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Geography, generalisability, and susceptibility in clinical trials
Randomised clinical trials (RCTs) are generally considered 
the highest standard of evidence in medical research, as 
randomised treatment allocation promotes homogeneity 
in baseline characteristics between treatment groups, 
maximising internal validity and reducing both bias and 
confounding. RCTs, however, often enrol a convenience 
clinical sample, and can face challenges of external validity 
if that sample does not represent the full population at 
risk, or the full range of co-exposures and susceptibility 
factors likely to be encountered in clinical practice.1–3 
Many such biases can be geographical in nature; for 
example, proximity to clinical sites can influence 
recruitment and retention,4 which is important because 
neighbourhoods differ in socioeconomic status and 
environmental exposures (ie, air pollution), both shown 
to affect respiratory health5 and therefore potentially 
influencing observed treatment efficacy. In this moment, 
when clinical trials for COVID-19 vaccines are being run 
with unprecedented expediency to mitigate a virus that 
has disproportionately impacted minority populations 
and those with lower socioeconomic status,6 thoughtful 
attention to representativeness, generalisability, and 
spatial co-exposures in RCT populations is of paramount 
importance.

Despite this discrepancy in attention to internal versus 
external validity, clinical guidelines prioritise RCT results 
in making treatment recommendations, even when 
available RCT data might represent a very different 
population. RCTs have not traditionally recruited 
cohorts that are unbiased representations of the 
population at risk, nor reported adequate information 
on cohort characteristics, including demographics 
and co-exposures, to support thorough assessment 
of a trial’s applicability to another population.7 
External validity can be further limited by factors 

influencing an individual’s decision to participate; 
some evidence suggests that asthma RCTs have been 
disproportionately comprised of individuals with lower 
socioeconomic status who lack access to high-quality 
medical care;8 other evidence suggests lesser access to 
clinical trials for rural communities and those with lower 
socioeconomic status.9 Clinical trials have been criticised 
for these potential challenges to external validity, and 
some improvements have been made: best practices for 
pragmatic RCTs have been developed,10 including more 
complex randomisation strategies to minimise bias, 
and a larger number of RCTs are now reporting more 
thorough information on patient selection, eligibility, 
and enrolment—although it is still only a minority of 
RCTs that fully comply with these standards.7,11,12 

Socioeconomic status both directly and indirectly 
influences health and treatment outcomes through a 
complex array of social, environmental, and medical 
factors, including health-care access. The greater severity 
of asthma among children of lower socioeconomic 
status in the USA is well established, and clinical 
outcomes vary substantially by socioeconomic status, 
in part because participants with lower socioeconomic 
status often reside in areas with greater pollution, 
chronic stressors (eg, violence), poorer-quality housing, 
or fewer healthy dietary options. Given the limited 
range of clinical data to capture these complex social 
and environmental co-exposures in an RCT population, 
however, it is challenging to determine how each factor 
might influence observed treatment efficacy or a given 
trial’s generalisability. While several observational studies 
and RCTs have focused on inner-city populations (eg, 
the Inner-City Asthma study),13 none of them, to our 
knowledge, have examined whether treatment efficacy 
differs for participants in relatively high-pollution versus 
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low-pollution areas within the urban setting (eg, closer vs 
further from a major roadway), despite well established 
associations between air pollution and asthma. Even 
very well conducted major RCTs, including large National 
Institutes of Health (NIH)-sponsored clinical trials, have 
not yet explicitly incorporated social and environmental 
factors into study design and implementation.7 

