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Abstract

Estrogen receptor alpha (ER)-positive breast cancer is commonly treated with endocrine therapies, 

including anti-estrogens that bind and inhibit ER activity, and aromatase inhibitors that suppress 

estrogen biosynthesis to inhibit estrogen-dependent ER activity. Paradoxically, treatment with 

estrogens such as 17b-estradiol can also be effective against ER+ breast cancer. Despite the known 

efficacy of estrogen therapy, the lack of a predictive biomarker of response and understanding of 

the mechanism of action have contributed to its limited clinical use. Herein, we demonstrate that 

ER overexpression confers resistance to estrogen deprivation through ER activation in human ER+ 

breast cancer cells and xenografts grown in mice. However, ER overexpression and the associated 

high levels of ER transcriptional activation converted 17b-estradiol from a growth-promoter to a 

growth-suppressor, offering a targetable therapeutic vulnerability and a potential means of 

identifying patients likely to benefit from estrogen therapy. Since ER+ breast cancer cells and 

tumors ultimately developed resistance to continuous estrogen deprivation or continuous 17b-

estradiol treatment, we tested schedules of alternating treatments. Oscillation of ER activity 

through cycling of 17b-estradiol and estrogen deprivation provided long-term control of patient-

derived xenografts, offering a novel endocrine-only strategy to manage ER+ breast cancer.
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in women, and the majority of these 

cases are estrogen receptor alpha (ER)-positive (1, 2). Breast tumors that express ER are 

typically dependent upon estrogen-induced ER transcriptional activation for growth, and the 

main therapeutic strategies for ER+ breast cancer target this dependence. Drugs from three 

classes of endocrine therapy are routinely used for ER+ breast cancer: aromatase inhibitors 

(AIs; e.g., letrozole, anastrozole, exemestane) that inhibit estrogen biosynthesis; selective 

estrogen receptor modulators (SERMs; e.g., tamoxifen) that antagonize ER but can have 

agonistic effects; and selective estrogen receptor downregulators (SERDs; e.g., fulvestrant) 

that inhibit ER and promote its degradation. Although patients with early-stage ER+ breast 

cancer benefit overall from adjuvant endocrine therapy with tamoxifen or an AI, 

approximately one-third of these patients eventually experience disease recurrence (3). 

Despite the development of therapies for endocrine-resistant disease (e.g., inhibitors of 

CDK4/6, mTOR, or PI3K), advanced ER+ breast cancer is rarely cured and there exists a 

need for improved therapeutic options for these patients.

Although the anti-cancer effects of estrogens have been known since the 1940s (4), clinical 

use of estrogen therapy has been limited since the introduction of anti-estrogens that have 

improved adverse events profile (5, 6). More recent clinical studies have demonstrated that 

treatment with estrogens [i.e., 17β-estradiol (E2), diethylstilbestrol, or ethinylestradiol] 

elicits anti-tumor effects in approximately 30% of patients with advanced ER+ breast cancer 

previously treated with anti-estrogens and/or AIs (7–11). Despite the proven efficacy of 

estrogen therapy, its clinical use has been hindered by a lack of mechanistic understanding 

and a predictive biomarker to identify patients likely to benefit from this treatment.

Clinical evidence indicates that the patients most likely to benefit from estrogen therapy are 

post-menopausal (12), suggesting that a period of adaption to low levels of endogenous 

estrogens increases tumor sensitivity to estrogen therapy. Preclinical studies using MCF-7 

cells and the WHIM16 patient-derived xenograft model, as well as a clinical case report, 

suggest that amplification of the gene encoding ER (ESR1) is associated with therapeutic 

response to estrogen (13–15). Herein, we demonstrate that high ER levels confer resistance 

to estrogen deprivation and increase estrogen-independent ER activity. These high levels of 

ER elicit therapeutic responses to E2. We leverage this mechanistic understanding to develop 

novel treatment paradigms to improve long-term endocrine management of breast tumors.

RESULTS

Breast cancer cells with acquired resistance to estrogen deprivation and sensitivity to 
estrogen therapy are dependent upon ER activity when estrogen-deprived

MCF-7 and HCC-1428 ER+ breast cancer cells are growth-inhibited by estrogen deprivation 

and growth-induced by E2. Long-term estrogen-deprived (LTED) counterparts of these cell 

lines have acquired resistance to estrogen deprivation and are growth-inhibited by treatment 

with 1 nM E2 (Fig. 1A). MCF-7/LTED cells are ESR1-amplified [Fig. S1 and refs. (14, 15)], 

and both MCF-7/LTED and HCC-1428/LTED cells express higher levels of endogenous ER 

than parental controls (Fig. 1B). LTED cells also express increased levels of ESR1 mRNA 
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and ER target genes compared to parental cells (Fig. 1C), suggesting that LTED cells exhibit 

increased estrogen-independent ER activity. Treatment with the SERD fulvestrant 

suppressed estrogen-independent LTED cell growth (Figs. 1D and S2) and expression of ER 

target genes (Fig. 1E), indicating that LTED cells are reliant upon estrogen-independent ER 

activity for growth.

The WHIM16 patient-derived xenograft model is ESR1-amplified (14) and grows in 

ovariectomized (ovx) mice, mimicking resistance to low levels of estrogen that occur in 

post-menopausal patients and AI-induced estrogen depletion. We and others showed that E2 

treatment of mice induces regression of WHIM16 tumors (14, 15). Fulvestrant treatment 

inhibited WHIM16 tumor growth (Figs. 1F and S3), decreased tumor levels of ER, Ki67 

(marker of cell proliferation), and PR (encoded by the ER-inducible gene PGR), and 

modestly increased cleaved caspase-3 levels (marker of apoptosis) (Figs. 1G and S4). These 

data suggest that WHIM16 tumors, which are therapeutically sensitive to E2, are dependent 

upon ER activity for growth in estrogen-depleted conditions.

