treatment outcomes to identify patients needing 
tailored treatment approaches, such as directly observed therapy (DOT) or extended treatment 
course (Mdluli et al., 2015; Zumla et al., 2015).  
 
Predicting treatment prognosis in TB based on the relationships between different features and 
disease outcomes is an important facet of managing TB clinically. With the increasing 
availability of patient electronic health records (EHR) which provide real-world multi-domain 
case information, it is now feasible to build prediction models to determine important predictors 
and estimate an individualized probability of a specific endpoint within a defined period of time 
(Peetluk et al., 2021). The use of imaging techniques such as Chest X Rays (CXR) and 
computed tomography (CT) scans has also been shown to provide high sensitivity as a 
diagnostic tool and additional insight into TB disease prognosis (Huang et al., 2016; Ordonez et 
al., 2020). Once diagnosis of TB has been confirmed, it becomes vital that clinical healthcare 
workers make appropriate treatment decisions based on their own experience as well as on the 
individual clinical presentation of the disease. Delays in treatment initiation or providing 
inappropriate treatment to treat drug-resistant strains results in poor prognosis with increased 
clinical severity and risk of death (Lino Ferreira da Silva Barros et al., 2021).  
 
The NIAID TB portals database is an invaluable resource for TB EHR data and is continuously 
updated with new patient information (Rosenthal et al., 2017). The database, as of January 
2022, contains multimodal linked socioeconomic/geographic, clinical, laboratory, radiological, 
and genomic data from 5060 international TB patients from 10 countries with a high MDR-TB 
burden including Ukraine, Moldova, Georgia, India, and Belarus. With the rapid insurgence of 
drug resistant TB, it becomes critical to study the impact of type of resistance and infecting 
strain along with its genotype to better determine the course of clinical progression and 
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treatment. Additionally, several studies have focused on the clinical and demographic data, 
pathogen genomics data or the imaging data modalities separately to decipher associations and 
make predictions (Koo et al., 2020; Peetluk et al., 2021; Rosenfeld et al., 2022). An unbiased 
approach that integrates all modalities of host and pathogen data available in the clinical setting 
is necessary to determine the most useful predictors for TB prognosis. 
 
In this study, we analyze clinical data from drug-sensitive pulmonary TB, MDR TB and XDR TB 
patients across different geographical populations and implement machine learning to identify 
correlates of patient, drug, and pathogen features with the type of drug resistance and 
prognosis of treatment in individual patients. In addition, we compute drug interaction FIC 
scores to determine if the drug interactions among prescribed drugs play a significant role in the 
treatment outcome and determine the drug combinations that are most significantly associated 
with clinical success in drug resistant TB.  
 
While prior studies on the TB portals data have focused largely on individual modalities, and 
evaluated models by cross-validation (Gabrielian et al., 2020; Sauer et al., 2018; Wollenberg et 
al., 2022), we conduct additional validation of our predictions on newer patient data that is 
populated in the TB portals database, thus providing more rigorous evaluation with new 
patients. We determine the most significant predictors associated with successful and 
unsuccessful clinical outcomes at the individual level for every patient. Overall, our integrated 
analysis of clinical, radiological, and genomic features aids in understanding personalized 
responses to TB infection and will help in clinical management of TB. 
 
2. Results  
 
The overall workflow adopted in this study to analyze EHR of TB patients is described in Figure 
1. There were a total of 5060 patients in the dataset at the time of analysis, spanning 10 
countries. The dataset is largely dominated by patients from Eastern Europe, particularly 
Moldova, Georgia, Ukraine and Belarus, which carry a high burden of drug resistant TB cases. 
The dataset had 203 features, which we first analyzed as 3 different modalities: a) patient socio-
demographic and clinical characteristics b) radiological imaging attributes derived from chest X-
Rays and CT scans and c) pathogen drug susceptibility and genomic mutations implicated in 
resistance to individual drugs. The dataset originally described 5 different treatment outcomes, 
as listed in Table 1. We pooled the outcomes ‘cured’ and ‘completed’ as they depicted a 
‘successful outcome, while outcomes ‘failure’, ‘died’ and ‘palliative care’ were pooled together 
as ‘failure’, depicting unsuccessful outcome of treatment. After removing samples that had 
outcomes ‘Still on treatment’, ‘unknown’ or ‘not reported’, there were a total of 4139 TB patients 
with these two outcomes of success and failure that were then considered for further analysis 
for each modality.  
 
