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Abstract

Cardiac hypertrophy (CH) is a common disease that originates from long-term heart pressure overload and finally leads to heart failure.
Recently, long non-coding RNAs (lncRNAs) have attracted attention because they have broad and crucial functions in regulating complex
biological processes. Some studies had found that lncRNAs play vital roles in complex cardiovascular diseases. However, the function and
mechanism of lncRNAs in CH have not been elucidated. In our study, to investigate the potential roles of lncRNAs in CH, the Cardiac Hypertro-
phy-associated LncRNAs-Protein coding genes Network (CHLPN) was constructed by integrating gene microarray re-annotation and
subpathway enrichment analyses. After performing random walking with restart in CHLPN, we predicted 21 significant risk lncRNAs, of which 7
(Kis2, 1700110K17Rik, Gm17501, E330017L17Rik, C630043F03Rik, Gm9866 and Ube4bos1) formed a close module with their co-expressed
protein-coding genes (PCGs). We found that the module might play crucial roles in the development of CH. In particular, 44 PCGs that were
co-expressed with six lncRNAs were enriched in CH-related biological processes and pathways. We also found that some lncRNAs participated
in the competitive endogenous RNA cross-talk that might be involved in CH. These results indicate that the functional lncRNAs are related to
post-transcriptional regulation and could shed light on a new molecular diagnostic target of CH.
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Introduction

Cardiac hypertrophy (CH) is compensation for heart pressure over-
load, which is often related to chronic disease such as hypertension.
With the development of molecular biology, more studies have
focused on the signalling pathways of cell size expansion and apopto-
sis; some of which are related to CH, such as the mitogen-activated
protein kinase (MAPK) [1, 2], phosphatidylinositol 3-kinase/AKT [2]
and nuclear factor-jB [3] pathways. There is evidence that CH had a
close relationship with cardiomyocyte metabolism. For instance, Ca2+

plays a crucial role in the strictly regulated supply of ATP to meet the
energy requirements of the cardiac myofibrils [4]. This indicates that

CH is closely related to body metabolism and signalling pathway
changes.

Current research shows that long non-coding RNAs (lncRNAs)
have become important regulatory factors in development of mam-
malian, including human heart disease [5]. LncRNAs encompass
>200 nucleotides, with little or no protein-coding ability, and are less
conserved compared with the protein-coding genes (PCGs)[6, 7]. In
addition, their expression pattern in multicellular organisms shows
high tissue specificity [8–11]. Many heart disease-associated
lncRNAs have been found in cDNA sequence analysis of humans and

#These authors have contributed equally to this work.
*Correspondence to: Chunquan LI

E-mail: lcqbio@163.com

Xiaojie SU

E-mail: jcfdcsxj@sohu.com

ª 2017 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

doi: 10.1111/jcmm.13376

J. Cell. Mol. Med. Vol 22, No 2, 2018 pp. 892-903

http://orcid.org/0000-0002-4700-5496
http://orcid.org/0000-0002-4700-5496
http://creativecommons.org/licenses/by/4.0/


mice following the invention of Tiling technology [12]. For example,
the specific expression of lncRNA Braveheart has been found in
human heart and mouse embryonic stem cells. Some studies have
demonstrated that lncRNAs play an important role in promoting
angiogenesis during embryonic development [13, 14] and are help-
ful for differentiation of heart valves but dysfunction of lncRNA can
lead to myocardial infarction [15]. Other research has shown that
lncRNA Fendrr is essential for initial cardiac development in mice
[16]. Recently, many studies have reported that lncRNAs play key
roles in murine models of CH [17–19]. Specifically, Viereck et al.
[18] found that overexpression of lncRNA Chast could lead to CH
in vitro and in vivo. Liu et al. [17] found that lncRNA H19 overex-
pression decreased the size of cardiomyocytes in CH models.
These results suggest that lncRNAs play an important role in car-
diac development and function [20]. However, research about the
biological function and mechanism of lncRNAs has only begun, and
their exact biological function and regulatory mechanism in CH
remain unclear.

