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ABSTRACT Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the func-
tional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis
on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine
gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions
[EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated
herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional impor-
tance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unim-
portant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules
that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in
MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcrip-
tion can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using
several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the
nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription
emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects
on RNAs generated by pervasive transcription.

IMPORTANCE The fact that pervasive transcription produces functionally important RNAs has profound implications for design
and interpretation of genetic studies in herpesviruses, since such studies often involve mutating both strands of the genome.
This is a common potential problem; for example, a conservative estimate is that there are an additional 73,000 nucleotides tran-
scribed antisense to annotated ORFs from the 119,450-bp MHV68 genome. Recognizing the importance of considering the func-
tion of each strand of the viral genome independently, we used strand-specific approaches to identify six regions of the genome
encoding transcripts that promoted viral protein expression. For two of these regions, we mapped novel transcripts and deter-
mined that targeting transcripts from these regions reduced viral replication and the expression of other viral genes. This is the
first description of a function for these RNAs and suggests that novel transcripts emanating from regions of pervasive transcrip-
tion are critical for the viral life cycle.
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ammaherpesviruses are oncogenic herpesviruses that un-

dergo productive replication and can establish latent infec-
tion in their hosts. Human gammaherpesviruses, Epstein-Barr Vi-
rus (EBV; also called human herpesvirus 4 [HHV-4]) and
Kaposi’s sarcoma-associated herpesvirus (KSHV; also called
HHV-8), are associated with malignancies, including Burkitt’s
and primary effusion lymphomas, nasopharyngeal carcinoma,
and Kaposi’s sarcoma. Murine gammaherpesvirus 68 (MHV68;
also called yHV68 and MuHV4) is genetically related to EBV and
KSHYV and causes lymphomas and lymphoproliferative disease in
immunocompromised mice (1-5), providing a tractable model
system in which to study productive infection in vitro and viral
pathogenesis in vivo.
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MHV68 and other herpesviruses can serve not only as models
for viral infection and pathogenesis but also as systems in which to
unravel the complexity of pervasive transcription and to probe the
function of its products. Using high-density tiled arrays and RNA
sequencing, we and others have shown that widespread transcrip-
tion occurs outside annotated open reading frames (ORFs) during
lytic MHV68 infection, generating regions of transcription
termed expressed genomic regions (EGRs) (6,7). We termed these
EGRs rather than genes because the signal in a tiled array analysis
may represent multiple different transcripts and because they
were not initially investigated for functional importance. These
EGRs contain no ORFs with significant homology to known pro-
teins and, as such, may encode noncoding RNAs (ncRNAs),
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spliced transcripts, novel small polypeptides, and/or long 5’ or 3’
untranslated regions of annotated ORFs (6). While there are sev-
eral well-studied examples of herpesvirus ncRNAs expressed dur-
ing lytic or latent infection (reviewed in reference 8), new se-
quencing and array technologies reveal a substantially more
complex transcriptional landscape for both betaherpesviruses and
gammaherpesviruses than was previously appreciated (6, 7, 9-14,
64). Intergenic and antisense transcription has also been widely
detected in a range of other organisms, including humans and
mice (15-17, 63). However, the function of these viral transcripts
remains an open question. The implications of these findings for
genomic mutagenesis studies targeting ORFs within herpesvirus
genomes are incompletely understood. Importantly, while initial
findings of pervasive transcription of the MHV68 genome (6)
have been independently confirmed (7), whether these RNAs have
any function is unknown. One interpretation is that the products
of pervasive transcription are irrelevant to the viral life cycle and
might merely be the result of failed termination of functionally
important, often protein-coding, transcripts. Studies relying on
disruption of the viral genome in ways that alter transcripts from
both genomic strands cannot resolve this question.

In this study, we used a flow cytometry-based screen combined
with strand-specific knockdown of candidate RNAs to assess the
importance of RNAs encoded within EGRs. We found that target-
ing several EGR-encoded transcripts altered the expression of
other viral genes, and we selected two adjacent regions (EGRs 26
and 27) for detailed analysis. We characterized the transcript ar-
chitecture, localization, and effects on other viral genes for RNAs
emanating from EGRs 26 and 27. Herein, we report that EGR 26
and 27 transcripts were enriched in the nuclei of infected cells and
that targeting transcripts emanating from EGR 27 altered expres-
sion of multiple viral genes and proteins and inhibited viral repli-
cation. To our knowledge, this is the first proof of functional sig-
nificance of novel viral transcripts identified using a
transcriptome-based approach.

RESULTS

Establishment of a system to target MHV68 transcripts: anti-
sense targeting of a known essential gene alters late viral protein
expression. Since many EGRs are antisense to other EGRs or
known ORFs, it was necessary to design a strategy to determine the
functionality of transcripts from a single strand of the viral ge-
nome. To disrupt viral transcripts in a strand-specific manner, we
designed single-stranded antisense oligonucleotide (ASO) gap-
mer probes to known MHV68 viral genes. Gapmer ASOs, which
are reported to disrupt gene expression by RNase-H mediated
degradation of their target transcript (18), have been previously
used to target herpesvirus ncRNAs (19, 20).