 
2.1 Statistical exploration of TB Portals provides insights into shared host and pathogen 
features across populations.   
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The TB portals database had clinical data from 5060 patients collected across 10 countries 
spanning Eastern Europe, Asia and Africa at the time of analysis as seen in Figure 2a and is 
constantly being populated with new patients from additional countries. Data from Moldova, 
Georgia and Belarus are most prevalent, followed by Ukraine, Azerbaijan, Romania and 
Kazakhstan (Figure 2b). These represent a high burden of drug resistant TB cases, even 
though China and India have an overall higher burden of TB (Chakaya et al., 2021). As 
described in the methods, we pooled all outcomes into either Success or Failure, with 
Successful outcomes seen to be present at least 3-fold more than Failure (Figure 2c). We take 
this data imbalance into consideration while building and analyzing our models. We also 
observe a higher male population with TB compared to the female population both overall 
(Figure 2d), as is consistent with most TB reports globally.  Majority of the TB cases in the 
dataset are New or first instances of TB reported for that patient,  while more than 500 patients 
show instances of relapse, as per the case definition (Figure 2f) The distribution of BMI (Figure 
2e) shows a lower average BMI in patients with failed treatment outcomes (average BMI 19.2) 
compared to those with successful treatment outcome (average BMI 21.4). 
 
There are 27 different Mtb families represented in the data encompassing 3 major genetic 
lineages L2, L4 and L1, with the L2–Beijing sub-lineage seen to be most prevalent in patients 
across countries. L2 has received much attention due to its high virulence, fast disease 
progression, and association with antibiotic resistance (Gagneux, 2012). The Mtb strains show 
varying drug susceptibilities to the 28 different drugs in the clinical dataset (Fig 2g). There are 6 
types of drug susceptibilities observed in the Mtb strains namely a) Sensitive, implying no 
resistance to any anti-TB drugs b) Mono-DR, where resistance is seen to one first-line anti-TB 
drug c) Poly-DR, where resistance is seen to more than one first line anti-TB drug, d) MDR-non-
XDR, where resistance is seen to at least both isoniazid and rifampin, e) Pre-XDR: TB caused 
by Mtb strains that are Multidrug resistant and rifampicin resistant (MDR/RR TB) and also 
resistant to any fluoroquinolone and f) XDR-TB caused by Mtb that is resistant to isoniazid and 
rifampin, plus any fluoroquinolone and at least one of three injectable second-line drugs (i.e., 
amikacin, kanamycin, or capreomycin)(Chakaya et al., 2021; Johnson et al., 2006; Mitchison, 
2005). The MDR-non-XDR type of resistance is observed to be most prevalent across infected 
populations in the dataset. Patients with drug resistant TB show a corresponding increase in 
treatment times compared to drug-sensitive TB, with the longest average treatment duration 
seen for patients with MDR and XDR TB (Figure 2h).  
 
Treatment regimens vary based on the type of resistance being treated.  For the different drug 
regimens assigned per patient (758 unique regimens in total), drug-interaction scores were 
calculated using the machine learning tool INDIGO-MTB (Ma et al., 2019). These scores 
provide a quantitative description of the nature of interaction between drugs (synergy, additivity, 
and antagonism), with lower scores associated with strong synergy among the drugs in each 
regimen. We observe that regimens used to treat drug sensitive TB have the strongest synergy 
and correspondingly lower treatment times (figures 2h, 2i), while drug combinations used to 
treat resistant TB cases show a wider range including weak synergistic and antagonistic 
interactions. These interactions also lead to increased treatment times for drug resistant TB, as 
seen with MDR-TB and XDR-TB duration relative to drug sensitive TB. 
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2.2 Modeling socio-demographic and clinical modalities reveal comorbidities most 
predictive of treatment failure  
We grouped different features by modality and built models separately for each modality as 
illustrated in Figure 1. There were a total of 20 features describing patient clinical, social and 
demographic aspects. After cleaning and imputation of the data, we built a random forest 
machine learning model as discussed in the Methods, and conducted 5-fold cross-validation, 
and hold-out validation on blinded test data as well as on newer patient data populated in the 
TB portals database from August 2021-January 2022. Our model predictions had accuracies of 
78.9%, 84.7% and 80.7% as well as Matthews correlation coefficient (MCC) values ranging from 
0.4 to 0.47 for the cross validation, hold out validation, and validation on new patient data sets 
respectively (Figure 3A - E). The MCC is a robust statistical metric which produces a high score 
only if the predictions have high precision, recall and accuracy (i.e. all of the confusion matrix 
categories) and accounts for the biased distribution of Success and Failure in the dataset.  
 
The most important predictors of Failure were determined by Shapley analysis, a game 
theoretic approach that evaluates the impact of removing each feature on model accuracy 
(Merrick and Taly, 2020; Winter, 2002) (Figure 3F).  The top predictors were BMI, type of 
resistance observed, education, employment, case definition, drug regimen used and its 
corresponding Drug interaction FIC scores, comorbidities, social risk factors and gender. To 
further inspect what values among these features were truly associated with failure, we 
analyzed these feature value distributions for patients for each country as well as across 
countries. Figure 3G shows the shapley feature value distributions for the 3 most populated 
countries in the dataset, namely Belarus, Moldova and Russia. We observe similar trends in the 
values for top features across all countries (including Ukraine, Azerbaijan, Romania - 
Supplementary Figure 1). BMI values rank as the highest predictor, with lower values (in blue) 
associated more with failure compared to higher values. Higher age of onset (red), higher 
resistance (red/purple), lower education (blue) are significantly associated with failure.  
 