Forced ER overexpression induces estrogen-independent ER transcriptional activity and 
resistance to estrogen deprivation

To determine whether high levels of ER expression are sufficient to induce resistance to 

estrogen deprivation, we stably transfected MCF-7 and HCC-1428 cells with FLAG-tagged 

ESR1 (Fig. 2A). Constitutive FLAG-ESR1 overexpression increased estrogen-independent 

growth and expression of ER target genes under estrogen deprivation compared to vector 

controls (Fig. 2B/C). Vector control cells did not survive estrogen deprivation for the 

duration of selection, therefore parental cells hormone-deprived for 3 d were used as a 

control for experiments with FLAG-ESR1 cells. We also stably transfected T47D ER+ 

breast cancer cells with the pInducer20 system (16) encoding ESR1 or empty vector under 

the control of a doxycycline (dox)-inducible promoter (Fig. 2D). Dox-induced ER 

overexpression increased estrogen-independent growth and expression of ER target genes 

(Fig. 2E/F). Treatment with fulvestrant suppresses estrogen-independent increases in ER 

transcriptional activity and growth in ER-overexpressing models, indicating that these 

effects are directly dependent upon elevated levels of ER expression (Fig. S5). Together, 

these data suggest that high levels of ER expression drive estrogen-independent ER 

transcriptional activity and growth.

We then evaluated whether ESR1 amplification is associated with resistance to conventional 

anti-estrogen and AI therapies in patients. An analysis of overall survival among a cohort of 

996 patients with early-stage ER+/HER2- breast cancer treated with adjuvant endocrine 

therapy (17) revealed that ESR1 amplification in primary tumors is associated with poor 

outcome compared to ESR1-non-amplified tumors (Fig. 2G). Of note, the 20-patient subset 

with ESR1-amplified tumors contained a higher proportion of tumors associated with the 

Luminal B subtype (n=12) compared to Luminal A (n=2), while the ESR1-non-amplified 

subset contained a higher proportion of Luminal A vs. B (n=474 vs. n=337). Luminal B 

tumors confer worse prognosis compared to Luminal A (18). However, this ESR1-amplified 

subset was too small to statistically test for differences in molecular subtype distribution 

between subsets. Analysis of ESR1 mRNA expression in the same cohort revealed that high 
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ESR1 mRNA levels are similarly associated with poor outcome compared to tumors 

expressing low ESR1 (Fig. 2H). Molecular subtype distributions were significantly different 

between these subsets (Chi-Square p<0.0001) with an increased proportion of ESR1-high 

tumors assigned to the Luminal B subtype compared to ESR1-low tumors (45.0% vs. 25.4%; 

Table S1). Additionally, an analysis of recurrence-free survival in a second cohort of 490 

patients with ER+/HER2- breast cancer treated with adjuvant endocrine therapy, 

chemotherapy, or both (19) demonstrated that high tumor ESR1 mRNA expression is 

associated with poor outcome compared to low ESR1 (Fig. 2I).

Forced overexpression of ER sensitizes cells to the anti-cancer effects of 17β-estradiol

Since ESR1-amplified tumors and cells are growth-inhibited by E2, we tested the effects of 

partial ER knockdown on response to E2. We generated LTED cell lines expressing dox-

inducible shRNA targeting ESR1 or a non-silencing control. Partial knockdown of ER partly 

rescued LTED cells from the growth-inhibitory effects of E2 (Figs. 3A and S6). This 

suggests that high levels of endogenous ER are necessary for the growth-inhibitory effects of 

E2.

Conversely, we tested the effects of overexpression of exogenous FLAG-ER on response to 

E2. HCC-1428/FLAG-ESR1 cells were growth-inhibited by E2 (Fig. 3B). T47D/

pInducer20-ESR1 cells treated with dox for 2 wk to induce ER overexpression were growth-

inhibited by E2, while non-dox-treated cells were growth-stimulated by E2 (Fig 3C/D). 

T47D/pInducer20-vector cells were growth-stimulated by E2 regardless of the presence or 

absence of dox. Thus, E2 can be converted from a growth-promoter to a growth-suppressor 

by increasing ER levels.

ER transcriptional hyperactivation is associated with growth-inhibitory effects of 17β-
estradiol

We next sought to determine whether high levels of both ER expression and ligand 

stimulation were necessary for the anti-cancer effects of E2. In LTED cells, low-picomolar 

doses of E2 stimulated growth, while cell growth was inhibited by higher doses (0.1–1 nM) 

within the physiological range in sera of pre-menopausal women (Fig. 4A). Growth-

stimulating low-picomolar doses of E2 were associated with small increases in ER 

transcriptional activity in LTED cells compared to estrogen-deprived controls, while high 

levels of ER transcriptional activity co-occurred with growth inhibition (Fig. 4A). In ovx 

mice bearing WHIM16 tumors, tumor regression was dose-dependent: high doses of orally 

administered E2 induced complete regression, while lower doses only slowed tumor growth 

(Fig. 4B and S7A–E). The lack of growth stimulation with low doses of exogenous E2 in 
vivo may be due to the low levels of endogenous E2 in ovx mice. However, treatment with 

the AI letrozole did not decrease serum E2 levels in ovx mice, so we were unable to test this 

hypothesis (Fig. S7F). The dose-dependent therapeutic responses to E2 observed in mice and 

cultured cells, and the stimulation of growth with low levels of E2 in vitro, suggest that ER 

activation is not intrinsically growth-inhibitory in these models, but rather that high levels of 