RNA sequencing (RNA-seq) is the technique for detecting RNA
expression of all genome scale [21]. This technique has identified
many lncRNAs by mapping reads to the genome via bioinformatics.
However, there are few publicly available CH-related RNA-seq data
due to the high cost of RNA-seq [22]. LncRNA expression can also
be detected by gene microarray analysis [23]. While most of the
expression of lncRNAs is often in low abundance, microarray analy-
sis has a higher sensitivity in detecting low abundance lncRNA
expression than RNA-seq has [11]. Expression of 849 ncRNAs in
adult mouse brain was identified by re-annotation of the Allen Brain
Atlas probe by Mercer et al. [8]. Similarly, Pang and others identi-
fied >1000 ncRNAs expressed in mammalian CD8+ T cells by
microarray probe re-annotation [24]. Liao et al. [25] verified the
accuracy and consistency of re-annotated probes of gene microar-
ray data. All the above studies have shown that some of the
microarray probes could be used to detect expression of lncRNAs
with probe re-annotation, although the lncRNAs were not detected
directly.

In this study, we obtained the expression profile of 16,659
PCGs and 864 lncRNAs from the expression profile data of mice
with CH, via probe re-annotation of Affymetrix Mouse Genome 430
2.0 Array (access number of the original profile data is GSE12337
[26]). We enriched significant subpathways by mapping all differen-
tially expressed PCGs into iSubpathwayMiner, which is an R pack-
age that was developed by our group to identify risk subpathways.
If PCGs were shared between two subpathways, we merged the
subpathways into an undirected network. Furthermore, we added
the lncRNAs that were co-expressed with differentially expressed
PCGs into the undirected network. Finally, we generated the Cardiac
Hypertrophy-associated lncRNAs-PCGs Network (CHLPN), in which
nodes represented PCGs and lncRNAs, and edges represented co-
expression of PCGs and lncRNAs or the original regulation relation-
ship in subpathways among diverse PCGs. Moreover, we mapped
the known myocardial disease PCGs to the CHLPN and performed
the random walking with restart (RWR) method to prioritize CH-
related lncRNAs through comparing their RWR score and signifi-
cance (Fig. 1). We found that seven lncRNAs (Kis2,

1700110K17Rik, Gm17501, E330017L17Rik, C630043F03Rik,
Gm9866 and Ube4bos1) with high scores and significant P values
formed a close module with their first neighbours in the CHLPN.
We then performed hierarchical clustering, gene ontology enrich-
ment analysis and pathway enrichment analysis of the genes in the
module. We also identified the competitive endogenous relation-
ships between lncRNAs and PCGs in the module. The seven
lncRNAs have a potential function related to CH through directly or
indirectly interacting with their co-expressed PCGs.

Materials and methods

Gene expression data

The expression data in this study were downloaded from Gene Expres-
sion Omnibus(GEO, https://www.ncbi.nlm.nih.gov/geo/) with accession

number GSE12337 [26], whose corresponding organism was the

mouse, with a total of 16 samples. From these samples, we used four

wild normal phenotype and four wild disease data. Wild-type mice were
sham-operated or subjected to TAC for 28 days, with their left ventricu-

lar gene expression profile detected.

Biological pathways data

Biological pathways were obtained from the KEGG PATHWAY database.
Three hundred and forty-three KEGG pathways were obtained, including

152 metabolic and 191 non-metabolic pathways. We used the R pack-

age SubpathwayMiner to reconstruct all pathways graphically [27]. This

type of reconstruction retained the raw information of the pathways,
particularly the structures, and provided detailed and reliable informa-

tion for analysing the CH topological properties underlying these biolog-

ical pathways.

Probe re-annotation

We downloaded PCG and lncRNA transcript sequences from Gencode
V19 [28] and corresponding probe sequences from Affymetrix. We

aligned the probe sequences to PCG and lncRNA transcript sequences

by sequence alignment tool BLASTn [25, 29]. We filtered the probes

according to the following rules: (1) keep the probes that exactly
matched with transcripts, including PCG and lncRNA transcripts; (2)

remove the probes kept in Step 1 that matched lncRNA and PCG tran-

scripts simultaneously; (3) remove the probes kept in Step 2 that

matched with multiple lncRNA or PCG transcripts; and (4) each lncRNA
or PCG kept in Step 3 can be perfectly matched with at least three

probes.

Identifying differentially expressed lncRNAs and
PCGs

We performed log2 transformation of the raw gene expression values.

We identified differentially expressed genes in two phenotypes using the
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SAM function from R package ‘siggenes’. We calculated the fold

changes and performed the SAM test for every lncRNA or PCG in two

phenotype samples. When fold change was >2 or P was <0.05, it was
considered statistically significant. The results from the two methods

were combined by a union set to generate differentially expressed

lncRNAs and PCGs.