We delved further into each feature category to determine associations between multiple feature 
levels and failure, with the significance determined by hypergeometric cumulative distribution 
testing (Methods). Patients with BMI values less than 18, classified as “Underweight” have  
strong associations with treatment failure (p=1.32 x 10-23), compared to those that were 
classified healthy, overweight or obese. (Fig 4). We also observe more failure in patients with 
disability (p= 3.55 x 10-25), lower employment (p=2.09 x 10-05) and lower education levels 
(p=1.26 x 10-25). Prior history of alcohol (p=4.46 x 10-34), drug abuse (p=1.01 x 10-16) and 
smoking (p=3.76 x 10-10) impact the treatment outcome as well. Patients with comorbidities 
HIV (p=3.25 x 10-32), Anemia (p=2.34 x 10-31) or Hepatitis B/C (2.6 x 10-04) are also seen to 
have poorer outcomes. While Diabetes is a prevalent comorbidity commonly seen in TB 
patients, it is not significantly associated with poor treatment outcomes.TB is typically more 
prevalent in the undernourished population who are often living below poverty level and do not 
have access to good nutrition(Chakaya et al., 2021; Papathakis and Piwoz). Our findings are 
thus consistent with these reports, highlighting the importance of nutrition and income to have 
successful treatment outcomes. Anemia in tuberculosis is most often due to nutritional 
deficiency or malabsorption syndromes, correlating with lower BMI. TB associated anemia has 
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also been linked to distinct inflammatory profiles persisting after therapy as is considered a 
biomarker for disease severity as well (Barzegari et al., 2019; Lee et al., 2006). As observed 
globally, patients in this dataset also show poorer treatment outcomes in case of drug resistant 
TB compared to sensitive TB, with XDR and MDR TB patients faring the worst in terms of 
outcome.  
 
 
2.3 Analysis of pathogen features identifies mutations linked with treatment failure and 
drug regimens associated with successful treatment of drug resistant TB. 
 
Across all populations, the data reports a total of 27 different clinical Mtb strains belonging to 5 
different Mtb families with varying drug susceptibilities (Supplementary table 1). The Beijing, H3 
and T1 families were most prevalent in all infections observed, and strains from these families 
show all types of drug susceptibilities, from sensitive TB to XDR TB. Our modeling analysis 
using the pathogen genomics and drug resistance modality could predict treatment failure with 
accuracies of 69%, 72% and 74% using cross-validation, hold-out validation and the new patient 
data respectively (fig 5a-d). We observe that the prediction accuracy was relatively lower using 
pathogen features alone, compared to using clinical features. Feature analysis revealed that 
higher numbers of Mtb colonies as determined by culture and the presence of mycobacterial 
growth were strongly associated with treatment failure. Of the 28 different drugs present in 
treatment combinations across all regimens, resistance to rifampin, isoniazid, kanamycin, 
streptomycin, ethambutol, capreomycin and amikacin were more significantly predictive of 
treatment failure as determined by shapley feature analysis (fig 5e). We analyzed the SNPs 
associated with each strain as reported, and identified mutations in genes gyrA, rpsL, and katG 
to be strongly associated with failure. Mutations in the gyrA gene, particularly at positions 90, 91 
and 94 have been frequently reported among fluoroquinolone resistant Mtb (FQr-MTB) isolates.  
 
We analyzed the drug interactions among treatment regimens used to treat TB caused by 
different Mtb strains of varying drug susceptibilities. The standard 4-drug regimen of HRZE was 
synergistic (FIC score 0.8) and associated with treatment success of sensitive and mono-DR TB 
cases. Among MDR and XDR TB cases with high rates of failure, we conducted a 
hypergeometric cumulative distribution test to identify regimens most associated with success in 
these instances. Treatment regimens involving combinations of Bedaquiline, Levofloxacin, 
Clofazimine and Amoxicillin see more success in treating MDR and XDR TB (p = 3.25e-05). 
This is concordant with recent reports on new regimens approved by the FDA involving 
Bedaquiline and Levofloxacin (Burki, 2019). Drug interaction FIC scores for all regimens are 
highlighted in Supplementary Table 2. 
 