ER activation must occur to elicit anti-cancer effects.
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To further test this concept, we treated parental and LTED cells with 1 nM E2, a dose that 

induces parental cell growth but inhibits LTED cell growth (Fig. 1A). E2 treatment induced 

relative hyperactivation of ER in LTED cells compared to parental cells (Fig. 4C). Similarly, 

hyperactivation of ER was observed in HCC-1428/FLAG-ESR1 and dox-induced T47D-

pInducer20-ESR1 cells treated with E2 compared to vector controls (Fig. 4C/D). Notably, 

MCF-7 cells constitutively overexpressing exogenous ESR1 (MCF-7/FLAG-ESR1) cells 

were not growth-inhibited by 1 nM E2 (Fig. 4E), which is likely due to a lack of ER 

hyperactivation upon E2 treatment compared to control-treated cells (Fig. 4F). These 

findings suggest that there is a window of optimal ER transcriptional activity for inducing 

cell/tumor growth, and a combination of high ER expression and E2 stimulation converge to 

provide ER hyperactivation that elicits anti-cancer effects.

Resistance to 17β-estradiol therapy is associated with ER downregulation

E2 treatment of mice induced complete regression of WHIM16 tumors. However, all tumors 

ultimately recurred during E2 treatment (Fig. 5A), indicating resistance to E2 therapy. 

Withdrawal of E2 from mice bearing such recurrent tumors stunted tumor growth (Fig. 5A), 

demonstrating that tumors that resumed growth during E2 treatment were partly growth-

stimulated by E2. Tumors were collected at baseline (Day 0), after short-term (Day 3) and 

long-term (Day 56) E2 treatments, after recurrence on E2 (Day 126), and after E2 

withdrawal (Day 129) for molecular analyses (outlined in Fig. 5B). E2 treatment initially 

decreased tumor cell proliferation (Day 0 vs. Day 3). In recurrent tumors, E2 withdrawal 

reduced proliferation (Day 126 vs. Day 129; Figs. 5C and S8). Apoptosis was apparent 

following 3 d of E2 treatment, but not at time points thereafter; this may explain in part why 

recurrent tumors were growth-inhibited but did not regress when treated with E2 withdrawal 

(Fig. 5A/C). E2 did not significantly increase PR expression in these tumors, which are PR+ 

at baseline in ovx mice (Day 0 vs. Day 3). However, in tumors that recurred on E2, 

withdrawal of E2 decreased PR levels (Day 126 vs. Day 129; Fig. 5C). These observations 

suggest that ER transcriptional activity is partly estrogen-dependent in tumors that recur on 

E2.

Consistent with the hypothesis that high levels of ER activity promote the anti-cancer effects 

of estrogen, tumors that recurred on E2 exhibited lower ER levels than at baseline, even after 

E2 withdrawal (compare Day 129 vs. Day 0 in Fig. 5D). Downregulation of ESR1 mRNA 

also occurred at Day 129 without loss of ESR1 gene amplification (Fig. S9A/B). Analysis of 

ER target gene expression indicated that E2 initially stimulated ER transcriptional activity 

(by Day 3) in tumors that regressed in response to E2, while expression of these genes return 

to near-baseline levels in tumors that acquired resistance to E2 (Fig. 5E). Interestingly, 

analysis of ER expression in surviving tumor cells at Day 56 suggested complete loss of ER 

at this time point. Breast cancer stem cells typically do not express ER (20, 21), which is 

consistent with the hypothesis that cells surviving E2 treatment are stem-like and later give 

rise to E2-resistant ER+ cells as observed at Day 126.
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Cycling 17β-estradiol and estrogen deprivation provides long-term control of ER+ breast 
tumors

Since recurrent WHIM16 tumors are partially growth-stimulated by E2 (Fig. 5A/C), we 

hypothesized that residual tumor cells surviving E2 therapy could be targeted by switching 

to estrogen deprivation prior to the emergence of E2-resistant tumors. WHIM16 tumors in 

ovx mice treated with E2 for 74 d or 35 d recurred at similar time points (Fig. S10A–C), 

suggesting that after initial tumor regression, E2 treatment no longer elicited anti-tumor 

effects. Additionally, tumors that recurred following A) 35 d of E2 plus B) subsequent 

estrogen deprivation were growth-inhibited by a second round of E2 treatment (Fig. S10B), 

suggesting that oscillating between estrogen therapy and estrogen deprivation may be an 

effective strategy for controlling tumor growth long-term.

In order to refine the optimal treatment schedule for oscillating between E2 and estrogen 

deprivation therapies, ovx mice bearing WHIM16 tumors were treated with E2 for either 1 

wk or 4 wk followed by estrogen deprivation, or treated continuously with E2. Tumors in all 

treatment groups regressed completely (Figs. 6A and S11A–D). Treatment with E2 for 1 wk 

(followed by estrogen deprivation) or with continuous E2 resulted in similar times to 

recurrence. In contrast, 4 wk of E2 treatment (followed by estrogen deprivation) 

significantly delayed recurrence compared to the other treatment schedules (Fig. 6B). These 

observations suggest that i) there is an optimal duration of E2 therapy to elicit maximal anti-

cancer effects that extends beyond the time of maximum measurable response (i.e., change 

in volume), and ii) E2 may elicit anti-cancer effects at early time points and pro-cancer 

effects at later time points.

Nearly all WHIM16 tumors in mice treated with E2 on all schedules recurred (Figs. 6A/B 

and S11B–D). Mice bearing tumors that recurred on continuous E2 were then treated with 

estrogen deprivation; once tumors resumed estrogen-independent growth (defined as an 

increase in tumor volume at two consecutive timepoints), mice were re-challenged with E2. 

