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Abstract

Background: Clinicians are sometimes advised to make decisions using thresholds in measured variables, derived from
prognostic studies.

Objectives: We studied why there are conflicting apparently-optimal prognostic thresholds, for example in exercise peak
oxygen uptake (pVO2), ejection fraction (EF), and Brain Natriuretic Peptide (BNP) in heart failure (HF).

Data Sources and Eligibility Criteria: Studies testing pVO2, EF or BNP prognostic thresholds in heart failure, published
between 1990 and 2010, listed on Pubmed.

Methods: First, we examined studies testing pVO2, EF or BNP prognostic thresholds. Second, we created repeated
simulations of 1500 patients to identify whether an apparently-optimal prognostic threshold indicates step change in risk.

Results: 33 studies (8946 patients) tested a pVO2 threshold. 18 found it prognostically significant: the actual reported
threshold ranged widely (10–18 ml/kg/min) but was overwhelmingly controlled by the individual study population’s mean
pVO2 (r = 0.86, p,0.00001). In contrast, the 15 negative publications were testing thresholds 199% further from their means
(p = 0.0001). Likewise, of 35 EF studies (10220 patients), the thresholds in the 22 positive reports were strongly determined
by study means (r = 0.90, p,0.0001). Similarly, in the 19 positives of 20 BNP studies (9725 patients): r = 0.86 (p,
0.0001). Second, survival simulations always discovered a ‘‘most significant’’ threshold, even when there was definitely no
step change in mortality. With linear increase in risk, the apparently-optimal threshold was always near the sample mean
(r = 0.99, p,0.001).

Limitations: This study cannot report the best threshold for any of these variables; instead it explains how common clinical
research procedures routinely produce false thresholds.

Key Findings: First, shifting (and/or disappearance) of an apparently-optimal prognostic threshold is strongly determined
by studies’ average pVO2, EF or BNP. Second, apparently-optimal thresholds always appear, even with no step in prognosis.

Conclusions: Emphatic therapeutic guidance based on thresholds from observational studies may be ill-founded. We
should not assume that optimal thresholds, or any thresholds, exist.
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Introduction

Although most clinicians are aware that the majority of

biological variables with diagnostic and prognostic value act

continuously within populations, they are encouraged to accept

recommendations for decision strategies that specify a threshold of

a measured continuous variable. Such thresholds often arise from

cohort studies that dichotomise patients into subgroups with

significantly different prognoses.

Peak oxygen consumption (peak VO2) is the most widely

accepted quantitative prognostic marker in heart failure following

the seminal work of Mancini et al. [1] who reported that cardiac

transplantation could be deferred in heart failure patients with a

peak VO2 of greater than 14 ml/kg/min. Current eligibility for

cardiac transplantation, more than twenty years on, still hinges on

whether the peak VO2 is less than a threshold of 14 ml/kg/min

[2] or 12 ml/kg/min in those patients taking beta-blockers [3].

The presence of two conflicting diagnostic thresholds illustrates

that studies [4–7] and international guidelines [8–10] have since

assessed a variety of alternative, competing, ‘‘optimal’’ thresholds

for peak VO2 with conflicting results. Some recent studies even

question the prognostic effectiveness of peak VO2 [11–13], having

tested a threshold and failing to find it statistically significant.

The same is true for many other variables used in daily practice.

Two examples from imaging and biochemistry, of variables

obviously continuous in nature but often dichotomized, are left

ventricular ejection fraction (EF)[14–16] and Brain Natriuretic

Peptide (BNP)[17–20]. Each has a range of competing reportedly

‘‘optimal’’ prognostic thresholds.

There are two alternative explanations for these discrepancies.

One widely-accepted explanation is that there is a true universal

threshold in each variable beyond which prognosis is poor, but

modern therapy such as beta-blockade is affecting prognosis so

powerfully that the prognostic thresholds have changed [10,21].