2.4 Lung volume, pleural effusion, and bronchial obstruction are significantly predictive 
of treatment failure and associated with drug resistant TB 
Radiological imaging using CXR and/or CT scans are typically used to aid clinicians in reaching 
a diagnosis of TB and monitoring clearance of infection. They complement Mtb culturing and 
symptoms. Imaging can reveal TB lesions of differing size, shapes and characteristics (eg. 
cavitation) occurring anywhere in the lungs.  This dataset had 406 patients with at least 1 X-ray 
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available, with an average of 3 X-rays per patient taken over their course of treatment. We 
chose the CXR taken closest to the date of treatment initiation to assess if there were any 
features that would help indicate treatment prognosis at that time.  We validated our model on 
289 new patients with CXR available in the January 2022 dataset. As only 59 additional patients 
had CT scans available, we conducted validation with new patient entries from TB Portals using 
CXR data alone. 
 
Models built on CXR and CT data individually could predict treatment prognosis reasonably well 
(accuracies of 74% and 83% respectively) (Figure 6 a-f). Validation with new patient CXR data 
showed an accuracy of 77% and MCC of 0.4 (Supplementary figure 2). Despite predicting 
outcomes with an accuracy of 83%, the CT predictions alone had poorer MCC (0.2). As a result, 
we pooled in the imaging features for patients who had both CXR and CT records and then 
conducted feature selection. The most significant TB-related manifestations that are predictive 
of both treatment outcome and resistance are shown in Figure 5g and Table 2.  
 
The TB portals database annotates each CXR into sextants to highlight regions that were 
afflicted in the patient’s lungs viz. Upper Left (UL), Upper Right (UR), Middle Left (ML), Middle 
Right (MR), Lower Left (LL) and Lower Right (LR). TB is typically manifested as an upper 
respiratory infection, but it has been shown to infect different parts of the lung based on disease 
severity(Koo et al., 2020). Our analysis indicated that the overall affected abnormal volume 
across both lungs was more significant in predicting poor disease prognosis rather than 
individual affected sextants. The presence of bronchial obstruction, pleuritis (inflammation of the 
tissues that line the lungs and chest cavity), a decrease in lung capacity and the presence of 
lung opacities due to nodules, nodes (seen in shadow patterns) and airspace disease 
(infiltrates) were strongly predictive of both treatment failure and were significantly associated 
with drug resistant TB. It is important to note that we analyzed the clinical presentation of drug 
resistance as seen through imaging data for our study, as drug resistance can only be predicted 
directly by culturing the infecting Mtb strain. Interestingly, the presence of calcified or partially 
calcified nodules across most sextants, nodes larger than 10mm, and the presence of post TB 
residuals were seen to be associated with DR-TB cases, but they were not especially predictive 
of treatment failure (Table 2). The overall percentage of abnormal lung volume, which is a 
quantification of TB severity, was most predictive of treatment failure. Similarly, lymph node 
enlargement (lymphadenopathy)(Ahmed et al., 2011; Rosenfeld et al., 2022), and collapse of 
the Upper or Middle lung were indicative of a poor treatment prognosis. Chest imaging usually 
reports several hundred features (152 imaging features in this dataset), and our analysis 
identified 21 TB manifestations to be most clinically significant, which will thus help clinicians 
and radiologists make more informed decisions about treating individual patients when making 
TB diagnosis from patients' CXRs and CTs. 
 
2.5 Integrated multi-modal analysis outperforms model predictions of individual 
modalities  
 
Modality-wise analysis helped identify the important features in the context of treatment 
prognosis for drug sensitive and drug resistant TB. The original dataset has 203 features across 
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all modalities, not all of which are clinically relevant. Our analysis on individual modalities 
revealed the most predictive features per modality (15 top socio-demographic features, 23 top 
pathogen genomic features and 21 top imaging features), resulting in 59 top features across all 
categories.  
 
We next analyzed correlations among the final top features across modalities (Figure 7c and 
Supplementary Table 3). We find high correlations among features within each modality, as well 
as between features across modalities. The type of resistance is significantly associated with 
the drug regimen and corresponding drug interaction FIC score. Drug resistance was also 
correlated with the imaging attributes of increased bronchial obstruction and affected lung 
segments as seen in the clinical presentation of drug resistant TB. Disease severity as reported 
by diagnosis code correlated with the number of Mtb colonies and the affected lung segments. 
Social risk factors and comorbidities show associations with gender and education; employment 
and BMI are correlated, highlighting the socio-economic impact in TB prognosis and 
management.  
 
