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Abstract

Recent approaches for understanding the neural basis of pain empathy emphasize the dynamic construction of networks
underlying this multifaceted social cognitive process. Inter-subject phase synchronization (ISPS) is an approach for
exploratory analysis of task-fMRI data that reveals brain networks dynamically synchronized to task-features across
participants. We applied ISPS to task-fMRI data assessing vicarious pain empathy in healthy participants (n = 238). The task
employed physical (limb) and affective (face) painful and corresponding non-painful visual stimuli. ISPS revealed two
distinct networks synchronized during physical pain observation, one encompassing anterior insula and midcingulate
regions strongly engaged in (vicarious) pain and another encompassing parietal and inferior frontal regions associated with
social cognitive processes which may modulate and support the physical pain empathic response. No robust network
synchronization was observed for affective pain, possibly reflecting high inter-individual variation in response to socially
transmitted pain experiences. ISPS also revealed networks related to task onset or general processing of physical (limb) or
affective (face) stimuli which encompassed networks engaged in object manipulation or face processing, respectively.
Together, the ISPS approach permits segregation of networks engaged in different psychological processes, providing
additional insight into shared neural mechanisms of empathy for physical pain, but not affective pain, across individuals.
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Introduction
Observing others in pain elicits pain empathic responses in
humans. Empathy, the ability to understand the feelings of
others by connecting with those same feelings in one’s self, is
a multifaceted social cognitive process which employs several
emotional and cognitive systems, such as affect sharing, sim-
ulation, theory of mind and self–other distinction (Shamay-T-
soory, 2011). Empathy for pain refers to vicariously experiencing

and—at least to some extent—understanding the feelings of
other’s pain. The anterior insula (AI) and the anterior cingulate
cortex (ACC)—which represent core nodes of the pain matrix
(Price, 2000; Wager et al., 2013) and larger salience network
(Uddin, 2015)—respond both during experiencing first-hand pain
as well as observing pain in others (Singer et al., 2004; Jackson
et al., 2006; Bernhardt and Singer, 2012). These brain regions are
involved when observing the actual infliction of physical pain in
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others (e.g. observing that someone cuts his finger with a knife)
but also when viewing static or dynamic painful facial expres-
sions of others (Botvinick et al., 2005; Saarela et al., 2006). Meta-
analyses of fMRI studies have furthermore confirmed robust
engagement of the AI and cingulate regions, specifically dorsal
ACC and anterior portions of the midcingulate cortex (MCC) dur-
ing empathic processes, including pain empathy (Fan et al., 2011;
Lamm et al., 2011; Timmers et al., 2018). In addition, the mirror
neuron system which comprises the inferior frontal gyrus (IFG)
and inferior parietal lobule (IPL) (Iacoboni and Dapretto, 2006),
brain regions related to mentalizing and self-other discrimi-
nation such as the temporoparietal junction (TPJ), the medial
pre-frontal cortex (mPFC), the posterior cingulate cortex (PCC)
and the medial temporal lobe (MTL) (Saxe and Kanwisher, 2003;
Uddin et al., 2007; Schurz et al., 2014; Kurczek et al., 2015) are also
engaged in pain empathy processing.

Inspired by approaches adapted from network neuroscience,
researchers have recently begun to move away from trying to
pinpoint specific patterns of regional brain activation associated
with pain empathy and to consider pain empathy as a process
relying on the dynamic construction of neural networks (Betti
and Aglioti, 2016). These network-based approaches have
the advantage of moving beyond the cognitive subtraction
methodology of identifying functional specialization and can
describe the contribution of interactions among brain regions
that dynamically associate across time (Kucyi and Davis, 2015).
The conventional general linear model (GLM) approach for
the analysis of task-fMRI data is hypothesis-driven such that
a hypothesized reference function that specifies onset and
duration of task-specific conditions is convolved with the
assumed blood-oxygen-level-dependent (BOLD) time courses
(Friston et al., 1994). This approach relies on priors with respect to
the temporal structure of the task as well as the neural response
in terms of the BOLD signal as described in the hemodynamic
response function (HRF). These assumptions may be violated
in studies examining complex and dynamic processes like pain
empathy, such that behavioral and neural responses to pain
stimuli may last longer and may not immediately stop as soon
as the stimuli disappear. An analysis of task-driven brain activity
during these paradigms may thus require alternate modeling
approaches.