CHLPN construction

In the first step, metabolic and non-metabolic pathways were divided
into a k-clique subpathway (k ≤ 4) by the software package

iSubpathwayMiner, which was developed by our research group. We

performed subpathway enrichment analysis (P < 0.01) for the differen-

tially expressed PCGs (DEGs) to identify the risk subpathways of CH. In
the second step, risk subpathways of CH were integrated into a com-

mon network based on shared PCG nodes between two subpathways to

obtain CHRN, in which nodes and edges were the same in the subpath-

ways. In the third step, the correlation of co-expression was calculated
between differentially expressed PCGs and lncRNAs using the Pearson

correlation coefficient (R > 0.8). In the fourth step, CHLPN was recon-

structed by adding the potential disease-related lncRNAs generated in

the third step into it, creating a new edge between the correlative
lncRNAs and PCGs.

Fig. 1 Schematic of the methods. We per-

formed subpathway enrichment for the

DEGs and merged the significant subpath-

ways into a network, added the candidate
DE lncRNAs that co-expressed with DEGs

into the above network and mapped the

disease protein-coding genes (PCGs)

(seed nodes) into the network. We per-
formed the random walking with restart

(RWR) method on this network. Finally,

we ranked the candidate lncRNAs accord-
ing to the steady probability of RWR.
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RWR to prioritize lncRNAs

Two hundred and sixty-three human PCGs associated with car-
diomegaly/myocardial disease/ventricular disease were obtained from

FULENGEN database (http://www.fulengen.com/product/search/disease/

). We converted human orthologous PCGs into mice using Ensembl Bio-

mart tools. They were mapped to CHLPN, as seed nodes for RWR to
prioritize lncRNAs related to CH.

A random walk in network is defined as an iterative walker’s transi-

tion from a certain node to a randomly selected neighbour that started

at a source node for given (e.g. ‘PCG A’ associated with disease). The
random walk that we applied had the capacity of restart with probability

r in every time step at node PCG A. The RWR was defined as:

ptþ1 ¼ ð1� rÞWpt þ rp0

where W represents the column-normalized adjacency matrix of the net-
work, pt is a vector with size equivalent to the number of nodes in the

network, and the i-th element holds the probability of being at node i at

time step t.
In our application, the initial probability vector p0 was constructed

such that 1 was assigned to the nodes representing known PCGs asso-

ciated with disease, and other nodes with 0. We believe that the role of

PCGs associated with disease is equivalent in the network. Vector p is
in the steady state at time step t, where t approaches infinity as a limit.

The iteration is finished when the change between pt and pt+1 falls

below 10�10.

A random walk algorithm was performed in CHLPN to prioritize
lncRNAs related to CH, and we performed statistical significance anal-

ysis for the score of every lncRNA. The statistical significance for

rejection of the null hypothesis was determined by comparing the

scores of lncRNAs in the network following n iterations of known
PCGs associated with CH shuffling. To maintain the network topologi-

cal properties, random sampling without replacement was performed

when doing the random disturbance, and the degree distribution
was guaranteed the same between the selection seed node and the

real. In iterations, the times that the score of every lncRNA was

higher than the real one was recorded as m. The P value for every

lncRNA was the ratio of m and n. In this study, n was set at 5000
times.

Prediction of lncRNAs and PCGs by targeting
miRNAs

Some studies have shown that some lncRNAs can act as miRNA
sponges, namely as ceRNA, and reduce miRNA degradation. Here,

we considered that one pair of lncRNA-PCG shared the common

miRNAs was regarded as the ceRNA regulation relation. Firstly,

lncRNA-miRNA interactions were predicted by the popular software:
miRanda (www.microrna.org). Briefly, 1915 mature murine miRNA

sequences were downloaded from mirBase (www.mirbase.org). The

binding sites between lncRNA and miRNA were predicted using an

empirical alignment score of 160 and minimum free energy of
�20 kcal/mol in miRanda. As for the interaction between PCGs and

miRNA, we have downloaded the interaction data between

miRNA and PCGs from StarBase 2.0 (starbase.sysu.edu.cn). Then, we
could calculate the lncRNA-PCG interactions based on the shared

miRNAs.