An ASO to the single-stranded DNA binding protein, ORF 6
(21), significantly reduced transcript (Fig. 1A) and protein
(Fig. 1B) levels of its target. An ASO to a noncellular, nonviral
transcript (green fluorescent protein [GFP]) did not alter ORF 6
transcript or protein abundance (Fig. 1A and B) and served as a
negative control. Additionally, the ORF 6 ASO reduced the abun-
dance of the ORF 4-OREF 6 bicistronic transcript (Fig. 1A) (22).
We observed a smaller (~1-kb) band in cells transfected with the
ASO to ORF 6, which may represent a stable product of the de-
graded ORF 6 transcript (Fig. 1A). These data demonstrated that
targeting a viral gene with an ASO decreased both transcript and
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FIG1 An antisense oligonucleotide to ORF 6 decreases ORF 6 transcript and
protein expression and late-gene expression. 3T12 cells transfected with ASOs
targeting ORF 6, M3, or GFP (negative control) or left untransfected (No ASO)
were infected with MHV68. (A) Representative Northern blot for ORF 6 or
actin transcripts at 14 hpi and corresponding quantification of ORF 6 mono-
cistronic transcript levels normalized to those of actin (MOI = 10; values are
means and standard errors of the means [SEMs] from 3 experiments; **, P <
0.01 by paired ¢ test). (B) Representative Western blot for ORF 6 and actin
protein at 18 hpi and corresponding quantification of ORF 6 normalized to
actin (MOI = 10; data are means and SEMs from 8 experiments; ***, P < 0.001
by paired f test). Relevant lanes of representative blots are shown. (C) Flow
cytometry analysis of ORF 4 surface expression at 24 hpi (MOI = 5 or 10).
Flow cytometry data are graphed as the percentage of ORF 4-positive cells for
each condition normalized to the value from untransfected cells (data are
means and SEMs for 34 to 35 replicates; statistically significant results relative
to GFP are indicated; ****, P < 0.0001 by one-way ANOVA with Dunnett’s
posttest). (D) Western blot analysis of M9 or ORF 26 at 18 hpi. Relevant lanes
of representative blots are shown. Data are representative of four independent
experiments.
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FIG 2 Targeting of EGRs 9, 16, 18, 23, 26, and 27 reduces ORF4 surface expression on infected cells. 3T12 cells transfected with the indicated ASOs or left
untransfected were analyzed for cell surface expression of ORF 4 at 24 hpi by flow cytometry. Cells were infected at an MOI of 5 or 10. Controls were included
in parallel in each experiment in which EGRs were analyzed. The percentage of ORF 4-positive cells for each condition was normalized to the value from
untransfected cells. Data are means of the pooled data and SEMs; n, number of independent experiments. Statistically significant results relative to GFP are
shown. *, P < 0.05; **, P < 0.01;***, P << 0.001; ****, P < 0.0001 (one-way ANOVA with Dunnett’s posttest). Black bars, controls (data reproduced from Fig. 1C);

gray bars, EGRs.

protein levels of its target, confirming this as an effective strategy
for knocking down specific transcripts in MHV68 infected cells.

We next validated a flow cytometry-based assay to rapidly as-
sess the effect of knockdown of transcripts on viral protein expres-
sion. Viral genes are expressed as a cascade of immediate-early,
early, and late genes. Disrupting an essential gene of either
immediate-early or early classes will broadly disrupt expression of
all late genes. To enable us to capture potential effects on multiple
aspects of the viral life cycle, we therefore selected expression of a
late gene, ORF 4, as our target for assay development. ORF 4
encodes the viral complement regulatory protein (v-RCA) which
is expressed on the surfaces of infected cells (22). An ASO to the
essential gene ORF 6 (21) significantly inhibited the surface ex-
pression of ORF 4 (Fig. 1C). An ASO designed to be complemen-
tary to the nonessential gene M3 (23) did not reduce ORF 4 sur-
face expression (Fig. 1C). Since ORF 4 is transcribed as a
bicistronic transcript with ORF 6, it is possible that the reduction
in ORF 4 surface expression observed was due to direct knock-
down of the transcript that encodes ORF 4 by the ASO designed to
target ORF 6. To confirm that knocking down ORF 6 altered ex-
pression of other proteins, we evaluated protein expression of
ORF 26 and M9 (ORF 65) (24, 25) and confirmed that knocking
down ORF 6 decreased expression of multiple viral late proteins
(Fig. 1D). These data demonstrated that disrupting the expression
of an essential gene transcript was detectable by a change in ORF 4
surface expression and indicated that this method could be used as
a screening tool for the function of EGR transcripts.

Targeting EGR transcripts alters surface expression of the
late viral protein encoded by ORF 4. To determine whether tran-
scripts encoded within EGRs played a role in productive infection,
we designed ASOs to regions within 13 EGRs (EGR nomenclature
is as in reference 6). We selected 12 EGRs that might be important
for viral replication (EGRs 9, 10, 11, 15, 16, 18, 20, 21, 23, 25, 26,
and 27) and one EGR that might be dispensable for viral replica-
tion (EGR 30) based on results from a genome-wide transposon-
based mutagenesis screen of the MHV68 genome (26). Since
transposon mutagenesis disrupts genetic elements on both DNA
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strands, some of the phenotypes previously attributed to trans-
poson insertions in known ORFs could also be explained by a
function of EGR-encoded transcripts from the opposite strand.
Cells were transfected with ASOs to regions of the 13 selected
EGRs or the known viral genes ORF 6 and M3, infected with
MHV68, and then analyzed for ORF 4 surface expression by flow
cytometry (see Table SI in the supplemental material for ASO
sequences and targeted genomic coordinates). ASO targeting of
EGRs 9, 16, 18, 23, 26, and 27 showed statistically significant re-
ductions in ORF 4 surface expression (Fig. 2). For EGRs 9, 18, and
23, which were targeted with multiple ASOs, not all ASOs altered
ORF 4 expression, suggesting that these ASOs may differ in knock-
down efficiency or may target distinct transcripts encoded by the
EGR. In fact, we have found that there is extensive splicing within
the MHV68 transcriptome, including within EGR 23, which may
account for the differences observed (L. S. Johnson, S. P. Canny,
and H. W. Virgin, unpublished data). Cells transfected with ASOs
targeting EGRs 11 and 20 had increased ORF 4 surface expression
(Fig. 2), which might suggest a role for transcripts emanating from
these EGRs in suppressing viral replication.

Taken together, these results show that several EGR-encoded
transcripts were important for ORF 4 protein expression. ASOs to
the adjacent EGRs 26 and 27 (EGR 26¢c and EGR 27b in Table S1 in
the supplemental material) on the negative strand of the viral ge-
nome had the largest effect on cell surface expression of ORF 4,
comparable to the effect of targeting the essential gene ORF 6
(Fig. 2). For this reason, we chose to further characterize EGR 26-
and EGR 27-encoded transcripts and to assess the effect of target-
ing RNAs from this region on viral gene expression.