For over a decade, inter-subject synchronization measures of
brain activation have been well established in tasks related to
auditory stimuli (Hejnar et al., 2007), narrated stories (Finn et al.,
2018) and movies (Hasson et al., 2004; Kauppi et al., 2010; Glerean
et al., 2012). These studies are based on earlier work demon-
strating that brain regions produce similar temporal dynamics
across participants experiencing the same task event concur-
rently (Hanson et al., 2009). Recently, an inter-subject phase syn-
chronization (ISPS) analysis which combines the instantaneous
phase synchronization measure (Glerean et al., 2012; Kauppi et
al., 2014) and independent component analysis (ICA) (Beckmann
and Smith, 2004, 2005; Calhoun et al., 2008) has been introduced
as a means for conducting exploratory analysis of task-based
fMRI data (Bolt et al., 2018). This approach estimates the task
relevant brain networks that dynamically synchronize during
the task across participants in a data-driven manner, with-
out dependence on a priori reference functions; thus, one can
potentially gain information about brain responses that are not
predicted by the hypothesized temporal structure of the task.
There are three methodological and theoretical advantages of
the ISPS approach in an exploratory context over the traditional
GLM approach: (i) a reference function of task events or HRF
is not required to detect task-responsive brain regions; (ii) the

synchronization approach does not assume that task-driven
brain responses follow a single, simple form (e.g. transient, sus-
tained or mixed activation) of voxel-wise activity; and (iii) the
approach allows for assessing dynamical or time-varying task-
related brain networks. To summarize, the ISPS approach is a
model-free, data-driven and dynamical measurement of inter-
subject synchronization.

The ISPS approach is in practice a form of functional
connectivity. However, rather than the more traditional analyses
in which functional connectivity is considered a statistical
measure quantifying the correlation of time series obtained
from different brain regions within the same participant, ISPS is
a measure quantifying the correlation of time series obtained
from the same brain regions across multiple participants. The ISPS
approach differs from conventional inter-subject correlation
(ISC) analyses in that it is a data-driven, dynamical measure
for voxel-wise assessments of synchronization at each time
point (Glerean et al., 2012; Kauppi et al., 2014; Bolt et al., 2018).
This methodology permits identification of time-varying, task-
driven brain network dynamics without dependence on a
priori reference functions and provides a framework for the
examination of task-relevant whole-brain temporal dynamics.
Compared to another exploratory approach for analysis of
task fMRI—the tensor ICA approach (Beckmann and Smith,
2005)—the ISPS approach estimates the group-wise synchrony
of phase time series rather than the original subject-level BOLD
signals, thus revealing unique insights into task-driven brain
activity that are not revealed by ICA alone (Bolt et al., 2018). The
efficiency and power of the ISPS approach have recently been
demonstrated in a simple motor task and a social cognitive task
provided by the Human Connectome Project (Barch et al., 2013;
Bolt et al., 2018).

In the current study, we applied this data-driven approach to
a large sample of fMRI data collected during the performance
of a pain empathy task employing affective and physical pain
empathy stimuli as well as corresponding non-painful control
stimuli in order to explore neural network synchronization dur-
ing vicarious pain empathy.

Methods
Participants and task paradigm

Two hundred and fifty two healthy adults were recruited for
the current study. All participants signed written informed con-
sent and received monetary compensation for their participa-
tion. The study was approved by the local ethics committee
(Institutional Review Board, University of Electronic Science and
Technology of China) and was in accordance with the latest revi-
sion of the Declaration of Helsinki. Neuroimaging data from six
participants were lost due to technical failure. Furthermore, four
left-handed participants and four participants with head motion
exceeding 3.0 mm translation or 3◦ rotation were excluded.
Consequently, 238 participants (120 males; 17–29 years old, mean
age = 21.58 ± 2.32 years) remained in the final analysis. These
data have been previously published in a study examining the
common and specific associations of autistic traits and alex-
ithymia with neural reactivity (Li et al., 2019). Importantly, the
previous study employed a mass-univariate GLM approach, and
the focus of the previous study was independent from the aim
of the present study.