Results

Construction of CHLPN

After performing sequence alignment between Mouse 430 2.0 array
probe sequences from Affymetrix and PCG, lncRNA transcript
sequences from Gencode by Blastn tools, we reserved the probe set–
RNA pairs that satisfied the filtering rules. In total, 30,344 probeset–
RNA pairs were obtained for further research, of which, 29,288 probe
sets mapped to PCGs and 1056 mapped to lncRNAs. The PCGs and
lncRNAs were represented by Entrez ID.

The differentially expressed transcripts were identified by SAM
test. A total of 1226 PCGs and 170 lncRNAs were identified with
fold changes >2, and 988 PCGs and 77 lncRNAs were significantly
differentially expressed at P < 0.05. In total, 1751 differentially
expressed PCGs and 190 differentially expressed lncRNAs were
obtained by combining the differentially transcripts obtained from
two thresholds.

A total of 3029 subpathways from 343 KEGG pathways were
obtained (k = 4) by applying SubpathwayMiner, which is an R pack-
age developed by Li et al. Sixty-five risk subpathways were identified
as CH-related subpathways by subpathway enrichment analysis,
which we performed by entering all differentially expressed PCGs into
iSubpathwayMiner (P < 0.05) (Table S1). We merged all these risk
subpathways into a network, and in particular, 655 PCGs in 65 risk
subpathways were generated in the cardiac hypertrophy risk subpath-
way fusion network (CHRN) network, including 7883 edges.

Co-expression between differentially expressed PCGs and
lncRNAs was calculated by Pearson correlation coefficient. The Pear-
son correlation coefficient between one pair of differentially expressed
PCG and lncRNA was >0.8, which was considered as one co-
expressed pair. LncRNAs were added to CHRN based on co-expres-
sion. The CHLPN was generated, which included 655 PCG nodes, 173
lncRNA nodes and 9241 edges (Fig. 2A). A large component with 824
nodes showed that lncRNAs were closely connected with PCGs,
which indicated that lncRNAs and PCGs were intricately related. We
reconstructed the lncRNA-PCG network 1000 times by randomly
selecting 1751 PCGs and 190 lncRNAs as the differentially expressed
PCGs and lncRNAs. The average degree of lncRNA and PCG nodes in
the CHLPN was significantly higher than that in 1000 randomized net-
works (P = 0 and 0.026, respectively) (Fig. 2B and C), indicating that
the lncRNAs and PCGs were closely connected at the system level.
The degree distribution of all nodes followed the power law distribu-
tion approximately with a slope of �0.949 and R2 = 0.522 (Fig. 2D).
These results revealed that a small number of PCG nodes linked many
lncRNA nodes, and a small number of lncRNA nodes that linked many
PCG nodes in network act as hubs. In CHLPN, the maximum degree
node was Cyp2c44 (degree = 111), the cytochrome P family were
crucial members of the arachidonic acid metabolism pathway, and
the arachidonic acid metabolism pathway was highly related to the
development of CH. Tnnc1 was the second maximum degree node in
the CHLPN, which played a key role in cardiac energy supply as a
cytosolic Ca2+ sensor [30, 31].
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Fig. 2 CHLPN network. (A) CHLPN networks and key modules. The red, blue and green nodes represent lncRNAs, known disease genes (seed

nodes) and other protein-coding genes (PCGs), respectively. A lncRNA and PCG were connected by an edge if there was a co-expression relation-
ship between them. The pink circle represents seven risk lncRNAs that ranked in the top 20 by random walk real score and their connected 44 co-

expression PCG nodes, including nine known disease PCGs in CHLPN networks. Node size represented degrees of node (Table S4). (B) The blue

curve represents the average degree distribution of mRNAs of 1000 times random CHLPN networks; the true CHLPN network’s average degree of

mRNA was 26.14 (red arrow) and significantly higher than the 1000 times random cases (P = 0.026). (C) The blue curve represents the average
degree distribution of lncRNAs that gained from 1000 times random CHLPN networks, the true CHLPN network’s average degree of lncRNA was

7.85 (red arrow) and significantly higher than the 1000 times random cases (P = 0). (D) The true nodes degree distribution of CHLPN, the degree

distribution of all nodes followed the power law distribution approximately with a slope of �0.949 and R2 = 0.522.
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Identification of network key module associated
with CH