Similarly, mice with tumors that recurred after 1 wk or 4 wk of E2 followed by estrogen 

deprivation were re-challenged with E2 using the same schedule as in the prior cycle (Fig. 

6C). In mice exposed to first-line short-term (1 or 4 wk) E2, tumors completely regressed 

during the second cycle of E2 treatment. However, mice exposed to first-line continuous E2 

showed incomplete tumor regression when re-challenged with E2 (Figs. 6C and S11B–D). 

These results indicate that pre-emptively switching between E2 and estrogen deprivation 

therapies before resistant tumors emerge is an effective strategy for long-term control of 

tumor burden.

To better understand tumor cell responses to different treatment schedules, tumors were 

acquired from mice treated with E2 using the above-described schedules. Tumors from mice 

treated with E2 for ≥2 wk contained few viable malignant cells (Fig. 6D). Tumors from mice 

treated with 1 wk of E2 followed by estrogen deprivation contained more tumor cells than 

those treated with E2 for 2–5 wk, suggesting that 1 wk of E2 is less effective at eliminating 

tumor cells. By Week 4 of E2 treatment, there were no detectable tumor cells in resected 

tumor beds. At week 5 of treatment, all mice on the 4 wk treatment schedule remained free 

of detectable tumor cells, while only 5/6 tumor beds from mice on continuous E2 treatment 

remained tumor cell-free (Fig. 6D). These observations may explain in part the improved 
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long-term outcome of the 4-week E2 treatment schedule compared to the 1-week and 

continuous schedules.

DISCUSSION

Several previous studies have suggested that high levels of ER are associated with resistance 

to anti-estrogen therapies. A study by Li et al. demonstrated that T47D cells overexpressing 

wild-type ER exhibited increased growth under estrogen deprivation compared to vector 

controls (14). Amplification of ESR1 was also associated with resistance to adjuvant 

tamoxifen in patients with early stage ER+ breast cancer (22). Prior reports also hinted at a 

connection between ESR1 amplification and response to estrogen therapy. MCF-7/LTED 

cells and WHIM16 PDX tumors exhibit amplification of ESR1 (14, 15), and both are 

growth-inhibited by E2. A patient with ESR1-amplified metastatic breast cancer was also 

noted to experience a partial response upon treatment with E2 (13). However, a direct 

relationship between ER expression levels and the anti-cancer effects of estrogen therapy has 

not been previously demonstrated.

Numerous clinical studies have demonstrated the therapeutic efficacy of estrogen therapy in 

patients with ER+ breast cancer (5–11, 23–25). One of the major clinical hurdles to more 

widespread use of estrogen therapy for breast cancer is the lack of a predictive marker to 

select patients likely to benefit from treatment. A study by Carter et al. demonstrated that 

higher doses of the estrogen diethylstilbestrol increased response rates in post-menopausal 

breast cancer patients, but the duration of response did not differ between dose cohorts (23). 

This suggests that a threshold of ER activation exists for therapeutic response to estrogen. 

We surmise that tumors expressing higher levels of ER will require less exogenous E2 to 

surpass this threshold, while tumors expressing lower levels of ER are unlikely to achieve 

sufficient ER activation to trigger a therapeutic response with doses of E2 safely achievable 

in humans. Taken together with our results, this suggests that patients with very high levels 

of ER expression are most likely to benefit from estrogen therapy.

Our work indicates that amplification of ESR1 is likely predictive of response to estrogen 

therapy. Although uncommon in primary tumors (26), ESR1 copy number gain is detected in 

a subset (13–25%) of metastatic ER+ breast tumors, and increases in ESR1 copy number are 

correlated with increased ESR1 mRNA expression (26, 27). However, identifying patients as 

candidates for estrogen therapy based on tumor ESR1 amplification would likely miss 

patients with high tumor ER expression in the absence of ESR1 copy number gain (as in 

HCC-1428/LTED cells) who could still benefit from treatment. Further work is necessary to 

determine what constitutes ‘high’ ER expression in tumors, and what other tumor features 

contribute to sensitivity to estrogen therapy. Our data suggest that high levels of ER 

transcriptional activation are required to elicit anti-cancer effects upon estrogen treatment; 

why some but not all ER-overexpressing models further activate ER upon treatment with E2 

remains to be elucidated.

Some patients with acquired resistance to AI therapy are re-sensitized to treatment with AIs 

after experiencing clinical benefit from E2 therapy (8). Our results suggest that this re-

sensitization is due to the downregulation of ER upon acquisition of resistance to E2 therapy. 
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Additionally, our data suggest that cycling between estrogen therapy and estrogen 

deprivation therapy prior to the emergence of resistance is more effective at controlling 

tumor growth than either treatment strategy alone. Although unconventional, alternation of 

treatments pre-emptively before recurrence may result in improved long-term disease 

management. Short-term E2 treatment may also reduce adverse events, thereby increasing 

the therapeutic index of E2. However, one limitation of our study is the lack of available in 
vivo models to test the generalizability of the finding that short-term E2 is superior to 

continuous E2 treatment. We were unable to establish LTED cell line xenografts in ovx 

mice, likely due to the fact that the measured levels of serum E2 in ovx mice is 

approximately 10 pg/mL (equivalent to ~30 pM), which is a growth-inhibiting dose for 

LTED cells in vitro (Fig. 4A and S7F).