To assess representativeness in socioeconomic status 
and environmental exposures among participants in 
some exemplar asthma RCTs, we developed geographic 
information system (GIS)-based metrics to characterise 
the residential census tracts of 874 adults and children 
in RCTs run by AsthmaNet, an NIH-sponsored clinical 
research network. Data were extracted from baseline 
questionnaires of three trials—Best African-American 
Response to Asthma Drugs (BARD),14 Steroids In 
Eosinophil-Negative Asthma (SIENA),15 and Step-
up Yellow Zone Inhaled Corticosteroids to Prevent 
Exacerbations (STICS)16—conducted using the same 
protocols in 17 cities distributed across the USA. We 
geocoded participant residences and linked these in GIS 
to census tracts and national roadmaps (using StreetMap 
Premium for ArcGIS 2016) to create commonly used 
indicators of tract-level socioeconomic status, including 
median household income and percentage of population 
living below the US federal poverty level. As an indicator of 
near-roadway pollution exposure, we calculated weighted 
roadway density17 within multiple distances of each home. 

A majority of participants (71·4% for BARD, 54·5% 
for SIENA, and 55·3% for STICS) lived in tracts with 
median household incomes below the 2016 US average 
(US$59 039), and with a greater-than-average percentage 
of residents living in poverty (figure). After merging 
baseline data across all three trials, greater roadway 
density near the home and tract-level poverty were 
separately associated with lower baseline lung function 
(percentage predicted FEV1), after adjusting for age, sex, 
race, and ethnicity. These results reveal that participants 
in these three multicentre RCTs disproportionately lived 
in areas of lower socioeconomic status (which have higher 
air pollution exposures than other areas, on average, in 
the USA),20 and that greater roadway densities (a proxy 
for traffic-related pollution) conferred lower baseline 
lung function. Such social or environmental co-exposures 
should be considered in clinical trials broadly, where 
possible, as they might plausibly alter observed treatment 
efficacy and, if extreme, could affect generalisability. 

Further research is needed to determine whether and how 
spatially-distributed co-exposures influence treatment 
response during study interventions. 

Advances in spatial analysis and GIS have driven a 
rapid increase in the use of geographical analysis in 
epidemiology internationally.5 We propose that GIS 
can also be a powerful tool to refine the interpretability 
and applicability of RCT data—both in better defining 
the generalisability of any given RCT, and in more 
clearly identifying subpopulations for whom a given 
intervention might be most beneficial. Characterising the 
geographical context of RCT cohorts, ideally at the outset 
of any trial, can help to identify potentially influential 
social or environmental co-exposures (eg, living in high-
pollution areas, or in sub-standard housing), and could 
inform on spatial patterning and clustering in recruitment 
and retention. In resource-limited settings (eg, lower-
income and middle-income countries), geographical 
analysis could help to target RCT recruitment more 
cost-effectively, by more precisely matching participant 
characteristics and spatial co-exposures to those of 
the intended treatment population. Ultimately, using 
spatial analysis and GIS to better understand the lived 
context of RCT participants, thus better accounting for 
socioeconomic and environmental co-exposures, can help 
to improve the interpretability of RCT results and to better 
identify subpopulations for whom a given intervention 
might be particularly effective, and will inform on the true 

For more on AsthmaNet see 
https://asthmanetresearch.org
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Figure: Percentage of participants in each of three AsthmaNet clinical trials living in high-poverty census 
tracts compared with the US average, by race
Horizontal lines indicate US averages, which are calculated from the total population, by racial group, living in 
high-poverty tracts for all tracts in the USA in 2016. The poverty rate among AsthmaNet participants is calculated 
as the percentage of participants living in census tracts where the proportion of residents living in poverty18 is 
greater than the overall poverty rate for the US population in 2016 (ie, >12·7%).19 The race variable is self-defined 
primary race from the AsthmaNet baseline registry form. STICS enrolled children (5–11 years of age), SIENA 
enrolled adults and adolescents (≥12 years of age), and BARD enrolled adults, adolescents, and children (≥5 years of 
age). BARD=Best African-American Response to Asthma Drugs. SIENA=Steroids In Eosinophil-Negative Asthma. 
STICS=Step-up Yellow Zone Inhaled Corticosteroids to Prevent Exacerbations.
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generalisability of a given RCT’s results, all with the aim of 
improving patient care. 
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