Two hundred and sixty-three known CH-related PCGs were
mapped to CHLPN, of which, 59 were found in the network
(Table S2, S3). RWR for CHLPN was performed by choosing
myocardium-associated PCGs as seed nodes. This initial score of
the seed nodes was set at 1, and we calculated the scores of all
lncRNA nodes. To establish whether the lncRNA scores were sig-
nificantly higher than the random case, we randomly chose 59 of
655 PCG nodes as the seed nodes and performed the RWR 5000
times. As a result, we identified 21 lncRNAs whose scores were
significantly higher than that of the random case (P < 0.05,
Table 1). All these lncRNAs were considered to be risk lncRNAs.
We showed that the real scores for risk lncRNAs from RWR were
higher than the scores for the non-risk lncRNAs
(P = 6.97 9 10�5, Wilcoxon rank-sum test). Among the 21

significant lncRNAs, seven risk lncRNAs were ranked in the top
20 true scores from RWR, namely Kis2, 1700110K17Rik,
Gm17501, E330017L17Rik, C630043F03Rik, Gm9866 and Ube4-
bos1. By mapping these seven lncRNAs into CHLPN, we found
that these lncRNAs and their first neighbours formed a close
module. Surprisingly, the module contained 44 PCGs and nine of
them were known CH-related PCGs (Fig. 2A). In addition, the aver-
age degree of the module was 39.49 and significantly higher than
the average degree of other nodes (21.19) (P = 3.60 9 10�10).
This indicated that the cross-talk between these seven lncRNAs
and their related PCGs might play a crucial role in the develop-
ment of CH.

For further research of the expression of lncRNAs and PCGs in
the module, we performed bidirectional hierarchical clustering. The
lncRNAs and PCGs in the module classified the samples into control
and disease, suggesting that these lncRNAs and their co-expressed
PCGs possessed potential for diagnosis and therapy of CH. We

Table 1 List of lncRNA scores significantly higher than random

Entrez ID Symbol Score rank P value Fold change (Log2)

73558 1700110K17Rik 1 8.00E-04 2.09

100216343 Gm17501 5 0.009 1.91

319894 E330017L17Rik 6 0.0108 �0.61

68285 C630043F03Rik 9 0.0376 1.35

636791 Gm9866 10 0.0232 2.45

751866 Kis2 15 0.0182 1.40

77822 Ube4bos1 19 0.0372 1.14

100504455 Gm15834 24 0.0406 1.47

319830 1500004A13Rik 28 0.0416 0.74

329387 C230014O12Rik 31 0.0102 �1.21

75814 4930467D21Rik 34 0.029 �1.02

78758 4921518K17Rik 38 0.009 1.13

100379612 Gm15886 47 0.02 1.24

100048019 Gm16958 54 0.005 �2.20

100503859 1110015O18Rik 55 0.005 �1.50

75060 4930506C21Rik 63 0.0342 1.43

320879 B230217O12Rik 64 0.0418 1.02

70966 4931415C17Rik 109 0.0436 �1.74

102636239 Gm27042 113 0.0152 1.15

69248 2610035F20Rik 132 0.0108 1.29

100503546 Gm15958 150 0.0204 �1.08
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divided the module into four submodules based on gene expression.
The genes in submodules 1 and 3 were up-regulated and those in
submodules 2 and 4 were down-regulated significantly in the disease
samples (Fig. 3A). Specifically, submodule 1 contained six lncRNAs
(C630043F03Rik, Kis2, 1700110K17Rik, Gm17501, Gm9866 and
Ube4bos1) and 26 PCGs, of which Tnf [32], Cyp2j13 [33], Tnnc1,
Actc1, Tpm1 [30, 31] and Myl2 were known CH-related PCGs that
were higher in the case than control samples with high correlation
coefficients (Fig. 3B). Submodule 2, 3 and 40 structures were loose,
but they also contained three known CH-related PCGs and an lncRNA,
which may have been due to the complex biological mechanism
involved in development of CH.

Pathways that regulated by lncRNAs in the key
module

The generation and development of diseases are related to changes in
biological pathways. The cross-talk between lncRNAs and PCGs could
participate in these changes; thus, it is crucial to understand the
mechanism of lncRNA in CH in the pathway dimension. We per-
formed pathway enrichment analysis for the PCGs in the module.
There were co-expression patterns among six lncRNAs
(1700110K17Rik, Gm17501, C630043F03Rik, Gm9866, Kis2 and
Ube4bos1) and PCGs Tnnc1, Tpm1 and Actc1. Tnnc1, as a cytosolic