The pain empathy paradigm (see also Li et al., 2019) employed
a blocked design including four experimental conditions (physi-
cal pain, affective pain, physical control, affective control). The
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physical stimuli showed a person’s hand or foot in painful or
non-painful everyday situations from a first-person perspective
(see Meng et al., 2012), and the affective stimuli consisted of
painful and neutral facial expressions from 16 Chinese subjects
(8 males) (see Sheng and Han, 2012). A total of 16 picture blocks
(4 blocks per condition) were presented in the same pseudo-
randomized order for all participants and interspersed with a
jittered inter-block interval of 8/10/12 s showing a red fixation
cross, thus permitting the use of the ISPS approach measuring
brain synchrony across participants. Each picture block (16 s)
had four homogeneous stimuli displayed for 3 s followed by a
1 s white fixation cross on a gray background. The total duration
of the task was 436 s acquired in a single fMRI run. Participants
were required to passively view the stimuli. After scanning, par-
ticipants were asked to rate the pain intensity and arousal of the
stimuli they just viewed in the scanner (see in Supplementary
Table S2 for the rating results).

Image acquisition and data pre-processing

Neuroimaging data were collected on a 3.0-T GE Discovery MR750
system (General Electric Medical System, Milwaukee, WI, USA).
Functional time series were acquired using a T2∗-weighted echo-
planar imaging (EPI) sequence (repetition time, 2000 ms; echo
time, 30 ms; flip angle, 90◦; number of slices, 39 (interleaved
ascending order); slice thickness, 3.4 mm; slice gap, 0.6 mm; field
of view, 240 × 240 mm2; resolution, 64 × 64). To improve normal-
ization of the functional MRI data, high-resolution T1-weighted
structural images were additionally acquired using a 3D spoiled
gradient recalled (SPGR) sequence (repetition time, 6 ms; echo
time, minimum; flip angle, 9◦; number of slices, 156; slice thick-
ness, 1 mm without gap; field of view, 256 × 256 mm2; acqui-
sition matrix, 256 × 256). OptoActive MRI headphones (http://
www.optoacoustics.com/) were used to reduce acoustic noise
exposure for the participants during MRI data acquisition.

Pre-processing was conducted using standard procedures in
SPM12 (Statistical Parametric Mapping, http://www.fil.ion.ucl.
ac.uk/spm/), including the removal of the first 10 volumes to
allow MRI equilibration and active noise cancelling, head motion
correction using a six-parameter rigid body algorithm, tissue
segmentation and skull-stripped bias-correction for the high-
resolution structural images, co-registration of the mean func-
tional image to structural image, normalization (resampling at
3 × 3 × 3 mm) to Montreal Neurological Institute (MNI) space
and spatial smoothing with 8 mm full-width at half maximum
(FWHM) Gaussian kernel. Additionally, we performed denoising
using ICA-AROMA (Pruim et al., 2015).

Inter-subject phase synchronization (ISPS) analysis

Following previous work (Bolt et al., 2018), pre-processing for
the synchronization analysis additionally included detrending
and filtering (0.01–0.1 Hz) using DPARSF (http://www.restfmri.
net/forum/DPARSF, Yan and Zang, 2010). For each subject, time
series of each voxel were extracted and z-transformed. The inter-
subject instantaneous phase synchronization analysis (Glerean
et al., 2012; Bolt et al., 2018) works by first creating an analytic
(i.e. complex-valued) representation of the pre-processed BOLD
signal using the Hilbert transformation. We calculated phase
synchronization at each time point using a metric known as
circular variance. This metric measures the dispersion of phase
angles across all subject’s analytic (complex-valued) time series
at each time point. This measure provides a single summary

statistic across participants at each time point, as opposed to
the subject pair-wise average angular distance measure used in
previous studies (Kauppi et al., 2014; Bolt et al., 2018). At each time
point, we subtracted the circular variance from 1 to obtain the
synchronization measure. The synchronization measure varies
from 0 to 1, where a value of 1 represents complete similarity of
phase signals and a value of 0 represents the complete absence
of similarity of phase signals.