A multi-modal machine learning model with these top features across modalities could predict 
treatment failure with an accuracy of 81.3% and an AUC of 0.805 and MCC of 0.486 (Figure 7a 
and 7b). For comparison, the AUC values were 0.798, 0.59 and 0.65 and the MCC values were 
0.41, 0.19 and 0.22 for clinical, pathogen and imaging models separately. These results are 
comparable or better than prior models in literature that predict TB treatment failure  (AUC = 
0.70 (Kalhori et al.), 0.74 (Sauer et al., 2018) and 0.79 (Koo et al., 2020)). These results are 
especially encouraging, as EHR data was collected across several hospitals within each 
country, each of which had their own data collection and reporting criteria. As a result, and as is 
common with real-world patient data, there were several redundancies, missing information and 
poor labeling, which made the data noisy.  Our final integrated model is thus quite robust and 
can predict treatment outcomes with over 81% accuracy despite these data limitations. Our 
model can also handle missing values effectively. We also built a machine learning model with 
only samples that had no missing data (without imputing missing values ) which yielded a 
similar accuracy of 80.3%. The final model developed in our study can thus guide the 
development of machine learning models to predict TB prognosis and determine optimal 
treatment regimens based on real world multi-modal data.  
 
3. Discussion  
Tuberculosis remains a significant challenge globally, but especially now in the aftermath of the 
Covid-19 pandemic (Chakaya et al., 2021; Zhou et al., 2020). There were ~1.5 million deaths 
reported due to TB in 2020, marking a significant increase in TB mortality. The Covid-19 
pandemic has had devastating effects on every aspect of global health, but TB services have 
been disproportionately affected (Pai et al., 2022) with reduced access to care and treatment. 
Of particular concern are the regions in Eastern Europe which have a high incidence of TB, TB-
HIV co-infection, and multidrug-resistant TB (MDR-TB) in the region (Chakaya et al., 2021) 
(Marais et al., 2013). The ongoing war and humanitarian crisis in Ukraine has affected the care 
of patients and the efficiency of healthcare systems in the area, including both Eastern and non-
Eastern European countries. Given these scenarios, it becomes especially important to analyze 
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available clinical data to aid in TB prognosis and guide optimal treatment decisions for each 
patient (Falzon et al., 2018; Gröschel et al., 2018; Lange et al., 2020; Lino Ferreira da Silva 
Barros et al., 2021; Olaru et al., 2016)  
 
The increasing availability of patient EHR comprising multi-modal data can enable precision and 
personalized medicine initiatives to better understand TB and other diseases (Piekos et al., 
2022). We analyzed EHR data from over 5000 patients across 10 countries from the NIH NIAID 
TB portals. We implemented a ‘transparent’ machine learning model to identify patient, drug, 
and pathogen features predictive of drug resistance and treatment prognosis in individual 
patients. Our analysis of over 200 different features across different host and pathogen 
modalities revealed a smaller set of 59 significant predictors associated with successful clinical 
outcomes at the individual level. We also determined significant associations between different 
feature subtypes and treatment failure, as well as correlations within these top features across 
different modalities. In addition, we identified drug combinations that are associated with clinical 
success in drug resistant TB. Finally, in contrast to prior predictive models that were evaluated 
using only cross-validation, we conducted additional validation of our predictions on newer 
unseen patient data that is populated in the TB portals database, which provides more rigorous 
evaluation. We also observe that features related to nutrition, particularly lower BMI and the 
presence of HIV and Anemia are significantly associated with failure, which we expect to 
worsen with conditions of war in these regions.  
 
There are some limitations to our study. As with any real-world patient data, the TB portals 
dataset has several missing and noisy information, since it collects information from multiple 
hospitals across 10 countries, each with their own collection and reporting protocol. Further, 
there is a significant imbalance in the outcomes, with Success more prevalent than Failure. We 
address these limitations by considering Random forests with an inverse weighting approach, 
with Failure assigned higher weight than Success in order to account for such imbalance. 
Random forests perform better than other modeling approaches as they are able to work with 
mixed data types and with missing values (Peetluk et al., 2021). Despite the missing 
information, our models were robust and performed significantly well and can be used to assess 
clinical outcomes and resistance.  Treatment regimens provided in the TB portals are not 
reported sequentially for each patient over time, but rather are listed as a single instance 
collectively. As a result, some patients have treatment regimens of more than 10 drugs, which is 
typically not the case. Our drug interaction FIC scores determined by INDIGO-MTB are 
computed with the assumption that these drug regimens are provided simultaneously. It would 
be more clinically relevant to calculate sequential drug interaction scores based on when they 
are provided for each patient longitudinally (Chung and Chandrasekaran, 2021; Cicchese et al., 
2021). Such sequential treatment information should be made available in the EHR databases. 
Other limitations include that genomic information linked with clinical cases is only available for 
a few genomes, based on sequencing availability at the time of collection. Whole genome 
sequencing is expensive in high burden TB countries and may not always be feasible. Finally, 
we used a transparent and mechanistic AI approach here to enable both interpretation and 
prediction of TB treatment outcomes. The use of black box methods like deep neural networks 
may lead to models with higher predictive accuracy. Nevertheless, our multi-modal mechanistic 
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AI model’s performance is better than prior AI models in literature (Kalhori et al.) (Sauer et al., 
2018) (Koo et al., 2020).  
 