An alternative explanation is that we have misunderstood what

a statistically significant difference in prognosis between subgroups

tells us. In this explanation, if (for example) a tested peak VO2

threshold is far from the middle of a particular cohort,

dichotomisation will yield groups of markedly unequal sizes,

which would reduce the statistical power to detect a mortality

difference between the groups. In contrast, testing a peak VO2

threshold nearer the middle, with more equal group sizes, may

yield a statistically significant result. If this second explanation is

the true one, then variation in the mean value of peak VO2

between studies could be enough to make their apparently optimal

prognostic thresholds differ.

In this article we comprehensively explore the cause of the

discrepancy between studies in their selected optimum prognostic

cut point, first by examining published data and separately by

performing numerical simulations in which we could know the

underlying shape of the relationship between risk factor and risk.

Methods

Part 1: Examination of Published Studies
We performed a PubMed literature search (http://www.ncbi.

nlm.nih.gov/PubMed) for the three variables of interest (peak VO2,

LVEF and BNP), in the setting of heart failure, in the period 1990 to

2010. We used as keywords (limit of research: human, all adults 19+
years) ‘‘oxygen consumption, heart failure, mortality’’, which

extracted 287 articles, ‘‘ejection fraction, heart failure, mortality’’,

which extracted 2296 articles, and ‘‘BNP, heart failure, mortality’’,

which extracted 346 articles. Three authors read the full articles to

extract the data of interest (as shown in Table 1). Reference lists of

these articles were also searched for additional articles.

Selection criteria
We included all studies on prognostic markers (peak VO2,

LVEF or BNP) in heart failure that met the following criteria:

– quoted a mean or median value for the study population

– reported statistical significance of a single threshold

Clinical trials, which might have a confounding effect of

allocation to study arms, were excluded, unless they reported

results for a control arm independently. We included studies

regardless of whether the prognostic threshold was found to be

statistically significant or non-significant.

Part 2: Evaluation in a population known to have no step
in risk

We determined, using survival data of a simulated population

with a gradual spectrum of a notional continuous risk factor, and

definitely no step change in prognosis, whether an ‘‘optimal

threshold’’ for the risk factor would appear to arise when the data

were analysed by the techniques typically used in prognostic

studies and at what value such thresholds appeared.

In the case of peak VO2, mortality rises progressively across a

wide range, for example giving 2-year mortality of 3%, 7%, 10%,

13%, and 18% in subpopulations with mean peak VO2 of 17, 15,

13, 11, 9 ml/kg/min, respectively [22]. For this reason we started

simulating a condition in which the relationship between the risk

factor and mortality was linear. We subsequently studied non-

linear relationships (see below). We deliberately designed the

simulation to be applicable to any clinical risk factor.

To do this, we created a simulation of 1500 patients, with a

spectrum of a notional risk factor from 0.01 to 15.00, which is

linearly related to a patient annual mortality of 0.01–15% (no

sharp step in mortality – only a smooth gradation). We simulated

using Microsoft Excel survival over 10 years, yielding an ending

survival status (alive/dead) and duration for each subject, as

required for survival analysis. For example for the 314th patient,

whose annual mortality was 3.14%, the survival state was

initialized as ‘‘alive’’ and then on 10 occasions (one for each

simulated year) he was subjected to 3.14% probability of dying. If

the simulated states changed to ‘‘dead’’ in this way, year of death

was noted. If he survived all 10 years, the outcome was deemed

censored, i.e. ‘‘alive’’ at 10 years.

Identifying optimal prognostic threshold by Kaplan-

Meier analysis. We then used Kaplan-Meier analysis to

examine the prognostic power of a range of potential threshold

values of the risk factor in Statview 5.0 (SAS Institute Inc., Cary,

NC). In Figure 1 we show how this was done with three example

Kaplan-Meier curves. One threshold is low (2.5), the second is at

the median of the group (7.5), and the third is high (12.5).

Although only 3 thresholds are shown for illustrative purposes in

Figure 1, a wide range of cut-offs were actually tested. In the lower

panels, the results of this full range of tested thresholds are shown.

The threshold that gave the highest chi-squared value (equivalent

to the smallest p value) was taken as the ‘‘optimal’’ threshold.