Thus, the result of the instantaneous phase synchronization
analysis is a time series of synchronization values for each voxel
in the brain, representing the average synchrony (the average
absolute angular distance) across participants for each time
point (TR). Rather than a conventional region-of-interest (ROI-
based) analysis of synchronization, we chose to use a data-
driven ICA that incorporates synchronization time signals across
the entire brain to estimate possible synchronization networks
that appear across the course of the task scan. ICA was imple-
mented through FSL’s MELODIC software (Beckmann et al., 2005).
This approach is equivalent to a single-subject ICA applied to
group-level synchronization time series across all voxels in the
brain, rather than the original signal time courses of all voxels.
As in previous work (Bolt et al., 2018), a 10-component ICA
solution yielded the highest replicability compared with 15-
and 20-component solutions. In the present data set, the 10-
component ICA solution was also more replicable compared
with the 15-component ICA solution (see Supplementary mate-
rials). Thus, results from the 10-component ICA solution are
presented. Components were labeled as unclassified if the spa-
tial weights had characteristic artifact patterns, such as strong
weights in white matter, cerebrospinal fluid (CSF) or along the
surface of the brain. To further characterized the components,
the thresholded (z > 2.3) spatial components were then linked
to the well-known Yeo-7 network solution (Yeo et al., 2011) by
calculating the percentage of overlapping voxels with each of the
seven networks (Supplementary Figure S2). The time course of
independent components (ICs) of interest represents the degree
of synchronized BOLD activity across all participants at each
time point.

General linear model (GLM) analysis

To compare the brain networks from the phase synchronization
analysis to the standard GLM approach, conventional GLM
analyses on ICA-AROMA denoised data were conducted using
SPM12. On the first level, four condition-specific regressors
(physical pain, affective pain, physical control, affective control)
were modelled using a boxcar function and convolved with
the canonical HRF. The six head motion parameters were
additionally included as nuisance regressors. A 128 s high-
pass filter was applied to further control low-frequency noise
artifacts. At the second level, one sample t-tests were conducted
to determine condition-specific activation maps and physical
and affective pain networks, respectively, employing subtraction
contrasts between the pain and their respective control
conditions.

Association of task block regressors with
synchronization time series

To examine the relationship between the synchronization time
series resulting from the ICA with each task condition, we used
the convolved block regressors of the GLM as reference functions.

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
http://www.optoacoustics.com/
http://www.optoacoustics.com/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.restfmri.net/forum/DPARSF
http://www.restfmri.net/forum/DPARSF
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
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Fig. 1. Activation maps (unthresholded) from the conventional GLM approach. The BOLD activation maps for each task condition (middle) as compared to baseline

(left) or the relative subtraction contrasts between pain and control in physical and affective conditions, respectively (right).

As noted by others (Nummenmaa et al., 2014), conventional
double-gamma HRF convolved regressors attempt to model a
late undershoot of the HRF, which would not presumably be
present in the case of a voxel synchronization time course
(which would exhibit no undershoot). Thus, to get the suitable
reference functions, we computed another GLM model using the
gamma HRF in FSL to account for HRF lag and width, without an
undershoot. The association between the synchronization time
series and a chosen reference function was computed using the
Pearson correlation with Bonferroni correction (eight conditions
× nine components, Supplementary Table S1). The more pos-
itive the correlation, the stronger the association between the
reference function and synchronization time series from ICs of
interest.

Results

Conventional GLM results
Brain activation maps produced by the standard GLM approach
revealed that all conditions engaged visual cortices and fron-
toparietal areas, which may reflect the visual nature of all stim-
uli and general attention processes (Figure 1). Subtraction con-
trasts between pain and control in both physical and affective
conditions revealed typical pain empathy networks. Physical
pain compared with the control condition revealed increased
activations in bilateral clusters including the IPL, dorsomedial
pre-frontal cortex (dmPFC), insula and IFG, as well as right later-
alized clusters in the MTL, inferior occipital gyrus (IOG), amyg-
dala and thalamus (FWE peak level corrected, P < 0.05). Sub-
traction contrasts between affective pain and control showed
increased activation in the bilateral IPL, MTL and TPJ (FWE peak
level corrected, P < 0.05).

Synchronization results

One of the resulting 10 ICs was labeled as unclassified
because the spatial weights were mostly in white matter
and CSF and could not be replicated in the split half sample
replication (Supplementary Figure S1). Five of the nine remaining
components were related to physical stimuli (domain general
networks, C2 and C3; task condition-specific networks, C1, C5,
C9), and the other three components corresponded to affective
stimuli (domain general networks, C4 and C6; task condition-
specific network, C8) and one corresponded to the default mode
network (C7) (Figure 2).