 In sum, our study analyzes multi-domain information from patients across geographical regions 
and focuses on the urgent need to improve TB clinical management particularly in the face of 
increasing drug resistance. The findings of our study are especially important given various 
humanitarian crises worldwide in order to meet the WHO’s goals to ‘End TB’ by 2035. Our 
interdisciplinary study can help shift from the current one-size-fits-all approach for TB treatment 
to a personalized approach specific to each patient and which accounts for drug susceptibility 
profiles of the infecting Mtb strain. This study can serve as a framework for managing other drug 
resistant infections as well. Machine learning and Artificial intelligence based methods have 
shown promise in leveraging EHR data to develop personalized prediction models for 
addressing several infectious diseases, diabetes, cancers and other diseases to support clinical 
care (Bartelink et al., 2017; Tarumi et al., 2022) . Our robust analysis on modeling real world 
clinical data from TB patients further underscores the importance of these modeling methods to 
assist in clinical decision making.  
 
5. Methods 
 
Data mining: Patient EHR data was obtained from the TB portals database for patient cases 
available from 2008 until August 2021 [TB_portals_Update_Aug2021] after signing a data-
sharing agreement. The patient data  is encoded with unique IDs determined by the database, 
with no disclosure of the individual patient name. The database includes patients from 10 
countries spanning Eastern Europe, Central Asia, and Africa with a heavy burden of drug-
resistant TB. It continues to be actively populated with new patient data, including those who are 
still undergoing treatment. For every patient, we obtained associated information pertaining to 
Patient cases (clinical features), Radiological information (chest xray images, CT scans and 
their annotations), drug regimens, biochemistry, drug sensitivity profile for the pathogen 
associated with each infection and the corresponding specimen. The TB portals data contain 
de-identified multi-domain TB patient case data. They utilize a uniform data dictionary with 
generally accepted medical terminology and data field values. The data collected comes from a 
range of sources – clinical trials, research studies, as well as routine collection of atypical 
patient cases receiving medical care. There is no single identifiable data collection protocol that 
is uniformly enforced. Therefore, TB Portals data are structured and should be regarded as a 
natural history study, not an epidemiological study. 
 
Data processing: The dataset had missing values for several features as well as entries with 
values ‘Not Reported’, ‘Unknown’, ‘Others’, ‘Not Specified’. These were collectively labeled as 
“NaN” for further processing. Duplicate patient records as determined by patient id numbers 
were removed. Entries with conflicting values (eg. entries reporting ‘Yes AND No’ or ‘Resistant 
And Sensitive’) were also reported as NaN for that feature if the entries for other features for 
that patient were not conflicting. For every patient, there were 203 variables of mixed data 
types, with 11 numerical and 192 categorical features. The categorical features were encoded 
into numerical values, with numerical values assigned based upon the number of levels an 
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attribute, starting from 0. For example,  the attribute ‘education’ has six levels, ranging from “no 
education” - which is assigned 0, to “college and higher” which is encoded as 6. This process is 
repeated for all categorical attributes accordingly.  
 
Culture and Microscopy:  For culture types, the first culture report of the number of colonies 
identified in the specimen were considered. Instances which don’t report the number of colonies 
were mapped to the individual sample results associated with specimen id. Growth of 
mycobacteria is also reported as either positive, negative or both, as well as reports of non-
specific mycobacteria and Mycobacteria other than tuberculosis (MOTT).  Microscopy results 
describe the number of acid resistant bacteria in different fields of view, and were mapped to the 
following codes. For entries with multiple codes per cell, only the first entry was considered for 
analysis.  
 
Drug Sensitivity Test (DST): The dataset describes DST results for 24 different drugs. Entries 
are marked R (resistant), S(sensitive) or I (intermediate) to describe observed DST profiles for 
each drug. For each drug, the DST results are indicated by up to 5 types of test conducted, 
namely bactec, hain, Le, GeneExpert and lpa (Galkina et al., 2012). In cases where the tests 
report different results for the same strain, we consider a cumulative DST case based on the 
profile reported by the majority of tests. 
 
Drug-interaction scores: For all combinations of drug regimens given to each patient, we 
computed a ‘drug-interaction score’ using the INDIGO-MTB tool (Ma et al., 2019), which uses 
Random forests to assign drug interaction scores that capture the nature of interaction between 
drugs using individual drug response transcriptomics data. The interactions are considered 
synergistic (score <0.9), additive (scores 0.9-1.2), and antagonistic (scores >1.2) respectively as 
used in prior studies 
 
Mtb families: Several Mtb families belonging to multiple lineages are represented in this 
dataset across different populations. The dataset reports Mtb strains from 27 different families in 
infected patients, with some patients infected with 2 or more families (which is unlikely). The TB 
portals database refers to these families as lineages, which is inaccurate. Lineage refers to the 
M. tuberculosis classification based on Large sequence polymorphism (LSP) or Single 
nucleotide polymorphisms (SNP). Family/sub-lineages refer to the classifications based on 
spoligotyping.  
  