Examining populations of different average risk. To test

whether the optimal threshold identified by the procedure

described above is a true phenomenon or simply an artefact that

tracks the middle of the patients that are studied, we took a series

of overlapping 500-patient sub-populations from different parts of

the full 1500-patient spectrum and re-ran the analysis within each
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of these subsets. This mirrors clinical studies examining patient

groups with different severities of the disease.

The first such subset covered the lowest risk part of the

population spectrum, with the risk factor varying from 0 to 5 and

annual mortality accordingly varying from 0 to 5%. The next

subset had risk factor 2.5 to 7.5 (annual mortality 2.5 to 7.5%), and

so on, until the risk range 10 to 15 (annual mortality 10 to 15%).

For each of these subsets, we identified the optimum prognostic

threshold of the risk factor by the methods described above.

Identifying optimal prognostic threshold by ROC

analysis. Separately from the Kaplan-Meier method for

identification of the optimal prognostic threshold, we also used

ROC analysis to identify the optimal prognostic threshold. We

Table 1. The 33 studies reporting a positive (white) or negative (grey) statistical significance of a prognostic threshold of peak VO2.

Author
Publication
Year

Number of
patients

Age
(years)

Males
(%) EF (%)

Primary
outcome

Max
duration of
follow-up
(months)

Number
of events

Mean±SD
peak VO2
(ml/kg/min)

Tested
threshold
(ml/kg/min)

Tested
threshold
prognostically
significant?