Although we tested alternation between estrogen treatment and estrogen deprivation, 

oscillation between activation and inhibition of ER activity may also be successful with 

other anti-estrogen therapies. Direct comparison of treatment with the SERD fulvestrant vs. 

the AI anastrozole in patients with advanced ER+ breast cancer demonstrated that 

fulvestrant provided longer time-to progression (28). In addition, approximately 30% of 

patients with tumors exhibiting acquired resistance to AI therapy respond to treatment with 

fulvestrant (29, 30). This raises the possibility that cycling between estrogen and fulvestrant 

therapies may be beneficial in patients with acquired resistance to AIs. However, the long 

half-life of fulvestrant (31) may prevent rapid changes in ER activity upon cycling 

treatments, limiting the efficacy of this treatment strategy. Further work is necessary to 

determine whether the observed benefit of alternating estrogen and estrogen deprivation can 

be replicated with other types of anti-estrogen therapies.

Similar to estrogen therapy in breast cancer, treatment with androgens elicits anti-cancer 

effects in a subset of patients with castration-resistant prostate cancer (32, 33), and treatment 

with intermittent high doses of androgens (i.e., bipolar androgen therapy) has been used as a 

strategy to delay the onset of drug resistance (34, 35). In accordance with our results, high 

levels of androgen receptor (AR) expression are associated with therapeutic response to 

androgens (36, 37).

Our findings raise the question of why high levels of ER activation are toxic to breast cancer 

cells. Previous work, conducted primarily in LTED derivatives of MCF-7 cells, 

demonstrated that E2 induces an unfolded protein response that drives apoptosis (15, 38–

41); the mechanism underlying the initiation of this unfolded protein response has not been 

reported. It is reasonable to infer that high levels of ER activation could flood cells with new 

transcripts to be translated, inducing a sudden influx of newly translated polypeptides and 

resulting in an unfolded protein response. ER also regulates its own expression in a negative 

feedback loop, with high levels of ER activation resulting in downregulation of ESR1 
transcription (42–44). It is therefore also possible that following the initial high levels of ER 

activation stimulated with estrogen therapy, ER expression is downregulated enough to elicit 

anti-estrogen effects.

In conclusion, the effects of high ER expression are context-dependent, providing a growth 

advantage under estrogen deprivation but a disadvantage in E2-replete conditions. High 
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expression of ER is therefore targetable with estrogen therapy, and modulating ER activation 

by cycling estrogen and estrogen deprivation provides long-term control of tumor growth. 

Further work is necessary to determine how to best apply this knowledge clinically to benefit 

patients.

MATERIALS AND METHODS

Cell culture

Parental cancer cell lines (MCF-7, HCC-1428, T47D) were obtained from American Type 

Culture Collection (ATCC; Manassas, VA, USA), and LentiX cells were obtained from 

Clontech (Mountain View, CA, USA). MCF-7, HCC-1428, T47D, and LentiX cells were 

cultured in DMEM with 10% FBS (HyClone Laboratories; Logan, UT, USA). MCF-7/LTED 

cells were a gift from Matthew Ellis (Baylor College of Medicine, Houston, TX, USA) (45). 

HCC-1428/LTED cells were generated through long-term (>1 yr) culture in phenol-red-free 

DMEM with 10% dextran/charcoal-treated FBS (DCC-FBS; HyClone Laboratories) as 

previously described (46). LTED cells were maintained in phenol-red-free DMEM + 10% 

DCC-FBS supplemented with 2 mM GlutaMAX (ThermoFisher Scientific, Waltham, MA, 

USA), and were passaged using phenol-red-free 0.25% trypsin plus 2.21 mM EDTA 

(Corning, Tewksbury, MA, USA). Cell lines were verified by STR genotyping at the 

University of Vermont Cancer Center DNA Analysis Facility and confirmed to be free of 

mycoplasma (Universal Mycoplasma Detection Kit; ATCC). Assays were performed using 

cells cultured for <3 months thereafter.

Generation of stably transfected cell lines

Plasmids encoding SmartVector doxycycline-inducible shRNA targeting ESR1 or non-

coding control were obtained from Dharmacon (cat. # V3SH11252–225116931 and 

V3SH11252–225648231; Lafayette, CO, USA; Table S2). The pInducer20 lentiviral genome 

plasmid (16) was a gift from Thomas Westbrook (Baylor College of Medicine). The 

Gateway PLUS Shuttle Clone encoding ESR1 cDNA was obtained from GeneCopoeia (cat. 

# GC-A0322-B; Rockville, MD, USA), and the ESR1 sequence was inserted into 

pInducer20 by Gateway Cloning (GenScript, Piscataway, NJ, USA). LentiX cells were 

cultured in phenol red-free DMEM with 10% DCC-FBS for 3 d prior to transfection. 

Lentivirus was produced in LentiX cells using a standard three-plasmid system consisting of 

a genome plasmid (SmartVector/shControl, SmartVector/shESR1, or pInducer-ESR1), 

pMD2.G (#12259), and psPAX2 (#12260) (the latter 2 plasmids were gifts from Didier 

Trono obtained from Addgene; Watertown, MA, USA). Plasmids were transfected into 

LentiX cells using polyethylenimine. Media containing lentivirus was used to transduce 

MCF7/LTED, HCC1428/LTED, HCC-1428, MCF-7, and T47D cells, and stably transfected 

cells were selected with G418 (2 μg/mL) or puromycin (1 μg/mL) for 1 wk. Parental cell 

lines were hormone-deprived for 3 d prior to lentiviral transduction. Cells were selected with 

puromycin (1 μg/mL) for 1 wk, and stably expressing cell lines were maintained in 

hormone-depleted medium.
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Luciferase Reporter Assays

Plasmids encoding firefly-luciferase under an estrogen-response element (ERE)-driven 

promoter (gift from Dorraya El-Ashry, University of Minnesota) and CMV-Renilla 

luciferase (Promega, Madison, WI, USA) were co-transfected into cells. The day following 

transfection, cells were treated with E2 as indicated for 24 h. Luciferase activities were 

measured using the Dual-Luciferase Reporter Assay System (Promega) as per 

manufacturers’ instructions. Firefly luciferase signal was normalized to Renilla transfection 

control signal.