Fig. 3 Cluster analyses of key modules associated with cardiac hypertrophy. (A) Unsupervised hierarchical clustering of key modules contained

lncRNAs and PCGs (rows), samples (columns) is performed, and a heat map was generated. On the right side, the red and orange represent

lncRNAs and known disease PCGs, respectively. Seven lncRNAs and 44 PCGs divided the heat map into four groups by hierarchical clustering (sub-

modules 1–4). (B) Interaction networks of submodule 1.
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Ca2+ sensor, weakens the inhibitory function of troponin I, causing its
release from actin by strengthening the interaction with troponin I
[30, 31]. Tnnc1 also regulates cardiac systolic or diastolic function by
troponin–tropomyosin complex formation with Tpml and Actcl, etc.,
and is an important part of the cardiac muscle contraction pathway
(Fig. 4A) and hypertrophic cardiomyopathy pathway (Fig. S1).

Cyp2u1, Cyp2j13, Pla2g4f, Pla2g2a, Pla2g2e and Cyp2c44 were
co-expressed with seven lncRNAs and significantly enriched in the
arachidonic acid metabolism pathway (P = 0.000251757) [34–36]
(Fig. 4B). Arachidonic acid was catalysed by Cyp2ul to 20-hydroxyei-
cosatetraenoic acid (20-HETE). There is evidence that 20-HETE has
an adverse effect on the heart and can cause CH [37]. We showed
that Cyp2u1 was up-regulated in CH (log2 fold change = 1.29). Phos-
phatidylcholine was catalysed via Pla2g2a to arachidonic acid and
formed 5, 6-, 8, 9-, 11, 12-, and 14, 15-epoxyeicosatrienoic acid,
which have a protective effect against CH. However, arachidonic acid

may be lowered as result of down-regulation of Pla2g2e (log2 fold
change = �1.74). It was reported that the occurrence of cardiovas-
cular disease is closely related to Pla2g2a [33, 38, 39].

ceRNA cross-talk in the key module

lncRNAs can regulate the expression of miRNAs as miRNA sponges,
further to regulate the expression of PCGs indirectly and exert func-
tions in the CH. That is to say, lncRNAs exert their function via regula-
tion of competing endogenous RNA (ceRNA). Thus, we used the
miRanda tools to predict the target miRNAs of the seven lncRNAs. As
a result, we found that the 508–530 nucleotide region of the 30 end of
lncRNA Ube4bos1 encompassed miR-328 binding sites (alignment
score = 162, free energy = �32.22 kcal/mol) (Fig. S2A). We also
found two other less-definitive binding sites, with alignment scores of

Fig. 4 The differentially expressed mRNAs

related to lncRNAs were enriched in the

pathways. (A) Cardiac muscle contraction

pathway, (B) arachidonic acid metabolism
pathway.

ª 2017 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

899

J. Cell. Mol. Med. Vol 22, No 2, 2018



Fig. 5 The function enrichment of the key module. Functionally grouped network with terms as nodes were linked based on their j score (≥0.4),
using Cytoscape plug-in ClueGO. (A) Functionally related groups were partially overlapped. The similar GO terms are labelled in the same colour.

The size of nodes represented term P value corrected with Bonferroni step down. (B) GO terms specific for seven lncRNAs and their co-expressed
44 protein-coding genes (PCGs). The bars represent the enrichment P value of terms (�log10). (C) Overview chart of functional groups including

specific terms for lncRNAs and their co-expressed 44 PCGs.
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156 and 150 and free energies of �27.51 and �19.13, respectively
(Fig. S2A). Li et al. [40] have found that miR-328 exerts a protective
effect against CH through directly reducing sarco/endoplasmic reticu-
lum Ca2+-ATPase SERCA2a expression to activate indirectly the cal-
cineurin/NFATc3 signalling pathway. In our gene expression profile,
expression of SERCA2a was up-regulated in CH samples that com-
pared with control samples (fold change = 1.2). Moreover, the Pear-
son correlation between SERCA2a and Ube4bos1 was 0.88, which
represented a high level of co-expression between them. There may be
a ceRNA between SERCA2a, Ube4bos1 and miR-328 that could provide
a novel therapeutic target of CH. In addition, results showed that the
522–543 sequence of Kis2 was the potential binding region of mmu-
miR-122-5p (alignment score = 164, free energy = �24.11 kcal/mol)
[41, 42] (Fig. S2B). We also found that mmu-miR-122-5p targeted Cac-
nb4 in the StarBase database obtained by high-throughput experi-
ments. The Pearson correlation coefficient between Kis2 and Cacnb4
was 0.87. This indicates that Kis2 and Cacnb4 had positive expression
patterns, suggesting that they play as important a role in regulating CH
as ceRNA. We ranked the average expression values of all the lncRNAs
and PCGs in CH samples. Kis2 ranked in the position of ~9000 and
Cacnb4 in ~13,000. The expression level of Kis2 was 2.2 times higher
than that of Cacnb4. It is reported that knockdown of p27 increases
Kis2 expression in murine lymphoma. Moreover, much evidence sug-
gests that p27 plays an important role in the genesis and development
of CH [28, 43–45]. To date, it has not been clarified whether Kis2 works
in synergy with p27 in CH.