Szlachcic 1985 27 56616 100 22616 overall mortality 24 14 11,561,4 10 yes

Cohn* 1986 273 53613 100 Nr overall mortalty 60 nr 156nr 14,5 yes

Likoff 1987 201 62610 75 20610 overall mortality 28 85 13,064,0 13 yes

Mancini 1991 116 50611 84 1967 overall mortality 25 25 14,765,3 14 yes

Parameshwar 1992 127 5569 89 22612 overall mortality+
urgent transplant

42 41 15,365,3 14 yes

Van den
Broek

1992 94 57611 83 2269 overall mortality 36 21 17,065,0 16 yes

Saxon 1993 528 50612 80 2067 cardiac mortality+
urgent transplant

12 129 12,064,0 11 yes

Di Salvo 1995 67 51610 79 2267 cardiac mortality nr 32 11,864,2 14 no

Chomsky 1996 185 51611 78 2267 cardiac mortality 100 35 12,963,0 10 yes

Cohen-Solal 1997 178 52611 90 25611 overall mortality+
urgent transplant

24 38 17,665,6 17 yes

Robbins 1999 470 52611 71 2168 cardiac mortality 60 26 18,066,0 14 no

Metra 1999 219 55610 93 2267 cardiac mortality+
urgent transplant

40 29 14,264,4 14 yes

Isnard 2000 264 51612 81 27610 overall mortality+
urgent transplant

82 83 17,166,8 14 no

Osman 2000 225 54612 80 23613 overall mortality 40 29 16,065,9 14 yes

Davies 2000 50 7665 70 33614 overall mortality 60 26 15,264,5 14,7 yes

Clark 2000 60 59612 nr 30615 overall mortality 100 20 19,967,7 17,5 yes

Williams 2001 219 56613 76 Nr overall mortality 63 27 23,169,2 14 no

Ponikowski 2001 80 5869 76 24612 overall mortality 36 37 18,366,7 14 no

Hansen 2001 311 54610 84 22610 cardiac mortality 38 65 14,765,5 14 yes

Mejhert 2002 67 7466 66 36611 overall mortality 60 14 11,763,7 14 no

Gitt 2002 223 63611 86 2968 cardiac mortality 24 46 15,865,3 14 yes

Rostagno 2003 214 64610 55 41614 overall mortality 70 66 18,764,1 14 no

Schalcher 2003 146 52610 87 27613 overall mortality+
urgent transplant

61 41 18,465,4 14 no

O’ Neill* 2005 1196 54611 75 1967 overall mortality 72 nr 16,665,1 14 yes

Bard 2006 355 51610 72 2268 overall mortality+
urgent transplant

46 145 17,365,0 14 no

Nanas 2006 98 51612 89 31613 cardiac mortality 30 27 19,165,9 15 no

Guazzi 2007 288 55613 67 33613 cardiac mortality 33 62 15,565,0 14,1 no

Guazzi 2007 156 6169,4 80 35610 cardiac mortality 42 34 16,864,5 14,4 no

Rossi 2007 273 6269 87 3368 cardiac mortality 75 40 16,664,5 16 yes

Arena 2008 353 59614 72 2869 cardiac mortality+
urgent transplant

48 104 14,565,6 14 no

Kazuhiro 2009 148 63612 100 35611 cardiac mortality 67 13 18,263,7 14 no

Arena 2010 520 58612 77 35614 cardiac mortality 48 79 16,666,2 14 no

Sachdeva 2010 1215 53613 75 2367 overall mortality 24 234 13,162,0 14 yes

EF = left ventricular ejection fraction; nr = not reported.
doi:10.1371/journal.pone.0081699.t001
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repeated the comparison in each subpopulation with the various

subranges of mortality risk as shown above.

Identifying optimal prognostic threshold in populations

with a non-linear relationship between the variable tested

and mortality. In order to extend the applicability of our

simulation findings to other risk factors which might not have a

simple linear relationship between their value and their associated

mortality risk, we repeated the simulation of 1500 notional

patients to study different shapes of relationship. We studied a

wide range of possible shapes of relationship between risk factor

and mortality, including:

N A step (on a background of a linear slope)

N A large step (on a background of a linear slope)

N A step between two plateaus at different levels

N A linear slope segment and then a plateau

N A linear slope segment between two plateaus at different levels

N A plateau segment between two linear slope segments

N A continuously curved relationship (for example, exponential

or sigmoidal)

For each possible shape of relationship we ran ten simulations

and observed the distribution of apparently-optimal prognostic

thresholds in relation to the shape of the relationship between risk

factor and mortality.

Statistical Analysis
Statistical analysis was performed using Statview 5.0 (SAS

Institute Inc., Cary, NC). Values are presented as mean6standard

deviation (SD) for normally distributed continuous data, as median

and interquartile range (IQR) for non-normally distributed

continuous data and as percentages for categorical data. p,0.05

was considered statistically significant.

The differences between two groups were evaluated using the

Mann-Whitney test and the uncorrected Chi2 test, with the highest

Chi2 being taken as the most statistically significant. Spearman’s

rank correlation coefficient was used to express the relationship

between the apparently-optimal threshold in a group, and the

average level of risk factor in that group.

Survival analysis was by the Kaplan-Meier method with the log-

rank test.

Apparently-optimal prognostic thresholds were also identified

by testing a range of possible thresholds, forming in effect a

Receiver-Operating Characteristic (ROC) curve, and then defin-

ing as apparently-optimal the threshold that maximised the sum of

sensitivity and specificity. To simplify the analysis and minimize

problematic right censoring, we designed our simulation to only

censor at the end of follow-up.

Results

Peak VO2 thresholds in published data
Of the 287 studies identified, 113 were excluded because they

either had zero or numerous thresholds, 20 because they did not

Figure 1. Simulated population characterized by gradually increasing risk and effectiveness of a series of potential prognostic
thresholds by Kaplan-Meier and log-rank analysis. In 1500 notional patients, with a wide spread of annual mortality (evenly distributed from
0.01 to 15.00%), we run survival simulation and use Kaplan-Meier and log-rank analysis to examine the prognostic power of many potential threshold
values of the risk factor. For three examples amongst the many thresholds tested, the upper panels show the resulting Kaplan-Meier curves. In the
lower panels, the results of the full range of tested thresholds are shown. The threshold that gave the highest chi-squared value (equivalent to the
smallest p value) was taken as the ‘‘optimal’’ threshold.
doi:10.1371/journal.pone.0081699.g001
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report average peak VO2, 29 because they did not report survival,

33 because the setting was not heart failure, and 59 because they

were clinical trials with no separate report within the control arm.

Therefore 33 studies (8946 patients, Table 1, left hand plot)

matched the selection criteria and underwent analysis. Of these,

18 found the threshold in peak VO2 [4–7,23–35] to be

prognostically significant, while 15 found it was not [11–13,36–

47] (Table 1).