Mapping 5’ and 3’ ends of EGR 26 and EGR 27 transcripts. To
define the transcript(s) targeted by ASOs to EGRs 26 and 27, we
used a combination of RNA sequencing, random amplification of
5" and 3’ cDNA ends (5’ and 3’ RACE), and Northern blot anal-
ysis. First, we confirmed active RNA expression within EGRs 26
and 27 in lytically infected fibroblasts by RNA sequencing and
identified a transcriptional signal similar to the signal that we had
previously detected using tiled array technology (see Fig. S1 in the
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FIG 3 EGR 26 and 27 transcriptional architecture. (A) Schematic representation of EGR 26-27/M9 region transcripts. Approximate size and transcript name

are listed below the relevant transcript. (B) Northern blot detection of EGR 26-27/M9 region transcripts. RNA harvested at 18 hpi (MOI =

10) was analyzed by

Northern blot analysis using the indicated probes. 28S and 18S rRNA bands visualized by ethidium bromide staining to demonstrate equal loading are shown
below the corresponding Northern blots. Northern blots analyzed with probe 12 and probe 2 (far right) had 500 ng of poly(A)-selected RNA per lane. *,
virus-specific bands that are of comparable size to EGR 27 transcripts A and B. **, smaller EGR 26 transcripts referenced in text.

supplemental material) (6). Spearman correlations calculated be-
tween our previous tiled array data and RNA sequencing datasets
from 18 h postinfection (hpi) yielded correlation coefficients
ranging from 0.78 to 0.85.

To determine the sizes and relative positions of transcripts em-
anating from EGRs 26 and 27, we used Northern blot analysis. We
identified an ~12-kb transcript (referred to here as EGR 26 tran-
script A) that overlapped EGRs 26 and 27 and ORFs 65 to 67, an
~8-kb transcript (referred to here as EGR 27 transcript A) that
overlapped EGR 27 and ORFs 65 to 67, and an ~3-kb transcript
(referred to here as EGR 27 transcript B) that overlapped EGR 27
(Fig. 3). We also identified a transcript of >12 kb that overlapped
and was detected by probe 1 which we termed EGR 26 transcript B
but did not map further. Using a probe to genomic coordinates
101170 to 101208 (probe 12) (Fig. 3A), we detected an ~8-kb
transcript and an ~3-kb transcript on the opposite side of the
100-bp internal repeat (Fig. 3B), suggesting that both EGR 27
transcripts A and B overlap the 100-bp internal repeat. We tested
two gene-specific primers in the PCR step of 5° RACE for EGR 27
and obtained comparable results. We identified 9/9 colonies with
5" ends within one nucleotide of 101225. We were unable to detect
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transcripts using probe 13, suggesting that ~101225 was the 5" end
for both EGR 27 transcripts A and B (Fig. 3B). Probe 8, but not
probe 9 or 10, detected an ~12-kb transcript comparable in size to
EGR 26 transcript A (Fig. 3A and B). 5" RACE analysis identified
6/6 colonies with 5" ends within four nucleotides of 97790 (1 col-
ony witha 5" end at 97786, 1 at 97789, 3 at 97790, and 1 at 97791),
suggesting that the 5" end of EGR 26 transcript A was ~97790.
EGRs 26 and 27 encode polyadenylated transcripts, as shown
by Northern blot analysis of polyadenylated RNA (Fig. 3; also data
not shown) and confirmed by RNA sequencing of polyadenylated
RNA (see Fig. S1 in the supplemental material). To identify 3’
ends of EGR 26 and 27 transcripts, we mined RNA sequencing
data from four experiments, two from 18 hpi and two from 6 hpi,
using a custom analysis pipeline. By mining RNA sequencing data
for polyadenylated reads, we identified 3’ ends within the EGRs 26
and 27 at 85207, 93842, and 98510 and within the intervening
ORFs at 95322, 95758, and 95895 (see Fig. S1 and Table S3 in the
supplemental material). It is worth noting that 3’ ends at 95322,
95758, and 95895 were not attributable to transcripts detected by
Northern blotting, suggesting that there may be additional, less
abundant transcripts within this region. This is important because
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FIG4 EGR26and 27 transcripts are enriched in nucleus of infected cells. Protein or RNA extracted from nuclear or cytoplasmic fractions or unfractionated cells
(Total) was analyzed by Western blotting (A) or Northern blotting (B) at 18 hpi (MOI = 10). (A) Four micrograms of protein was loaded per sample. (B) Five
micrograms of RNA for each total sample and approximate cellular equivalents for nuclear (0.5 ug) or cytoplasmic (4.5 ug) fractions were analyzed. Data are
representative of three independent experiments. EGR 26-A indicates EGR 26 transcript A (as shown in Fig. 3) detected using Northern blot probe 2. EGR 27-A
and 27-B indicate EGR 27 transcripts A and B, respectively (as shown in Fig. 3) detected using Northern blot probe 11.

it indicates that Northern blot analysis may not be sensitive
enough to detect all transcripts encoded within EGRs that might
be targeted by specific ASOs. We performed 3" RACE analysis to
confirm 3" ends at 98510 (6/6 colonies) and within 3 nucleotides
of 93842 (5/5 colonies). In addition, our RNA sequencing ap-
proach confirmed six previously known polyadenylation sites as
well as 53 novel sites downstream of known protein-coding and
EGR-encoded transcripts; the majority of these were detected at
both 6 and 18 hpi (see Table S3 in the supplemental material).
Together, these data identified three transcripts that overlap the
EGR 26-EGR 27 region and suggest that additional low-
abundance transcripts from this region that are not readily detect-
able by RACE or Northern blotting may exist. This highlights the
profound transcriptional complexity across the MHV68 genome
(Fig. 3) (6,7, 27).

EGR 26 and EGR 27 transcripts are enriched in the nuclei of
infected cells. To determine if transcripts that overlap EGRs 26
and 27 were retained in the nuclei or exported to the cytoplasm of
infected cells, we separated nuclear and cytoplasmic fractions, ex-
tracted RNA, and probed for EGR 26 transcript A using probe 2
and EGR 27 transcripts A and B using probe 11. We confirmed
adequate separation of nuclei from cytoplasm by Western and
Northern blot analyses of known cytoplasmic and nuclear pro-
teins and RNAs with only modest contamination of the cytoplas-
mic fraction with nuclear protein and RNA (Fig. 4). We found that
the EGR 26 transcript A, EGR 27 transcript A, and EGR 27 tran-
script B were enriched in the nuclear fraction (Fig. 4B). Nuclear
enrichment of EGR 26 and EGR 27 transcripts was comparable to
that of the well-characterized mouse nuclear ncRNA, nuclear en-
riched abundant transcript 2 (Neat2, also known as Malat1 [28])
(Fig. 4B). Analysis of representative viral (ORF 6) and host (actin)
protein-coding transcripts demonstrated that these translated
transcripts accumulated in the cytoplasm (Fig. 4B). The nuclear
distribution of EGR 26 transcript A, EGR 27 transcript A, and EGR
27 transcript B was consistent with a nuclear RNA and not with
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protein-coding transcripts, suggesting that these EGR transcripts
may be nuclear noncoding ncRNAs.