The synchronization time series of ICA components C2
and C3 were highly correlated with the reference function
of physical (limb) stimuli blocks (C2, r = 0.377, P < 0.001; C3,
r = 0.598, P < 0.001; Supplementary Table S1). The spatial map
of C2 exhibited the strongest weights in the visual network
including the bilateral middle/inferior occipital gyrus, with
visual inspection revealing that synchronization peaks of the
C2 component were pronounced at the onset of each task
block, suggesting that C2 may capture synchronization in
a visual network predominantly engaged during the onsets
of blocks displaying physical stimuli. In addition, C3 was
temporally related to both physical conditions, such that
this component significantly correlated with the reference
function of physical pain blocks (r = 0.423, P < 0.001) as well as
physical control blocks (r = 0.316, P < 0.001; Fisher z-test, z = 1.268,
P = 0.205; Supplementary Table S1), with the spatial pattern
of C3 suggesting synchronization in a network incorporating
the bilateral middle occipital and middle temporal as well
as inferior parietal and ACC/ventromedial pre-frontal cortex
(vmPFC) regions. Comparing C3 with the Yeo 7-network solution
revealed that C3 included a combination of default mode,

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
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Fig. 2. Synchronization of the nine components. (C = component; R = right; L = left). The left panel displays correlation coefficients of each component and the most

associated task condition. The middle panel displays the synchronization time courses for each component and the GLM reference functions it is most associated with.

The right panel shows the spatial weights for each component [visualized with BrainNet Viewer (Xia et al., 2013)].

visual, dorsal attention and frontoparietal control networks
(Supplementary Figure S2).

The synchronization time series of C1 and C5 were highly
correlated with the reference function of physical pain blocks.
Although C1 showed a domain general association with
all physical stimuli (C1: r = 0.568, P < 0.001), examination of
the condition-specific reference functions revealed that this

component demonstrated a stronger association with the
temporal reference function of physical pain blocks (r = 0.553,
P < 0.001) rather than physical control blocks (r = 0.149, P = 0.032;
significant difference between the conditions according to
Fisher z-test, z = 4.773, P < 0.001, Cohen’s q = 0.473; medium
effect size, Supplementary Table S1). The spatial pattern of
C1 had strongest weights in the inferior/superior parietal

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
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regions, including the bilateral post-central and supramarginal
gyri, as well as additional clusters in the bilateral insula
and adjacent IFG. Comparing C1 with the Yeo 7-network
solution revealed that C1 overlapped with dorsal attention
and visual networks (Supplementary Figure S2). Furthermore,
component C5 was also temporally related to the physical pain
blocks (r = 0.253, P < 0.001) rather than physical control blocks
(r = −0.045, P = 0.519; Fisher z-test, z = 3.072, P = 0.002, Cohen’s
q = 0.304; medium effect size). The spatial pattern of C5 had
strongest weights in the bilateral AI and the adjacent IFG as
well as dmPFC and adjacent MCC regions. Comparing C5 with
the Yeo 7-network solution revealed that C5 had a combi-
nation of frontoparietal control and default mode networks
(Supplementary Figure S2).

The synchronization time series of C9 were highly corre-
lated with the reference function of physical control blocks
(r = 0.472, P < 0.001) but not physical pain blocks (r = − 0.344,
P < 0.001; Fisher z-test, z = 8.821, P < 0.001, Cohen’s q = 0.871;
large effect size; Supplementary Table S1) with the spatial
pattern indicating strongest weights in the bilateral pre-
central and post-central gyri, which involve the somatomotor
network.

The synchronization time series of C4 and C6 were highly
correlated with the reference function of affective (face)
stimuli blocks (C4: r = 0.528, P < 0.001; C6: r = 0.213, P = 0.002;
Supplementary Table S1). The spatial pattern of C6 had strong
weights predominantly located in the medial and superior
occipital visual regions including the cuneus, calcarine and
lingual gyri as well as regions engaged in social and face
processing including the fusiform and superior temporal
and precuneus gyri. Thus, C6 may capture visual networks
related to face processing. C4 was temporally related to
both affective pain blocks (r = 0.396, P < 0.001) and affective
control blocks (r = 0.255, P < 0.001; Fisher z-test, z = 1.600,
P = 0.110; Supplementary Table S1) and had strong spatial
weights in the bilateral posterior cerebellum; occipital and
temporal regions including cuneus, fusiform and precuneus
gyri; as well as the thalamus and superior frontal regions.
Comparing C4 with the Yeo 7-network solution revealed that
C4 had a combination of dorsal attention and visual networks
(Supplementary Figure S2).