Examining the published studies in cohorts of 5 years from the

first published study in 1988, the proportion of studies reporting a

statistically significant prognostic threshold for peak VO2 has

declined from 100% (1986–1990) to 22% (2006–10, p = 0.03 for

trend, Table 2).

The thresholds chosen for testing varied widely from 10 to

18 ml/kg/min. Studies testing thresholds in the range 13–14.9

and 15–16.9 ml/kg/min were less likely to report positive results

(Table 2), and, in particular, studies testing a threshold of 14 ml/

kg/min were the least likely to be prognostically significant when

compared to all the other possible thresholds (44% versus 92%,

p = 0.01).

Predictors of the peak VO2 threshold reported by

published studies. The variation in optimal peak VO2

threshold in the positive studies was almost completely predictable

from the individual studies’ mean VO2 values (r = 0.86, p,

0.00001, Figure 2, panel a). There was also a correlation of the

threshold with left ventricular ejection fraction (r = 0.60, p = 0.011)

and the individual study’s mean ejection fraction.

The threshold did not correlate with year of study (r = 0.30,

p = 0.23), number of subjects (r = 20.17, p = 0.49), or mean age

(r = 0.30, p = 0.23).

Why some studies appeared to not confirm a statistically

significant prognostic threshold in peak VO2. In 15 studies,

the peak VO2 threshold was found not to be prognostic: Table 3

shows the characteristics of the ‘‘positive’’ versus ‘‘negative’’

studies. The most obvious contender was study size, since larger

studies (in the sense of more subjects enrolled, or more subjects

with events) would have greater power to detect a threshold.

However neither number of subjects, nor number of events, nor

any of the main features of the studies or their populations was

significantly different between groups.

Apart from a relatively small difference in ejection fraction (still

in the range of severe systolic dysfunction), only one feature

differed. The positive studies were all testing thresholds near the

individual study means, whereas the negative studies were testing

thresholds that were 3 times as far away from the individual study

means: absolute difference between VO2 threshold tested and

mean VO2 for the study was 1.260.9 ml/kg/min for the positive

studies and 3.562.0 ml/kg/min for the negative studies,

p = 0.0001.

Overall, only five studies also analyzed peak VO2 as a

continuous variable, four positive studies [24,25,27,30] and one

negative study [37]. The negative study [37], was only negative

when peak VO2 was dichotomized; it confirmed a significant

relationship with outcome when peak VO2 was analysed as a

continuous variable.

Published thresholds in ejection fraction
Of the 35 studies (out of 2296 studies) matching the inclusion

criteria for EF (10220 patients), 22 found the threshold in EF to be

prognostically significant [15,16,48–67], while 13 found it was not

(Table 4) [14,68–79].

In the 22 studies where EF was found to be prognostically

significant, the threshold varied widely from 20 to 49%, but was

strongly associated with study sample means (r = 0.90, p,0.0001,

Figure 2, panel b). In contrast, in the 13 studies where EF was

found to be not prognostically significant, the tested threshold was

relatively far (124% further than positive studies) from the

individual study means: absolute difference between EF threshold

tested and mean EF for the positive study averaged 2.562.3% for

the positive studies and 5.866.5% for the negative studies, p,

0.05). Examining the published studies in cohorts of 5 years from

the first published study in 1992, again a progressive decline was

observed in the percentage of studies reporting a threshold which

was prognostically significant, from 100% (1991–1995) to 45%

(2006–2010).

Published thresholds in Brain Natriuretic Peptide
Of 20 studies (out of 346 studies) matching the inclusion criteria

for BNP (9725 patients), 19 studies found the threshold in BNP to

be prognostically significant [17,20,80–95], and one study found it

Table 2. Apparent loss of prognostic power of Peak VO2 threshold over time and likelihood of different prognostic thresholds
giving positive results.