Function enrichment of the key module

Our hypothesis was that, if the biological function of PCGs is
related to the development of CH, and their expression pattern has
a positive or negative relationship with lncRNAs, they may be regu-
lated by lncRNAs or may be the downstream or target PCGs of
lncRNAs. So, this class of lncRNAs is potentially associated with
the development of CH. Using plug-in ClueGO v2.1.5 in Cytosacpe
v3.2.0, 44 co-expressed PCGs of 7 lncRNAs were enriched for the
GO function term. This showed that 11 PCGs were enriched for the
GO terms of ‘cardiac muscle tissue morphogenesis’, ‘cardiac mus-
cle contraction’, ‘actin–myosin filament sliding’, ‘cardiac myofibril
assembly’, ‘striated muscle thin filament’, and ‘arachidonic acid
epoxygenase activity’, all of which were associated with occurrence
and development of CH (Fig. 5A). Figure 5B and C shows that the
seven lncRNAs and their neighbours in the module were signifi-
cantly enriched in five categories of GO terms: ‘cardiac muscle tis-
sue morphogenesis’, ‘monooxygenase activity’, ‘progesterone
metabolic process’, ‘positive regulation of reactive oxygen species’,
‘metabolic process’ and ‘phospholipase activity’, with enrichment
P < 0.01.

Discussion

PCGs and lncRNAs were obtained through probe re-annotation for the
expression profile of CH. We generated a bipartite lncRNAs–PCGs

CHLPN using co-expression analysis and subpathway mining.
Seven risk lncRNAs of CH were obtained using the RWR method
with known PCGs of cardiac disease acting as seed nodes and
formed a close module with their co-expressed PCGs. We per-
formed cluster, pathway and GO enrichment analysis to investigate
the cross-talk of the key module. We found that the module com-
posed of seven lncRNAs and their co-expressed PCGs played cru-
cial roles in the origin and development of CH. For example, via
hierarchical clustering, genes in the module divided the samples
into cases and controls, suggesting the important regulatory role of
the key module. Through pathway and GO enrichment analysis,
some interesting results were discovered. We used the miRanda
tools to predict the potential miRNA-binding site of lncRNAs. We
calculated that lncRNA Ube4bos1 has three binding sites for miR-
328, and others have found that overexpression of miR-328 leads
to severe CH [40]. MiRanda tools have also predicted that there
may be a relationship of ceRNA between Kis2 and Cacnb4 [28, 43–
45] via mmu-miR-122-5p, suggesting that Kis2 indirectly regulates
the expression of Cacnb4 by mmu-miR-122-5p and influences the
development of CH. We found that expression level of Kis2 was
higher than the expression levels of the PCGs that it potentially reg-
ulated. Whether lncRNAs function as sponges when their expres-
sion level is higher than that of the PCGs that they regulate is one
direction of our future research.

Our study had some limitations. There were insufficient data to
form an expression profile of CH at present. The co-expression
between false positive and false negative may appear because
there were insufficient samples, which affected evaluating co-
expression of PCGs and lncRNAs. CH-related 30 microarray data
often focus on testing PCG expression, so fewer lncRNAs were
found through probe re-annotation by microarray analysis. If
probe re-annotation was used in exon microarray analysis, more
lncRNAs may be obtained. However, we still found seven lncRNAs
and their co-expressed PCGs, which comprised a close module
that might play important modulatory roles in the occurrence
and development of CH and offer a new target for diagnosis and
treatment.

With the rapid growth of microarray data, we believe that our
method could have potential application in CH. In addition, our future
research will aim to verify the potential lncRNAs that might play
important roles in CH.
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