Mouse Studies

Studies were approved by the Dartmouth College IACUC. Ovariectomized (ovx) female 

NOD/SCID/Il2γ−/−(NSG) mice were obtained from the Norris Cotton Cancer Center Mouse 

Modeling Shared Resource. The WHIM16 tumor model was obtained from the Washington 

University HAMLET Core (St. Louis, MO, USA). Tumor fragments (~8 mm3) were 

implanted subcutaneously (s.c.). into ovx mice aged 4–6 weeks. Tumor dimensions were 

measured twice weekly with calipers, and volumes were calculated as [length × width2/2]. 

When tumor volume reached ≥200 mm3, mice were randomized to treatment groups. No 

specific randomization or blinding techniques were used for these studies. E2 was 

administered by s.c. beeswax pellet containing 1 mg E2 (47). For long-term E2 treatment, 

pellets were replaced every 30 d. Fulvestrant (Ontario Chemicals, Inc., Guelph, ON, 

Canada) was dissolved in ethanol at 500 mg/mL, and diluted 10-fold with castor oil to yield 

a 50-mg/mL solution. Fulvestrant (5 mg/mouse) or vehicle was administered weekly by s.c. 

injection. Letrozole (Selleck Chemicals, Houston, TX, USA) was dissolved in 0.5% 

methylcellulose + 0.2% Tween-20, and 5 mg/kg was administered daily by intraperitoneal 

injection. Tumors harvested for molecular analyses were cut in half and either formalin-

fixed and paraffin-embedded (FFPE), or frozen in liquid nitrogen.

Immunoblotting

All chemicals were purchased from Sigma (St. Louis, MO, USA) unless noted otherwise. 

Cells were lysed in RIPA buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1% NP-40, 10% 

glycerol, 1 mM EDTA, 1 mM EGTA, 5 mM NaPPi, 50 mM NaF, 10 mM Na β-

glycerophosphate) plus fresh HALT protease inhibitor cocktail (Pierce; Rockford, IL, USA) 

and 1 mM Na3VO4 (New England Biolabs; Ipswich, MA, USA). Lysates were sonicated for 

15 s and centrifuged at 17 000 × g for 10 min at 4°C. Protein content in supernatant was 

quantified by BCA assay (Pierce). Protein extracts were reduced and denatured using 

NuPAGE (ThermoFisher Scientific) plus 1.25% β-mercaptoethanol. SDS-PAGE-separated 

proteins were transferred to nitrocellulose, and membranes were stained with Ponceau S to 

visually confirm even protein loading. Blots were probed with antibodies against ER (Santa 

Cruz Biotechnology, Dallas, TX, USA; cat.# sc-8002), vinculin, β-actin (Cell Signaling 

Technology; Danvers, MA, USA; cat.# 13901), and FLAG (Millipore Sigma; Burlington, 

MA, USA; cat.# F3165). Signal was detected using horseradish-peroxidase labeled 

secondary antibodies (GE Healthcare; Waukesha, WI, USA) and ECL substrates (Pierce).
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Histology and immunohistochemistry (IHC)

Slide-mounted 5-micron sections of FFPE tissue were deparaffinized in xylene and 

rehydrated in a graded ethanol series. For histology, sections were stained with Eosin-Y 

(Richard-Allan Scientific, San Diego, CA, USA) and counterstained with hematoxylin 

(Richard-Allan Scientific). Viable tumor cells in hematoxylin and eosin (H&E) stained 

slides were quantified by a pathologist. For IHC, heat-induced antigen retrieval was 

performed in either Tris-EDTA buffer, pH 9 or citrate buffer, pH 6 (VWR; Radnor, PA, 

USA). Sections were permeabilized in 0.2% Triton X-100 in PBS, and blocked in 5% goat 

serum in PBS for 30 min. Sections were incubated overnight at 4°C in primary antibody 

against ER (Dako; Santa Clara, CA, USA; cat.# IR084), Ki67 (BioCare Medical; Pacheco, 

CA, USA; cat.# 325), cleaved caspase-3 (Cell Signaling Technology; cat.# 9664), or 

progesterone receptor A/B (Cell Signaling Technology; cat.# 3153). Sections were treated 

with in 0.3% hydrogen peroxide, and signal was developed using VectaStain Elite ABC-

HRP kit and DAB substrate (Vector Laboratories; Burlingame, CA, USA). Sections were 

counterstained with hematoxylin. IHC staining in each section was quantified in 3 

representative microscopic fields at 200x magnification using HALO software (Indica Labs; 

Alburquerque, NM, USA).

qPCR and RT-qPCR

RNA was isolated from cells and frozen tumors using RNeasy Universal Plus Mini Kit 

(Qiagen; Germantown, MD, USA). RNA was reverse-transcribed using the iScript cDNA 

Synthesis kit (Bio-Rad; Hercules, CA, USA). Genomic DNA was isolated using the DNeasy 

Blood and Tissue Kit (Qiagen). Real-time qPCR was performed using iQ SYBR Green 

SuperMix (Bio-Rad) using the Bio-Rad CFX96 thermocycler. Data was analyzed using the 

ΔΔCT method. Primer sequences are listed in Table S1.