Number of studies testing a peak VO2 threshold
and finding it to be prognostically significant

Number of studies testing a peak VO2 threshold
and finding it to be not prognostically significant

Publication year

1986–1990 3 (100%) 0 (0%)

1991–1995 4 (80%) 1 (20%)

1996–2000 6 (75%) 2 (25%)

2001–2005 3 (38) 5 (62%)

2006–2010 2 (22%) 7 (78%)

Threshold tested (ml/kg/min)

9–10.9 2 (100%) 0 (0%)

11–12.9 1 (100%) 0 (0%)

13–14.9 11 (44%) 14 (56%)

15–16.9 2 (66%) 1 (34%)

17–18.9 2 (100%) 0 (0%)

doi:10.1371/journal.pone.0081699.t002
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was not (Table 5) [96]. In the positive studies, the threshold widely

varied from 132 to 800 ng/L, but was again strongly determined

by the study median (r = 0.86, p,0.0001, Figure 2, panel c).

Survival simulation study
Thresholds from Kaplan Meyer analysis. In these simu-

lations, even with a purely smooth gradation of risk and definitely

no step change, each 1500-patient population yielded its own

apparent ‘‘optimal’’ prognostic threshold (Figure 3, Figure 4 panel

a and Figure 5).

This apparent optimal threshold was always close to the mean

of the population being studied, because in general thresholds

tested far from the mean consistently had lower prognostic power.

As we moved across the spectrum of risk examining different sub-

populations of 500 patients with different average risks, drawn

from the main population, we observed an almost exactly

corresponding change in the optimal threshold as calculated by

the Kaplan-Meier method (Figure 5). This was true for each sub-

population tested (with samples characterized by an annual

mortality of 0–5%, 2.5–7.5%, 5–10%, 7.5–12.5, 10–15%,

Figure 5). We observed a strong correlation between the optimal

threshold within a population and the mean risk factor within that

sub-population (r = 0.99, p,0.001 Figure 3).

Thresholds from ROC analysis. The ROC analysis, like

the Kaplan-Meier analysis, also found an apparently optimal

prognostic threshold in each simulated population even though

they definitely had only smoothly-varying risk. Again, this

apparently-optimal threshold in the risk factor was found to shift

to match the average risk factor level in the patient subset (r = 0.99,

p,0.001, Figure 3, Figure 5).

Identifying optimal prognostic threshold in populations

with a non linear relationship between the variable tested

and mortality. When we employed a nonlinear relationship

between risk factor and mortality, some subtleties emerged. If the

risk factor was linearly predictive of mortality, then the apparent

optimal prognostic threshold was found to be simply approxi-

mately the middle of the population (Figure 4, panel a). If there

was a step increase in mortality on a background of an

approximately linear gradation, the step was reliably identified

as long as it was distinctly larger than the gradation (Figure 4,

panels b and c). If the risk factor was simply a step relation with

mortality, with no gradation above or below that step, then that

step was found, even if small (Figure 4, panel d).

If there was a slope of risk and a plateau (as is likely with some

real-life risk factors such as peak VO2, EF and BNP) the location of

the apparently optimal threshold was more complex. In situations

where most of the patients were on the plateau, then the optimal

threshold lay at the junction between plateau and gradient. If, on

the other hand, most of the patients were on the gradient, then the

apparent optimal threshold lay about half-way along the gradient

(Figure 4, panels e, f, g and h). These latter two observations were

true regardless of whether it is a rising or falling gradient.

If the risk shape was, instead, a slope between two plateaus, the

middle of the slope was the most favoured location for the

Figure 2. Relationships between the threshold tested and the
individual studies’ mean: examples from peak VO2 (panel a),
LVEF (panel b) and BNP (panel c). In the studies testing a threshold
and finding it to be significant (open circles), the threshold reported
may be either slightly higher than the mean of the study or slightly
lower, but in all cases it is not far from the mean; in contrast it is often
far from the mean in the studies testing a threshold and finding it to be
non significant (black dots). Dotted lines in each panel represent the
line of equivalence.
doi:10.1371/journal.pone.0081699.g002
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apparently optimal threshold (Figure 4, panels i). If there was a

plateau between two slopes, the optimal threshold tended to be

near the end of (either) one of the slopes, where it meets the

plateau (Figure 4, panel j). If there was a smooth curve of mortality

(regardless of whether convex or concave) the apparent optimal

threshold lay near the middle, but a little displaced toward the

steeper side of the curve (Figure 4, panels k and l).