Chest X rays and CT data: Chest X rays were available for a subset of the patients, taken 
across multiple time points, with Day 0 considered as the time TB infection was confirmed and 
treatment was initiated for the patient. Manual annotations of these X rays performed by 
radiologists and/or general physicians were made available. We chose the annotation 
information for X Rays recorded at day 0, and in instances where day 0 was not available, we 
chose the day closest to Day 0 to capture the early days of infection before treatment takes 
effect. Similarly, we chose the CT annotations closest to day 0 when available.  
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Outcomes The outcomes of infection for each patient was considered as a response variable in 
our analysis. Outcomes of infection and treatment are described for each patient, with 6 
outcomes provided, namely Cured, Completed, Failure, Died, Palliative Care, Lost to Follow up, 
Still on treatment and Unknown. As we are interested in analyzing successful and unsuccessful 
treatment outcomes, we pooled the outcomes ‘Cured’ and ‘Completed’ as “Success”, while 
outcomes ‘Failure’, ‘Died’ and “Palliative Care” were grouped together under the outcome 
“Failure”, as they all indicate unfavorable treatment outcomes per patient. We did not consider 
patients with outcomes Lost to Follow up, Still on treatment and Unknown for our analysis.  
 
Data imputation: Initially, complete case analysis was performed with only patients that had 
less than 50% NaN values across all features. We repeated the analysis by imputing missing 
values using the K-nearest neighbor (KNN) imputation method, with k set to 3. This method was 
chosen as nearest neighbor imputation methods have been shown to be effective for machine 
learning with missing data for EHR analysis (Beaulieu-Jones and Moore, 2017). 
 
Data modalities: The data was split into 3 categories for analysis describing different aspects of 
host and pathogen data. These categories were a) patient social, clinical and demographic 
features b) patient radiological features as determined by chest X rays (CXR) and CT scans and 
c) pathogen genomic features which include gene mutations and drug sensitivity analyses. 
 
Machine Learning: We randomly split the input data into training (80%) and test (20%) samples 
for each category. The training data was then used to build a Random forest model to determine 
outcomes of Success and Failure. The function uses RandomizedGridSearch within cross-
validation to tune the XGBoost hyperparameters and estimate model performance. The final 
model uses the hyperparameters from the best-scoring CV fold and is trained on the entire 
dataset. To account for the class imbalance in the two outcomes of success and failure, we 
considered an inverse weighting approach to balance the two classes (e.g. if success 
represents 80% of the outcomes, weights assigned are 1/0.08 and 1/0.02 for success and 
failure respectively). We performed a 5-fold cross validation and assessed model performance 
in predicting disease outcome on the training data. The model performance was further 
evaluated on the test dataset containing the remaining 20% data. Different metrics were 
considered to evaluate model performance including Accuracy, Precision, Recall, F1 score, 
Matthews Correlation coefficient and the Pearson’s R, to predict the outcome of infection. We 
conduct a random permutation analysis of the data to compute Feature selection was performed 
after evaluating for variables that account for >95% of the variance observed in the model 
based on their Cumulative scores for each feature. After identifying the top features for each 
category, we further evaluated the associations of different levels within the feature with the 
outcome by calculating p-values based on the hygecdf function (hypergeometric cumulative 
distribution)(Vidakovic, 2011) in MATLAB. Additional validation was performed on newer data 
populated in the TB portals database (January 2022).  
 
Statistical analysis: Pairwise statistical tests were performed for all features in the dataset. For 
comparing two continuous variables, the Kendall rank correlation was used, which is a non-
parametric alternative to Pearson's correlation(Akoglu, 2018). For two categorical variables, the 
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Chi-squared test was performed to determine if there is a significant difference between the 
observed and expected frequencies of the associated contingency table. When comparing 
continuous and categorical variables, the Kruskal-Wallis test was used, which tests whether 
there is a difference between the groups of the continuous feature. The p-values from all of 
these tests were combined into a matrix and plotted as a heatmap. For all comparisons, a 
bonferroni correction test(Ranstam, 2016) was applied.  
 