Targeting EGR 27 transcripts alters surface expression of
OREF 4 protein and viral replication. To determine the effect of
knockdown of RNAs encoded within EGR 27 on ORF 4 surface
expression, we targeted this region with four ASOs, two of which
we predicted would target both EGR 27 transcripts detectable by
Northern blot and two of which we predicted would specifically
target EGR 27 transcript A. Because EGR 27 transcript A overlaps
the entire length of EGR 27 transcript B, it was not possible to
specifically target the smaller transcript. EGR 27a and EGR 27b
ASOs reduced the abundance of both EGR 27 transcripts as pre-
dicted (Fig. 5B and C). Surprisingly, EGR 27d ASO also signifi-
cantly reduced EGR 27 transcript B, although it was not predicted
to target this transcript (Fig. 5C), raising the possibility that an
additional transcript might be derived from this region. In sup-
port of this hypothesis, we identified additional 3" ends at 95322,
95758, and 95895, which have not been ascribed to specific tran-
scripts (see Table S3 in the supplemental material), and were not
attributable to RNAs detected by Northern blot (see above), sug-
gesting the presence of additional as-yet-unmapped transcripts
within this region. As predicted, EGR 27¢ ASO reduced EGR 27
transcript A but not EGR 27 transcript B (Fig. 5B and C). Al EGR
27 ASOs reduced ORF 4 surface expression (Fig. 5E). While we
cannot attribute the effect on ORF 4 surface expression to a spe-
cific transcript because the transcripts overlap, these data confirm,
using independent ASOs, the results of our initial screen (Fig. 2)
by showing that RNAs encoded in this region of the genome are
functionally important for viral gene expression.

We also targeted EGR 26 with six ASOs, five predicted to target
EGR 26 transcript A (EGR 26a to 26e) and one directed 3' of EGR
26 transcript A (EGR 26f). ASOs to EGRs 26b, 26¢, and 26d sig-
nificantly reduced EGR 26 transcript A levels (Fig. 5D). Although
the EGR 26d ASO reduced EGR 26 transcript A, it did not signif-
icantly reduce ORF 4 surface expression (Fig. 5E), suggesting that
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the effect on ORF 4 surface expression by other EGR 26 ASOs may
be due to other smaller transcripts in this region (Fig. 3B). The
effect of EGR 26f ASO, which did not target EGR 26 transcript A
but likely targeted other RNAs derived from EGR 26, such as EGR
26 transcript B, further supports the idea that RNAs derived from
EGR 26 are important for viral protein expression. These data
suggest that similar to the transcripts emanating from EGR 27,
RNAs from EGR 26 are also functionally relevant and that the
functional significance of EGR transcription is not restricted to a
single region of the genome.

To determine whether the observed changes in ORF 4 protein
expression were associated with a detectable change in viral repli-
cation, we analyzed viral titers at 24 hpi in ASO-transfected cells.
We detected a significant reduction in viral titer in cells transfected
with EGR 27a, EGR 27b, EGR 27d, and EGR 26¢ ASOs, compara-
ble to the reduction in viral titer in cells transfected with an ASO to
the essential gene ORF 6 (Fig. 5F). Given that target messages were
only partially reduced by ASOs (Fig. 1A and B and 5B to D), it is
notable that both ORF 6 and EGR ASOs significantly reduced viral
titers.

Targeting of EGR 27 transcripts alters expression of multiple
viral genes. Having shown that RNAs derived from EGRs can be
functionally important, as measured by the effects on a viral late
protein and viral replication, we next assessed the extent of ASO
effects on different aspects of viral transcription and protein ex-
pression. To confirm that EGR 27 ASOs reduced late-gene expres-
sion, we assessed the effect of EGR 27 ASOs on ORF 26 and M9
(OREF 65) protein expression by Western blot analysis and spliced
ORF 29 transcripts by quantitative reverse transcription-PCR
(qRT-PCR) (29). Al EGR 27 ASOs reduced ORF 26 and M9 pro-
tein expression and ORF 29 transcript expression (Fig. 6A and B).
These data show that targeting EGR 27 transcripts broadly altered
the expression of multiple late genes and did not exert effects
restricted to surface expression of the late protein encoded by ORF
4.

Next, we tested the effect of EGR 27 ASOs on the expression of
the early gene ORF 6 (30) or the immediate-early gene ORF 50,
also known as the replication and transcription activator (RTA)
(31). We found that EGR 27a, 27b, and 27d ASOs, but not the EGR
27¢ ASO, significantly reduced ORF 6 transcript levels (Fig. 6C).
However, all EGR 27 ASOs reduced ORF 6 protein levels (Fig. 6D).
Furthermore, we found that EGR 27a and 27d ASOs, but not the
EGR 27b or 27c ASO, significantly reduced the abundance of
spliced ORF 50 transcripts (Fig. 6E). In summary, these data sug-
gest that a transcript or transcripts targeted by EGR 27a and/or
27d ASOs act early in the viral life cycle, altering gene expression of
specific viral genes from each kinetic class. Furthermore, a tran-
script(s) targeted by EGR 27¢ ASO may act later in the viral life
cycle.

The EGR 26c ASO decreases specific genes of all kinetic
classes. We also evaluated the EGR 26¢ ASO, the ASO used in our

Figure Legend Continued
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initial screen (Fig. 2), for its effect on the viral life cycle. To con-
firm that EGR 26¢ ASO altered the expression of multiple late
genes, we analyzed its effect on the expression of early-late (M3)
and late (M9) genes (30, 32, 33) using Northern and Western blot
analyses. We found that EGR 26¢ ASO reduced M9 and M3 pro-
tein levels (Fig. 7A and C) as well as M9 and M3 transcript levels
(Fig. 7B and data not shown). Taken together with the effect of
EGR 26¢ ASO on OREF 4 cell surface expression, these data dem-
onstrate that transcript(s) targeted by EGR 26c ASO were impor-
tant for expression of several early-late and late genes and sug-
gested that it acted upstream of their expression. Interestingly,
EGR 26¢ ASO did not alter the level of EGR 27 transcript A, de-
tected by the Northern blot probe 7 (data not shown), indicating
that EGR 26¢ ASO altered the levels of specific viral RNAs rather
than overall transcription of the viral genome.