Growth Assays

Cells were seeded in triplicate at 2500 cells/well in 6-well plates, and treated as indicated for 

4 wk. Parental cells were hormone-deprived for 3 d prior to seeding. Cells were fixed and 

stained with 0.5% crystal violet in 20% methanol for 10 min, then rinsed with water. Plates 

were scanned, and area fraction of staining was determined for each well using ImageJ 

software.

Statistical analysis

Data from IHC, long-term growth assays, RT-qPCR, and luciferase assays were analyzed by 

two-tailed t-test (two-sample experiments) or ANOVA with Bonferroni-adjusted post-hoc 

testing (experiments with 3 or more samples). Cell culture experiments were repeated on 3 

independent occasions, and the data met the assumptions of all tests. Tumor growth data was 

analyzed using the following linear mixed model : Log10(tumor volumeit) = ai + b * t + eit, 

where i represents the ith mouse, t represents time of tumor volume measurement, ai 

represents the mouse-specific log tumor volume at t = 0, b represents the rate of tumor 

volume growth, and eit represents deviation of measurements from the model over time (48, 

49). Mouse heterogeneity (the baseline tumor volume) is represented by variance of ai, and 

b*loge(10) * 100 indicates tumor volume increase (%) per week. Treatment groups were 
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compared using a z-test for slopes with standard error derived from the output of the 

function lme from the library nlme in R. Mouse studies were performed once. Sample size 

for initial tumor growth experiments were based on an untreated tumor growth rate of 8.7% 

per day. Power analysis indicated that with n=10 mice per group a minimum difference of 

1.6% per day between two treatment groups would be detectable with Type I error of 5% 

and 80% power. Sample size was modified in subsequent experiments to account for larger 

anticipated treatment effects.

For overall survival (OS) analyses, a cohort of patients with hormone-therapy treated ER+/

HER2- breast tumors were selected using cBioPortal (50, 51); patients were grouped by 

ESR1 copy number (amplified vs. non-amplified) or by ESR1 expression Z-score, stratified 

on the median. For recurrence-free survival analysis, a cohort of patients with ER+/HER2- 

breast cancer were selected for analysis of recurrence-free survival using Kaplan-Meier 

Plotter (19). Statistical analysis of survival curves was performed by log-rank test, with post-

hoc Bonferroni correction for multiple comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Breast cancer cells that therapeutic respond to E2 are ER-dependent despite estrogen 
deprivation.
(A) Cells were seeded at low density and treated in triplicate as indicated for 4 wk. Colonies 

were fixed and stained with crystal violet, and colony area was quantified. Parental cells 

were hormone-deprived (HD) for 3 d prior to seeding. (B) Lysates from parental cells 

(hormone-deprived for 3 d) and LTED cells were analyzed by immunoblot. (C) RNA 

isolated from parental cells (hormone-deprived for 3 d) and LTED cells was analyzed by RT-

qPCR. Values for indicated transcripts were normalized to ACTB expression. (D) LTED 

cells were seeded at low density and treated in triplicate ± fulvestrant (fulv) as indicated for 

4 wk. Colony area was analyzed as in (A). (E) LTED cells were treated ± 1 μM fulv for 3 d. 

RNA was isolated and analyzed by RT-qPCR as in (B). (F) Ovx mice bearing WHIM16 

tumors were randomized to treatment as indicated. (G) Tumors were harvested from mice 

treated as in (F) after 8 d of treatment. Expression of ER, Ki67, cleaved caspase 3 (CC3) and 

progesterone receptor (PR) were analyzed by IHC. *p≤0.05, **p≤0.005, ***p≤0.0005 by 

two-tailed t-test (D, G), Bonferroni multiple comparison-adjusted post-hoc test (C, E), or 

linear mixed modeling (F). Data are shown as mean ± SD.
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Figure 2. Overexpression of ER induces estrogen-independent ER signaling and resistance to 
estrogen deprivation.
(A) MCF-7 and HCC-1428 cells stably expressing FLAG-ESR1 were generated, and 

transgene expression was confirmed by immunoblot. Parental cells were hormone-deprived 

for 3 d prior to collection of lysates. (B) Parental and FLAG-ESR1 cells were seeded at low 

density and treated as indicated for 4 wk. Parental cells were hormone-deprived for 3 d prior 

to seeding. Colonies were fixed and stained, and relative colony area was quantified. (C) 

RNA was isolated from ER-overexpressing cells and parental controls. Expression of 

indicated transcripts was analyzed by RT-qPCR, normalized to expression of ACTB. 

Parental cells were hormone-deprived for 3 d prior to RNA isolation. (D) Protein was 

harvested from T47D cells stably expressing the pInducer20 vector with either doxycycline-

inducible ESR1 or empty vector control. Cells were hormone-deprived for 3 d and treated 

with doxycycline (dox) as indicated for 2 d. ER expression was analyzed by immunoblot. 

(E) T47D/pInducer20 cells were hormone-deprived for 3 d and seeded at low density. Cells 

were treated as indicated in triplicate for 4 wk, and colony area was quantified as in (B). (F) 

T47D/pInducer20 cells were hormone-deprived for 5 d and treated ± 5 μM doxycycline on 

Day 3 of hormone deprivation. RNA was harvested and analyzed as in (C). (G) Overall 

survival analysis of patients with ESR1-amplified (n=20) and -non-amplified (n=976) ER+/
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HER2- breast cancer. Analysis is limited to patients with ER+ status confirmed by IHC, 

HER2- status measured by SNP6 array, and receipt of endocrine therapy in ref. (17). (H) 

Overall survival analysis of patients with high (n=484) vs. low (n=484) ESR1 mRNA 

expression from dataset in (G). (I) Recurrence-free survival analysis of 494 patients with 

ESR1-high (n= 247) vs. ESR1-low (n=247) ER+/HER2- breast cancer described in ref. (19). 