Discussion

In this study we have identified using the most commonly used

prognostic measurements in heart failure, namely peak VO2, EF

and BNP, that commonly-used methods of defining an apparently

‘‘optimal’’ prognostic threshold can be simply a manifestation of

the middle of the risk factor spectrum of the individual population

studied, and should never be taken to signify any meaningful step

change in prognosis. Even in an artificial population known to

consist of a completely smooth gradation of risk, such methods

give an apparent prognostic threshold but its location reflects little

more than the population average.

Does the finding of a clear optimal threshold with
Kaplan-Meier analysis mean that there is really a step
change in prognosis?

We deliberately simulated notional populations without step

increase in risk but rather gradually increasing risk, and examined

the effectiveness of a series of potential prognostic thresholds. The

most significant difference between the Kaplan-Meier curves was

found when the threshold was near the mean population risk. As

the tested threshold was moved progressively further from the

middle of the population in either direction, the Kaplan-Meier

curves became less statistically significantly separated, so that

dichotomising near the extremes of low or high values of risk cause

the curves to be not statistically significantly different from each

other.

The commonly-used methods produce an apparently-optimal

prognostic dichotomy point effortlessly, but there is no real clinical

phenomenon occurring at that point. Maximally-significant

separation of the Kaplan-Meier curves need not represent a

biological step change: it could easily be merely identifying the

middle of that risk factor in that individual study, in a manner that

is opaque, expensive and roundabout.

Does ROC analysis resolve the pitfalls of the Kaplan-Meier
approach to finding a biological threshold?

ROC analysis has a reputation for making statistical analysis of

diagnostic value more comprehensive. It has been used in some

studies to identify an optimal threshold of peak VO2 [97–99].

However, our simulated populations show that ROC analysis is

as susceptible as the Kaplan-Meier method, i.e. it tends to find the

optimal threshold to be the middle of the population.

Neither Kaplan-Meier nor ROC methods can be relied upon to

be illuminating a true biological threshold in prognosis. Each is

heavily biased towards reporting the centre of the risk spectrum of

that study. Indeed, the search for such dichotomies has been

demonstrated to be a seriously underpowered way to look for

prognostic relationships [100].

Lessons learnt from peak VO2, EF, and BNP studies
Paradoxically, while early studies were unanimous in confirm-

ing particular threshold values of peak VO2 to be prognostically

important in heart failure [4–6,23–25], more recent studies

seemed to cast doubt on this, with only a quarter of studies

between 2003–2010 confirming statistically significant prognostic

cut-off values. Further, the widely recommended threshold of

14 ml/kg/min [8–10] was found to be the least likely be

statistically significant.

The explanation for this appears to be that the significant, and

in general older, studies tested several values and picked the most

significant (or deliberately used the middle of their population),

benefitting from the flexibility to choose their own threshold, close

to their mean peak VO2. The studies that found no prognostic

relationship, which tended to be more recent, chose to test the

clinically established threshold of 14 ml/kg/min as their cut-off

value, which happened to be relatively far away from their own

population mean.

A similar pattern was seen with EF. The community is aware

that for EF there is no special universal prognostic threshold and

even clinical guidelines [101] recognise that a sharp change in

prognosis at a threshold is unlikely.

BNP is a more recent entrant. 95% of studies found BNP to be

prognostic, which may be a sign of its strong prognostic value, or

the relative ease of conducting large studies, or the lack of a rigid

predetermined threshold to test against. Even up to 2005,

guidelines resisted the temptation to specify a prognostic threshold

for BNP [102], and by 2008 when pressure for a diagnostic

threshold became irresistible, this was kept 300% wide (100–

Table 3. Comparison of the main features of studies testing a threshold and finding it to be significant or non significant.