The synchronization time series of C8 was correlated with
the reference function of affective control blocks (neutral
facial expression, r = 0.257, P < 0.001) but not affective pain
blocks (r = −0.132, P < 0.001; Fisher z-test, z = 3.996, P < 0.001,
Cohen’s q = 0.395; large effect size; Supplementary Table S1),
and the spatial pattern indicated strongest weights in the right
inferior and middle temporal gyri including the fusiform gyrus
and superior mPFC. Comparing C8 with the Yeo 7-network
solution revealed that C8 had a combination of default mode,
frontoparietal control and limbic networks (Supplementary
Figure S2). None of the components was specifically related to
the temporal reference function of the affective pain condition.

Finally, the synchronization time series of C7 was not specif-
ically associated with a specific task condition (all r < 0.133,
P > 0.055) and was observed to have strong spatial weights pre-
dominantly located in the default mode network (precuneus,
posterior cingulate cortex and vmPFC).

Quantitatively comparing each component to the Yeo 7-
network solution (Yeo et al., 2011) by calculating the percentage
of overlapped voxels confirmed the results from the visual
inspection of the overlap (see Supplementary Figure S2 for
details).

Discussion
The present study employed a data-driven ISPS approach to a
large task-fMRI data set of healthy participants that used visual
stimuli to engage pain empathic brain networks by presenting
affective and physical pain stimuli as well as corresponding non-
painful control stimuli. The synchronization approach deter-
mined networks that were engaged across processing of phys-
ical or affective stimuli, respectively. Moreover, task condition-
specific networks were observed for physical pain, physical con-
trol and affective control stimuli, while no robust networks were
determined for the affective pain stimuli.

With respect to the processing of physical stimuli, the ISPS
approach reliably identified networks engaged in domain gen-
eral processing of physical stimuli as well as pain empathy-
specific networks. Components C2 and C3 were associated with
the reference functions modelling both physical pain and phys-
ical control conditions, suggesting general inter-subject syn-
chronization of these components for physical stimuli irrespec-
tive of pain empathic processing. Component C2 predominately
captured a network encompassing primary visual processing
areas in the medial and inferior occipital lobe, likely reflecting
processing of low-level visual features and object categorization
(DiCarlo et al., 2012). Visual inspection revealed pronounced
synchronization during the beginning of physical stimuli blocks,
which may reflect stronger engagement of object categorization
or novelty detection at the onset of the condition-specific block
(Ranganath and Rainer, 2003) or unspecific mechanisms related
to repeated presentation of similar visual stimuli in visual pro-
cessing areas such as habituation or repetition suppression pro-
cesses (Vidyasagar et al., 2010). Component C3 primarily encom-
passed middle temporal and inferior parietal, as well as mPFC
regions. This synchronized network overlaps with parietal and
temporal regions engaged during action observation (Caspers et
al., 2010; Molenberghs et al., 2012), including observation of com-
plex hand-object manipulations (Errante and Fogassi, 2019) that
have been determined employing traditional BOLD level subtrac-
tion methods. The mPFC is a functionally highly heterogenous
region involved in a broad range of emotional and cognitive
functions, which in concert with parietal and temporal regions
supports social cognitive functions including mentalizing during
action observation and decoding of goals based on observed
body-part motions (Van Overwalle and Baetens, 2009; Spunt et
al., 2010).

Consistent with previous studies employing hypothesis-
driven GLM approaches and subtraction contrasts comparing
physical pain with matched non-painful stimuli, the synchro-
nization time series of two components (C1, C5) specifically
correlated with the temporal reference function of physical
pain blocks. The components encompassed a network primarily
including the inferior and lateral parietal regions, the post-
central and supramarginal gyri, AI and adjacent IFG as well
as the dmPFC and adjacent MCC regions. Previous meta-
analytic results from studies employing subtraction contrasts
revealed a highly overlapping network engaged during empathic
responses, including pain empathy (Fan et al., 2011; Lamm et al.,
2011; Timmers et al., 2018). More specifically, component C5
exhibited predominately associations with core nodes of the
network engaged in experiencing first-hand as well as vicarious
pain, such as the AI and MCC (Singer et al., 2004; Jackson et
al., 2006; Bernhardt and Singer, 2012), whereas component C1
encompassed regions engaged in social cognitive processes
that coactivate with empathy responses (Shamay-Tsoory, 2011;
Bernhardt and Singer, 2012) and may support or modulate

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa025#supplementary-data
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the experience of empathy, including the inferior parietal,
inferior frontal and dmPFC regions engaged in mirror neuron
(Molenberghs et al., 2012) and mentalizing processes (Schurz et
al., 2014). Together this suggests that the ISPS approach can iden-
tify the core networks engaged in pain empathic processes and,
in addition, compared with the standard subtraction method,
it can differentiate networks primary engaged in the pain-
associated response from social cognitive networks considered
to modulate and support the pain empathic response. The
physical control condition was additionally associated with a
separate component (C9) primarily encompassing bilateral pre-
central and post-central gyri.