Next, we tested the effect of EGR 26 ASOs on the expression of
OREF 6 and found that EGR 26a, 26b, and 26c ASOs reduced ORF
6 transcript levels, while EGR 26d, 26e, and 26f ASOs did not
(Fig. 7D), suggesting that a transcript targeted by EGR 26a, 26b,
and 26¢ ASOs acts to reduce viral gene expression. EGR 26¢ ASO
also reduced ORF 6 protein levels (Fig. 7E). Finally, we tested
whether EGR 26¢ ASO altered the expression of ORF 50 by qRT-
PCR. We found that EGR 26¢ ASO significantly reduced the abun-
dance of spliced ORF 50 transcripts (Fig. 7F). Northern blot anal-
ysis using probe 2 on RNA selected for polyadenylated transcripts
revealed the presence of smaller transcripts that might be targeted
by EGR 26¢ ASO (see Fig. 3B). The fact that EGR 26a, 26b, and 26¢
ASOs all reduced ORF 6 transcript abundance (Fig. 7D) suggests
that a transcript that overlaps genomic coordinates 85576 to
85891 acts early in the viral life cycle, affecting gene expression of
multiple specific viral genes.

DISCUSSION

In this paper, we provide the first data demonstrating that perva-
sive transcription of a herpesvirus genome, identified by pan-
genomic analysis of RNA expression using both tiled arrays and
RNA sequencing, can generate functionally important RNAs for
viral gene and protein expression. This is significant because it was
unknown whether extensive antisense transcription observed by
many groups from various herpesvirus genomes is functionally
important or is due to “read-through” transcription that results in
large amounts of functionally irrelevant RNA. We identified six
EGRs that generated transcripts that altered ORF 4 surface expres-
sion. Upon examining transcripts encoded by two EGRs in more
detail, we confirmed that targeting transcripts from the strand of
the genome antisense to known protein coding genes altered mul-
tiple aspects of the viral transcriptional and translational program.

These data have fundamental implications for the approach to
and interpretation of genetic studies and highlight the importance
of mapping transcripts derived from the strand opposite ORFs. A
limitation of traditional genetic approaches is the emphasis on

quantitations of signal intensity of the indicated transcript normalized to actin and presented as a fraction of the signal from untransfected cells. Representative
Northern blots are shown. The actin for EGR 27 transcripts is reproduced for panels B and C, as the same blot is displayed. The pound sign indicates the location
of a tear in the agarose gel. Data are the means of the pooled data (3 to 7 experiments) and SEMs. (E) 3T12 cells transfected with the indicated ASOs were analyzed
for cell surface expression of ORF4 at 24 hpi by flow cytometry. As for Fig. 2, the percentage of ORF4-positive cells for each condition was normalized to the value
from untransfected cells. Data are means of the pooled data (5 to 35 experiments) and SEMs. (F) 3T12 cells transfected with the indicated ASOs were analyzed
for viral titer at 24 hpi by plaque assay. Data are means (3 experiments) and SEMs. Statistically significant results relative to GFP are shown (*, P < 0.05; **, P <
0.01; ¥**, P < 0.001; ****, P < 0.0001; one-way ANOVA with Dunnett’s posttest). Black bars, controls; blue bars, EGR 26 ASOs; red bars, EGR 27 ASOs.
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FIG 6 Effect on immediate-early, early, and late genes by EGR 27. 3T12 cells transfected with GFP or ASOs targeting EGR 27 or left untransfected (No ASO)
were infected with MHV68 (MOI = 10) and analyzed for protein (A and D) or transcript levels (B, C, and E). See Fig. 5 and also Table S1 in the supplemental
material for ASO locations. (A) Representative Western blots for M9 and ORF 26 proteins at 18 hpi (2 or 3 experiments). (B) ORF 29 transcript levels at 14 hpi.
RNA (1 ug) was reverse transcribed (RT), and cDNA was analyzed by qPCR using primers designed to detect spliced ORF 29 transcripts or GAPDH. Data are
relative ORF 29 abundance normalized to GAPDH transcript abundance and compared to untransfected cells by the AAC; method (means and SEMs from 3 to
8 experiments). (C) Representative Northern blot for ORF 6 and actin at 14 hpi and corresponding quantification of ORF 6 transcript levels normalized to actin
and compared to the value for untransfected cells (means and SEMs from 5 to 7 experiments). (D) Representative Western blot for ORF 6 and actin at 18 hpi (3
experiments). The representative experiment is the one whose results are shown in panel A. (E) ORF 50 transcript levels at 14 hpi measured by qRT-PCR, as for
panel B. Statistical analyses were performed by one-way ANOVA with Dunnett’s posttest. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