Data were stratified by median ESR1 mRNA expression. Data in (B-F) are shown as mean ± 

SD. *p≤0.05, **p≤0.005, ***p≤0.0005 by two-tailed t-test (C) or Bonferroni multiple 

comparison-adjusted post-hoc test (B, E, F).
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Figure 3. Overexpression of ER converts E2 from a growth promoter to a growth suppressor.
(A) LTED cells stably expressing doxycycline-inducible shRNA targeting ESR1 or non-

coding control were seeded at low density and treated as indicated with doxycycline (dox; 

HCC-1428/LTED, 100 nm; MCF-7/LTED, 1 μM) and E2 (1 nM) for 4 wk. Colonies were 

fixed and stained with crystal violet, and colony area was quantified. (B) HCC-1428 cells 

stably overexpressing FLAG-ESR1 and maintained in hormone-depleted medium were 

seeded at low density and treated ± E2 as indicated. Colonies were fixed, stained, and 

quantified as in (A). (C) Experimental design to test E2 sensitivity in T47D-pInducer20 cell 

lines. (D) Cells were seeded at low density and treated ± 1 nM E2 and 5 μM doxycycline as 

indicated. Data shown are mean of triplicates ± SD. *p≤0.05, **p≤0.005, ***p≤0.0005 by 

Bonferroni multiple comparison-adjusted post-hoc test (A, D) or two-tailed t-test (B).

Traphagen et al. Page 19

Oncogene. Author manuscript; available in PMC 2021 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Therapeutic response to E2 is accompanied by hyperactivation of ER transcriptional 
activity.
(A) Cells were seeded at low density and treated with E2 as indicated for 4 wk, then fixed 

and stained with crystal violet. Colony area was quantified using ImageJ (left y-axis). To 

measure ER activity, cells were transfected with ERE-driven firefly luciferase and CMV-

Renilla. One day following transfection, cells were treated with E2 as indicated for 24 h, and 

luciferase activities were measured (right y-axis). (B) Ovx mice bearing WHIM16 tumors 

were randomized to treatment with E2 (p.o., BID) at the indicated doses. Tumor volumes 

were measured twice weekly. Data are shown as mean + SD. (C) HCC-1428 and MCF-7 

parental, LTED, and FLAG-ESR1 cells were transfected with luciferase vectors and 

analyzed as in (A). Parental cells were hormone-deprived for 3 d prior to transfection. (D) 

RNA was isolated from T47D-pInducer20 cells treated ± 5 μM doxycycline for 2 wk, and ± 

1 nM E2 for 24 h. Expression of indicated transcripts was analyzed by RT-qPCR and 

normalized to ACTB. (E) MCF-7/FLAG-ESR1 cells were seeded at low density, treated with 

E2 as indicated for 4 wk, and colony area analyzed as in (A). (F) MCF-7/FLAG-ESR1 and 

MCF-7 parental cells were transfected with luciferase vectors and analyzed as in (A). 

Parental cells were hormone-deprived for 3 d prior to transfection. Data are shown as mean 

of 3 (A/C/D/E) or 6 (F) replicates ± SD. *p≤0.05, **p≤0.005, ***p≤0.0005 by Bonferroni 

multiple comparison-adjusted post-hoc test (A/C/D/F), two-tailed t-test (E) or linear mixed 

modeling (B).
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Figure 5. Resistance to E2 therapy is associated with downregulation of ER levels and activity.
(A) Ovx mice bearing WHIM16 tumors were treated with E2 by s.c. pellet, replaced every 

30 d (gray shading). When tumors re-grew to baseline volume, E2 was withdrawn. Tumor 

volumes were measured twice weekly. Each line represents one tumor. (B) Experimental 

design for comparison of tumors differentially sensitive to E2 and estrogen deprivation. 

Tumors were harvested for molecular analysis at indicated timepoints. (C/D) Expression of 

indicated proteins was analyzed by IHC, and expression was quantified. (E) RNA was 

isolated from tumor samples and analyzed by RT-qPCR. Expression of indicated transcripts 

was normalized to ACTB. Data are shown as mean ± SD. *p≤0.05, **p≤0.005, ***p≤0.0005 

by Bonferroni multiple comparison-adjusted post-hoc test.
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Figure 6. Cycling E2 and estrogen deprivation is an effective strategy for maintaining long-term 
tumor control.
(A) Ovx mice bearing WHIM16 tumors were randomized to treatment ± E2 by s.c. pellet for 

1 wk, 4 wk, or continuous treatment until tumors re-grew to baseline volume. Colored bars 

represent duration of E2 treatment. Horizontal bars indicate duration of E2 treatment. (B) 

Time to recurrence was measured as time from treatment start until tumors re-grew to 

baseline volume. (C) When tumors treated with E2 for 1 wk or 4 wk (followed by estrogen 

deprivation) re-grew to baseline, mice were re-treated with 1 wk or 4 wk of E2. When 

tumors treated with continuous E2 re-grew to baseline volume, mice were switched to 

estrogen deprivation; when these tumors resumed growth on estrogen deprivation, mice were 

re-treated with E2. (D) Tumors were harvested from mice treated ± E2 by s.c. pellet for 1 

wk, 4 wk, or continuous treatment at the indicated timepoints. Tumor sections were H&E-

stained, and the percentage of viable tumor cells in each section was quantified by a 

pathologist. Black dot indicates tumors receiving E2 treatment at time of analysis. 

Percentages indicate mean % viable tumor cells ± SD for each timepoint. Data are shown as 

mean + SD. *p≤0.05, ***p≤0.0005 by log-rank test (B) or nonlinear mixed modeling (C).
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