Two components (C4, C6) were correlated with the reference
function for both affective pain and affective control (facial)
stimuli, suggesting that these components may capture aspects
underlying general face processing independent of pain. Compo-
nent C6 encompassed primary visual processing regions in the
occipital cortex, including medial occipital and calcarine regions,
possibly reflecting primary visual processing of facial stimuli. C4
additionally encompassed temporal and superior frontal regions
strongly involved in face processing and face recognition, such
as the fusiform gyrus (Fusar-Poli et al., 2009; Sabatinelli et al.,
2011), suggesting that the synchronization approach was able to
differentiate the networks engaged in these sub-processes. The
affective control condition was additionally associated with a
separate component (C8) primarily encompassing inferior tem-
poral and superior mPFC regions.

Surprisingly, the reference function for affective pain stimuli
was not significantly associated with any of the identified com-
ponents, suggesting that the concomitant pain information may
have interfered with synchronicity across participants. Although
the present standard GLM subtraction analysis and previous
meta-analysis encompassing studies using facial pain stimuli
revealed activation in pain empathy networks (Timmers et al.,
2018), a corresponding network that specifically associated with
the reference function of the affective pain blocks was not found
using the synchronization approach. This might be explained
in the context of the group-level strategy the ISPS is based
upon, such that larger individual differences during affective
pain observation may have contributed to the lack of synchro-
nized networks in this condition. If the affective pain stimuli
induced highly variable responses across participants, this inter-
subject variability would reduce inter-subject synchronization
during this condition. Previous studies suggest that dimensional
variables such as trait alexithymia and autism (Li et al., 2019) as
well as categorical variables including sex and genotype (Warrier
et al., 2018) modulate processing of painful faces. Furthermore,
as a highly intense negative emotion, the painful facial expres-
sion is very similar to the expression of highly intense positive
emotions, such as orgasm and victory (Hughes and Nicholson,
2008; Aviezer et al., 2012). Thus, the affective pain pictures can
be considered as the most ambiguous in the current paradigm—
the other stimuli are pretty easily identifiable to participants;
however the painful faces without any context (e.g. displaying
a noxious agent in difference to the physical pain pictures)
may induce widely varying interpretations as a function of the
previous experience of the participants. In support of this inter-
pretation, we found that post-scanning subjective ratings by
the participants revealed that the standard deviation of both
pain intensity ratings (SD = 21.43) and arousal ratings (SD = 20.13)
for affective pain stimuli were higher than these for physical
pain stimuli (pain intensity, SD = 17.18; arousal, SD = 17.53; Sup-
plementary Table S2). This further confirms that affective pain
perception has higher variability across participants in terms

of subjective experience. Finally, a component encompassing
core regions of the default mode network, specifically posterior
parietal and medial frontal regions (Andrews-Hanna et al., 2010),
did not synchronize with any of the task-dependent reference
functions.

The findings of the present study need to be considered
in the context of some limitations. First, despite the split half
replication approach employed here, replications in indepen-
dent samples are required to fully elucidate the robustness
of the findings. Second, the ISPS approach provides a flexible
exploratory data-driven approach for task-fMRI data to identify
the common and homogenous task-/stimuli-related networks
across participants; however it may be not suitable for tasks
which have randomized/counterbalanced presentation order or
stimuli which induce variable or non-homogeneous responses
across participants (e.g. affective pain stimuli here) or when
aiming to differentiate individual differences such as sex differ-
ences.

Together, the present results further demonstrate that the
ISPS approach may represent a valuable exploratory analysis
method that can reveal network synchronization in the context
of task fMRI analyses and can separate networks that support
complex social emotional processes such as empathy, especially
empathy for physical pain but not affective pain. In the con-
text of growing evidence for dysregulations in pain empathic
processes in participants with high levels of pathology-relevant
traits such as alexithymia or autism (Bird and Viding, 2014; Li
et al., 2019) as well as in patient populations with depression (Xu
et al., 2019) or schizophrenia (Vistoli et al., 2017), the ISPS method
may furthermore permit dissection of impaired network-level
integration underlying social cognitive deficits.
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