ORFs and the utilization of genetic approaches that alter the se-
quences of both strands of the viral genome. This approach has
been very fruitful but misses an important layer of complexity of
viral gene regulation revealed here. One of our most notable find-
ings is the extreme complexity of transcripts emanating from
EGRs and the fact that many of these transcripts were polyadenyl-
ated but remained concentrated in the nucleus. Furthermore, our
data suggest that in some cases there may be important contribu-
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tions of less abundant transcripts whose presence may be difficult
to detect using classical methods (EGR 26 is an example). Taken
together, our results support the use of sensitive technologies,
such as next-generation RNA sequencing, in transcript analysis
and the necessity of considering antisense transcripts in genetic
analyses of herpesviruses and designing functional experiments to
evaluate the function of each strand of the viral genome indepen-
dently.
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FIG 7 EGR 26¢ ASO decreases specific genes of all kinetic classes. 3T12 cells transfected with GFP or EGR 26¢ ASO or untransfected (No ASO) were infected
with MHV68 (MOI = 10) and analyzed for protein (A, C, and E) or transcript levels (B, D, and F). (A) Representative Western blots for M9 and actin at 18 hpi
(2 experiments). (B) Representative Northern blot using a probe to M3 or actin at 14 hpi and corresponding quantification of M3 transcript levels normalized
to those of actin (means and SEMs from 3 experiments). A 0.5-ug portion of RNA was used per lane for M3 Northern blots. (C) Representative Western blot for
M3 protein at 18 hpi and corresponding quantification of M3 protein levels normalized to those of actin (means and SEMs from 4 experiments). (D)
Representative Northern blot for ORF 6 and actin at 14 hpi and corresponding quantification of ORF 6 transcript levels normalized to actin for cells transfected
with GFP or EGR 26 ASOs (means and SEMs from 3 to 5 experiments). (E) Representative Western blot for ORF 6 and actin at 18 hpi and corresponding
quantification of ORF 6 protein normalized to actin (means and SEMs from 5 experiments). Representative Western blots for ORF 6 are the same as in Fig. 1. (F)
OREF 50 transcript levels at 14 hpi. RNA (1 ug) was reverse transcribed, and cDNA was analyzed by qPCR using primers designed to detect spliced ORF 50
transcripts or GAPDH. Data are relative ORF 50 abundances normalized to GAPDH transcript abundance and compared to untransfected cells by the AAC;:
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(Dand F). %, P < 0.05; **, P < 0.01; ***, P < 0.001.

Implications of transcriptional complexity of EGR-encoded
RNAs. It is interesting to reconsider previous findings in view of
the transcriptional complexity underlying the MHV68 genome.
Here, we report a region of the MHV68 genome in which detailed
analysis reveals at least five transcripts overlapping the late capsid
protein M9 (ORF 65), each of which may play distinct roles for the
virus (34, 35). Previous studies using RNase protection assays and
qRT-PCR have identified the M9 region as (i) a candidate region
of latent gene expression, (ii) a component of the virion, and (iii)
producing an RNA with immediate-early kinetics (30, 32, 36). We
note that previous analyses are complicated by the presence of
multiple overlapping transcripts because probes designed to M9

March/April 2014 Volume 5 Issue 2 e01033-13

detect five independent transcripts (including EGR 26 transcript
A and EGR 27 transcript A).

Additionally, our results suggest that caution should be used
for interpretation of transposon screens (26, 37). Because ~90% of
EGR nucleotides overlap regions where transcription occurs on
the opposite strand (6) (see also Fig. S1 in the supplemental ma-
terial), any mutagenesis strategy that disrupts both strands may
alter functionally relevant transcripts derived from either strand.
For example, transcripts encoded by EGRs 26 and 27 are antisense
to known protein-coding ORFs 63, 64, 68, and 69. ORFs 63 and 64
are predicted to encode essential tegument proteins, ORF 68 an
essential glycoprotein, and ORF 69 an essential gene of unknown
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function (1, 26). Thus, while these transposon screens provide
invaluable functional data, defining the genetic elements respon-
sible for observed phenotypes will need to incorporate the tran-
scriptional complexity of each region and subsequently utilize
strand-specific approaches for functional analysis.

Potential mechanism for EGRs 26 and 27 transcript func-
tion. Our studies show that transcripts encoded by EGRs are func-
tionally important and affect multiple parts of the viral life cycle
but do not define specific mechanisms by which these transcripts
act. EGR transcripts may act as ncRNAs, may encode small pep-
tides or novel proteins, or in some cases may act as long UTRs for
already-identified ORFs. Interestingly, both EGR 26 transcript A
and EGR 27 transcript A overlap ORFs for several small proteins,
namely M9, ORFs 66 and 67. While we cannot exclude a contri-
bution of peptides or proteins encoded within EGRs, the reduc-
tion in ORF 50 transcript expression that we observed following
targeting with EGR 27a and 27d ASOs and the nuclear localization
of EGR 27 transcripts is consistent with the hypothesis that tran-
scripts targeted by these ASOs function to epigenetically regulate
the ORF 50 promoter(s). There is a growing consensus in the
mammalian ncRNA literature that epigenetic modification of
chromatin is a key function of long ncRNAs (38-42). Interest-
ingly, the KSHV ncRNA, polyadenylated nuclear (PAN) RNA,
associates with the ORF 50 promoter as well as the demethylases
JMJD3 and UTX and the methyltransferase MLL2 (43). Many
studies highlight the importance of epigenetic modifications in
controlling herpesvirus gene expression, and herpesvirus proteins
can interact with histone deacetylases (HDACs) to prevent gene
silencing (44-48). We and others have identified several impor-
tant modifications that silence ORF 50 in macrophages, B cells,
and cells from latently infected mice, including methylation of the
distal ORF 50 promoter (49, 50) and recruitment of HDACs and
the nuclear receptor corepressor (NCoR) to the core ORF 50 pro-
moter (51, 52). It is intriguing to speculate whether transcripts
targeted by EGR 27a, 27d, and/or 26¢c ASO may act as a molecular
scaffold for chromatin-modifying proteins or prevent the associ-
ation of known repressive complexes with ORF 50 promoters in
lytically infected fibroblasts.

In contrast, the EGR 27¢ ASO, which specifically targeted EGR
27 transcript A, did not reduce ORF 50 transcript expression, sug-
gesting that this RNA may act later in the viral life cycle, playing a
role in viral DNA replication or virion assembly. Interestingly, a
role for an EBV RNA, the BHLFI transcript, in DNA replication
was recently described; the BHLF1 transcript forms an RNA-DNA
hybrid molecule at the origin of lytic replication (OriLyt) and is
important for recruitment of the viral single-stranded binding
protein BALF2 to OriLyt (53). These results suggest that RNAs
derived from EGRs may play a range of different roles in viral
replication and merit further investigation and consideration in
functional studies.