Data Visualization: We use the Python Shapley package for data visualization. All machine 
learning and statistical analysis was conducted in Python version 3.7.13 and repeated in Matlab 
version R2021b. 
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Figure Legends 
Figure 1. Workflow adopted in this study to analyze Electronic Health records of TB 
patients. Electronic health records for tuberculosis patients were retrieved from the NIH TB 
portals database. A total of 5060 patients from 10 different countries were considered for the 
analysis, with over 200 features available representing pathogen genomic features, patient 
clinical and social features as well as radiological features derived from patient chest X rays. We 
analyzed each of these categories separately. Data analysis involved building machine learning 
models (Random forests) and conducting statistical analyses to predict disease outcomes – 
grouped as Success and Failure, respectively. Feature importance was performed using 
Shapley analysis as well as hypergeometric tests to determine the predictors associated with 
both success and failure. A final unified model was built comprising top features across all 
modalities. All model performances were evaluated by 2 types of validation a) Cross-fold 
validation (k=5) where the input data was split into training and test sets b) Predicting outcomes 
on newer patients that were populated in the TB portals database.  
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Figure 2. Overview of the EHR data present in the TB portals database. a) Geographical 
distribution of patients in the database shows countries in Europe, Asia and Africa represented 
in the dataset. Distributions of  b) number of patients per country for all 10 countries present in 
the database c) 2 pooled outcomes of Success and Failure d) patient numbers by gender and e) 
different numbers of patients by case definition. e) Distribution of BMI levels seen across 
outcomes of success and failure. Panels g) - i): g) Drug susceptibility in Mtb strains isolated 
from patients implicated in resistance to individual drugs, h)the distribution and average 
treatment times for each type of resistant strain, and  i) the drug interaction FIC scores for 
treatment regimens to treat different kinds of resistant Mtb as calculated by INDIGO-MTB.  
 
Figure 3. Modeling patient socio-demographic and clinical features. a) Model predictions 
on 80% training data using 5-fold cross validation b) model evaluation metrics of Accuracy, 
Recall, Precision, F1 score, MCC, AUC values and Correlations c) ROC curve generated on the 
training data with 5-fold cross validation d) Model predictions on 20% hold-out validation data e) 
model predictions on newer patient data f) top features predictive of treatment outcome g) top 
features and their shapley values across the 3 most populated countries in TB Portals. Each dot 
represents a single patient, with blue color representing lower values for each feature. The X 
axis represents the impact of the feature value driving model outcomes, with values above 0 
associated with failure, and those below 0 associated with success. 
 
Figure 4. Breakdown of socio-demographic and clinical features significantly associated 
with treatment failure (p<0.05). Each top feature category as determined in figure 3F is broken 
down to depict significant associations between feature subtypes and failure, highlighted by 
different colors. All pvalues are significant (p<0.05) after multiple hypothesis correction (fdr 
<0.1). The scale represents negative log p-values determined by hypergeometric tests. 
 
Figure 5. Modeling pathogen genomic features and drug susceptibilities. a) Model 
predictions on 80% training data using 5-fold cross validation b) model evaluation metrics of 
Accuracy, Recall, Precision, F1 score, MCC, AUC values and Correlations c) Model predictions 
on 20% hold-out validation data d) Top features associated with failure e) Mtb families 
represented in the data with varying drug sensitivities. f) Mtb genes where mutations are 
significantly associated with poor treatment outcomes (p<0.05) and g) Mtb resistance to drugs 
significantly associated with failure (p<0.05). 
 
Figure 6. Modeling Imaging modalities (CXR and CT data).  a) -c) CXR data.  Model 
predictions on 80% training data using 5-fold cross validation b) model evaluation metrics of 
Accuracy, Recall, Precision, F1 score, MCC, AUC values and Correlations c) Model predictions 
on 20% hold-out validation data d)-f) CT data.  d) Model predictions on 80% training data using 
5-fold cross validation e) model evaluation metrics of Accuracy, Recall, Precision, F1 score, 
MCC, AUC values and Correlations f) Model predictions on 20% hold-out validation data f) Top 
features identified by Shapley analysis for both CXR and CT data models.  
 
Figure 7.  Feature associations between top features across all modalities. The color scale 
is based on -log(p values) for correlations between these features.  
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FIGURE 5 
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Tables 
 

Table 1. Definition of treatment outcomes considered for our study 
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Table 2. Imaging features associated with treatment failure and drug resistant TB  

 
Color legend: Blue - chest imaging features significantly associated with both resistance and
treatment failure; Orange - Imaging features significantly associated only with failure; Gray -
Imaging features associated significantly with drug resistance (p<0.05) 
Supplementary Information 
 
Supplementary Figure 1. Shap feature value distributions and their impact on modeling Failure 
across countries Azerbaijan, Romania and Ukraine (the next set of populated countries after 
Moldova, Georgia and Belarus (Fig 3g). Each dot represents a single patient, and the colors 
range from blue (lower values) to red (higher values).  
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Supplementary Figure 2. External validation of CXR modeling on new patient data  

 

Supplementary tables (Supplementary_tables.xlsx). Table S1. MTB families seen in the
data.  Table S2. Drug-interaction FIC scores computed by INDIGO-MTB for all drug
combinations in treatment regimens. Table S3. Feature associations among top features across
all modalities with FDR corrected p-values.  
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