Many new transcripts have been identified not only in MHV68
but also in important human pathogens, including KSHV and
HCMV (9-12, 64). Our results suggest that transcripts in each of
these viruses may play crucial roles in the viral life cycle and/or in
viral pathogenesis and that strand-specific approaches combined
with detailed transcriptional analysis similar to ours will allow
identification of novel transcripts critical for viral gene expression
and infection.
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MATERIALS AND METHODS

Cells, viruses, and virus assays. NIH 3T12 fibroblasts (ATCC CCL-164)
were grown in Dulbecco’s modified Eagle medium (DMEM) containing
5% fetal calf serum (FCS), 2 mM L-glutamine, and 10 mM HEPES. Cells
were infected with MHV68 clone WUMS (ATCC VR-1465) for 1 h at
37°Catamultiplicity of infection (MOI) of 5 or 10, as indicated in the text.
Viral passaging and titer determinations were performed on NIH 3T12
fibroblasts as described previously (54) except that cells were overlaid with
2% methylcellulose in MEM supplemented with 5% FCS and 2 mM
L-glutamine.

Antisense oligonucleotides. Custom antisense gapmer oligonucleo-
tides (ASOs) containing a phosphorothioate backbone and locked nucleic
acid (LNA) residues to increase probe stability and knockdown efficiency
(55-57) were designed and synthesized by Exiqon (Woburn, MA) to tar-
get viral transcripts (see Table S1 in the supplemental material). Gapmers
contain LNA bases at their ends surrounding a central stretch of DNA
enabling RNase H-mediated cleavage of their targets (18). Transfections
were performed with 40 pmol of ASO per 10° cells using Lipofectamine
2000 (Life Technologies, Grand Island, NY) according to the manufactur-
er’s instructions. An ASO designed to target GFP was used as a negative
control. Cells were infected with MHV68 6 h after transfection and har-
vested at the indicated times postinfection. Toxicity was assessed by ala-
marBlue (Life Technologies) at 30 h posttransfection according to the
manufacturer’s instructions. There was no association between toxicity
relative to untransfected cells as assessed by alamarBlue and phenotype as
assessed by ORF 4 surface staining (Spearman’s correlation; P = 0.8250).

Western blot analysis, antisera, and antibodies. For MHV68 West-
ern blot analysis, samples were lysed at 18 hpi in 2X Laemmli buffer,
subjected to protein electrophoresis on 4 to 15% or 4 to 20% Tris gradient
gels (Bio-Rad), and then transferred to polyvinylidene difluoride mem-
branes. For Western blot analysis of subcellular fractions, 2X Laemmli
buffer was added to samples lysed in the relevant buffer as described below
(“Subcellular fractionation”). Then, 4 ug of protein per sample was sub-
jected to protein electrophoresis on a 10% Tris gel and transferred to a
polyvinylidene difluoride membrane. Antibodies used were anti-lamin B1
(Abcam), anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(clone GAPDH-71.1; Sigma, St. Louis, MO), anti-calreticulin (clone 16/
calreticulin) (BD Biosciences), polyclonal rabbit antisera generated to
OREF 6 (58), M3 (59), ORF 26 (24), or M9 (24), and a goat anti-rabbit or
goat anti-mouse horseradish peroxidase (HRP)-conjugated secondary
antibody as appropriate (Jackson Immunoresearch, West Grove, PA).
MHV68 Western blots were stripped and reprobed with anti-beta-actin
(clone AC-74) (Sigma) and then with a goat anti-mouse HRP-conjugated
secondary antibody (Jackson Immunoresearch) to control for loading.
Blots were developed with ECL Plus chemiluminescent reagent (GE
Healthcare Life Sciences) or Pierce enhanced chemiluminescence (ECL)
chemiluminescent reagent (Thermo Scientific) and imaged using film ora
Storm 840 phosphorimager. Bands were quantitated using ImageJ (NIH).
For each sample, the indicated protein was normalized to the actin load-
ing control.

Flow cytometric analysis for detection of surface expression of ORF
4 protein. At 24 hpi, cells were removed from tissue culture dishes by
gentle scraping after incubation in a 0.02% EDTA solution for 10 min at
4°C. Cells were fixed in 2% formaldehyde and stained using anti-ORF 4
antiserum (22) at 1:10,000 or preimmune rabbit serum (Cocalico Biolog-
icals, Reamstown, PA), followed by donkey anti-rabbit DyLight 649 sec-
ondary antibody (Biolegend, San Diego, CA). Flow cytometry was per-
formed with a FACSCalibur (BD Biosciences, San Jose, CA). Data were
analyzed by Flow]Jo (Tree Star, Ashland, OR).

RNA sequencing (RNA-Seq) library construction and expression
analysis. Total RNA was isolated from TRIzol (Life Technologies) as de-
scribed previously (6) at 6 or 18 hpi. Poly(A)-selected RNA was chemically
fragmented using RNA fragmentation reagents (Life Technologies) and
purified using RNeasy MinElute cleanup columns (Qiagen). Directional
RNA-Seq libraries were generated using 600 ng of fragmented 18-hpi
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RNA according to Illumina’s directional mRNA-Seq protocol or 200 ng of
6 hpi RNA according to Illumina’s directional Tru-Seq protocol. Nucle-
otides with a Phred quality score less than 20 were trimmed from the 3’
ends of raw [llumina reads. Trimmed reads with a mean quality score less
than 10 or a length less than 20 were discarded. Reads were then mapped
to mouse rRNA, MHV68 genome (GenBank accession number U97553),
and mouse genome sequences (Build 37) with the short-read aligning
program Bowtie-0.12.5 (60). Bowtie alignments were performed using
the parameter setting “-best” and the settings “-e 420” and “-e 600” for
76-nucleotide and 100-nucleotide reads, respectively. Bowtie output from
the MHV68 genome mapping was converted to WIG (wiggle track for-
mat) files of read depth coverage, on a log, scale and visualized using
Gbrowse (http://www.gbrowse.org). Correlation coefficients between
read depth coverage, and tiled array signals were calculated using Spear-
man’s ranked correlation coefficient in the R statistical environment.

Identification of polyadenylated reads from RNA-Seq data sets. 3'-
terminal adenosine (A) residues were trimmed from filtered reads with
five or more 3’ terminal A’s. Both trimmed and untrimmed reads were
mapped to MHV68 with Bowtie with default “-e” settings. Mapped reads
that contained at least five nongenomic A’s were considered putative
polyadenylated reads. If a potential polyadenylation cleavage site was lo-
cated within or downstream of a stretch of genomic A’s, the coordinates of
this potential site were moved upstream of the genomic poly(A) stretch to
maintain consistency. Sites that were located adjacent to a stretch of seven
or more genomic A’s were excluded due to the possibility that during
RACE validation, such sites could provide false internal priming of the
oligo(dT) primer. Sites with an average of at least five supporting reads
between biological replicates were clustered. The site reported in Table S3
in the supplemental material is that with the most supporting reads in
30-nucleotide sliding windows. Raw read quality filtering and the identi-
fication of putative polyadenylated reads were done using a combination
of Linux utilities and custom Perl scripts (available upon request).

Rapid amplification of cDNA ends (RACE). 5’ and 3’ transcript ends
were identified by RACE using Invitrogen’s 5" and 3" RACE systems ac-
cording to the manufacturer’s instructions. cDNA was generated from
total RNA extracted 18 hpi using a gene-specific primer (for 5" RACE) or
an oligo(dT)-containing adapter primer (for 3’ RACE). PCR amplifica-
tion was performed using gene-specific primers with Invitrogen’s ampli-
fication primers. The following gene-specific primers were used for re-
verse transcription in 5" RACE: EGR 26 transcript A, 5" CGATCAGGTG
GCTCAACTGG 3'; EGR 27 5" GCGAGGAGCAGCACAGCAGA 3'. For
5" RACE reactions, the PCR primers used were as follows: EGR 26 tran-
script A, 5" CTGCTCACATACAAGGTATCTGG 3’5 EGR 27, 5" GCAGA
GGTCCGTCCAGTAGCGA 3’ and 5" GGTCCGTCCAGTAGCGA 3'.
For 3" RACE reactions, the PCR primers used were as follows: EGR 27
transcript A, 5" GCCAGACATTCGCACAACAC 3'; EGR 27 transcript B
(B1), 5" CGAGATACAATGTTGAAGCATTCA 3'. The resulting PCR
products were gel purified and ligated into a pCR4-TOPO TA sequencing
vector (Life Technologies). Universal M13 forward and reverse primers
were used for sequencing.

Northern blot analysis. Total RNA was isolated as described (6) at 14
or 18 h postinfection (hpi) as indicated. Templates for Northern probes
were amplified by PCR from viral or mouse genomic DNA (using PCR
primers listed in Table S2 in the supplemental material), prepared as
described in reference 6 for probes 2 and 7 (formerly EGR 26 probes 1 and
4 [6], respectively), or obtained from a commercial vendor for actin (Life
Technologies). Northern blotting using Ambion’s NorthernMax kit (Life
Technologies, Grand Island, NY) and generation of single-stranded P32-
labeled RNA probes using the Maxiscript Sp6/T7 kit (Life Technologies)
were performed as described previously (6). Probe 12 was generated using
the mirVANA miRNA probe construction kit (Life Technologies) accord-
ing to the manufacturer’s instructions. Five micrograms of total RNA was
used for all Northern blot analyses unless otherwise stated. Membranes
were scanned using a Storm 840 Phosphorimager and quantitated using
ImageQuant TL (GE Healthcare Biosciences, Pittsburgh, PA). For quan-
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titation of each sample, the indicated transcript signal was normalized to
the signal from the actin loading control.

Subcellular fractionation. Nuclei were separated from cytoplasm us-
ing a protocol adapted from published methods (61). Briefly, 3T12 cells
were removed from plates by trypsinization at 18 hpi and centrifuged to
pellet cells. After a washing with phosphate-buffered saline (PBS), the
pellet was resuspended in 150 mM NaCl, 50 mM HEPES, 1% NP-40, and
1 U/ul SUPERase-In RNase inhibitor (Ambion) to disrupt nonnuclear
membranes and incubated on ice for 30 min. The lysate was centrifuged at
a relative centrifugal force (RCF) of 7,000 to pellet the nuclei, and the
supernatant removed for RNA and protein analysis (cytoplasmic frac-
tion). After washing with PBS, the nuclear pellet was resuspended in cold
150 mM NaCl, 50 mM HEPES, 0.5% sodium deoxycholate, 0.1% sodium
dodecyl sulfate, and 1 U/uliter SUPERase-In RNase Inhibitor (Life Tech-
nologies) to disrupt the nuclear membrane and incubated for 2 h at 4°C
with rotation. RNA was extracted from lysates using TRIzol L.S. (Life
Technologies) and analyzed by Northern blotting as described above. Ap-
proximate cellular equivalents were calculated based on the relative
amounts of RNA recovered from nuclear and cytoplasmic fractions. For
comparison, unfractionated cells were collected in TRIzol (Life Technol-
ogies) and then processed to isolate RNA according to the manufacturer’s
instructions. Samples were also analyzed by Western blot to ensure ade-
quate separation of fractions as described above.

Quantitative reverse transcriptase PCR (qQRT-PCR). For analysis of
ORF 50 and ORF 29 transcripts, cDNA was synthesized from 1 pg of RNA
using SuperScript III (Life Technologies) and random hexamers (Life
Technologies) as described previously (29). qPCR was performed using
Power SYBR green master mix (Applied Biosystems) and the primer se-
quences 5" TGCCCCCATGTTTGTGATG 3’ and 5" TGTGGTCATGAG
CCCTTCC 3’ for glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(51), 5" GATTCCCCTTCAGCCGATAAG 3’ and 5" CAGACATTGTAG
AAGTTCAGGTC 3’ for spliced ORF 50 transcript, and 5" TTCTCATTG
GCATCTTTGAGG 3’ and 5 GGAAAATGGGGTGATCCTGT 3’ for
spliced ORF 29 transcript (29) on the StepOnePlus System (Life Technol-
ogies). Transcript levels were normalized to GAPDH within each sample
and compared to untransfected cells using the AAC method, where Cis
the threshold cycle (62).

Statistical analysis. Data were analyzed statistically with Prism 6 soft-
ware (GraphPad Software, LaJolla, CA). All experimental conditions were
compared to the corresponding untransfected or GFP ASO-transfected
controls, as noted in the text. Data were analyzed by two-tailed paired
t test or one-way analysis of variance (ANOVA), as indicated in the text.
All significant differences are noted.

Nucleotide sequence accession numbers. Sequencing data are avail-
able at the National Center for Biotechnology Information (NCBI) Se-
quence Read Archive (SRA) under accession numbers SRX403400 to
SRX403403 for samples at 6 hpi and SRX403404 to SRX403407 for sam-
ples at 18 hpi.
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