Studies testing a peak VO2 threshold and
finding it to be prognostically significant

Studies testing a peak VO2 threshold and
finding it to be not prognostically significant

Sample size (n) 210 (11–282) 214 (98–353)

Mean age (years) 5666 5768

Males (%) 83 77

Left ventricular ejection fraction (%) 23.964.6 29.866.3*

Number of events observed (n) 37 (25–60) 37 (27–79)

Follow-up duration (months) 39 (24–63) 54 (40–64)

Endpoint: cardiac versus all-cause mortality (n) 6/12 8/7

Absolute difference between mean peak VO2 1.260.8 3.562.4**

and threshold tested (ml/kg/min)

*p,0.01 **p,0.0001 versus studies testing a peak VO2 threshold and finding it to be prognostically significant.
doi:10.1371/journal.pone.0081699.t003
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Table 4. The 35 studies reporting a positive (white) or negative (grey) statistical significance of a prognostic threshold of ejection
fraction.

Author
Publication
Year

Number of
patients

Age
(years)

Males
(%)

Primary
outcome

Max
duration of
follow-up
(months)

Number
of events

Mean±SD
EF (%)

Tested
threshold
(%)

Tested
threshold
prognostically
significant?

Itoh 1992 298 63611 57 overall mortality 40 167 356nr 40 yes

Mehta 1992 112 6668 74 cardiac mortality 78 31 336nr 30 yes

Rihal 1994 102 61614 63 overall mortality 36 35 2368 25 yes

Omland 1995 145 61610 80 overall mortality 44 36 51610 49,1 yes

Andreas 1996 36 54612 90 overall mortality 53 16 2068 20 yes

Giannuzzi 1996 508 5969 88 overall mortality+
hospitalization

58 148 2665 25 yes

Szabo 1997 159 616nr 85 overall mortality 69 30 26.669 27 yes

Anker 1997 171 60611 90 overall mortality 18 49 30615 25 yes

Wijbenga 1998 64 59610 86 overall mortality+
transplantation

30 64 3168 30 yes

Niebauer 1999 99 5862 90 overall mortality 36 73 13,36nr 10 no

Metra 1999 219 55610 93 overall mortality+urgent
transplantation

144 38 2267 20 yes

Isnard 2000 264 51612 80 cardiac mortality+urgent
transplantation

206 83 27610 27 yes

Ghio 2000 140 52611 75 cardiac mortality+urgent
transplantation

38 52 2262 20 yes

McDonagh 2001 1640 50,46nr 48 overall mortality 48 80 476nr 40 no

Neglia 2002 64 52612 87 cardiac mortality 82 24 34610 35 no

Corrà 2002 600 5867 88 cardiac mortality+urgent
transplantation

102 87 2664 25 yes

Szachniewicz 2003 176 636nr 86 overall mortality 18 32 426nr 35 yes

Gardner 2003 142 50610 82 cardiac mortality+urgent
transplantation

55 24 14.967 13 no

Martinez-
Selles

2003 1065 756nr 49 overall mortality 51 507 3567 30 no

Shiba 2004 684 67613 66 overall mortality 33 175 49615 25 no

Guazzi 2005 128 6069 79 cardiac mortality 51 24 34610 35 yes

Kistorp 2005 195 696nr 71 overall mortality 30 46 3068 25 yes

Junger 2005 209 54610 86 overall mortality 35 45 22610 20 yes

Peterson 2005 61 53611 86 overall mortality+urgent
transplantation

139 32 2669 27 no

Bloomfield 2006 549 56610 71 cardiac mortality 24 51 2566 31 no

Rossi 2007 273 626nr 87 overall mortality 45 44 3163 30 yes

Arslan 2007 43 62610 86 overall mortality 24 16 3566 30 yes

Guazzi 2007 288 55613 62 overall mortality 33 62 33613 28 yes

vonHaeling 2007 525 61612 94 overall mortality 28 171 2864 20 yes

Nishio 2007 145 6761.8 70 cardiac mortality+
hospitalization

33 28 316nr 30 no

Dini 2007 356 7066 22 cardiac death 34 54 3163 25 no

Whalley 2008 228 7063 66 cardiac mortality+
hospitalization

18 26 57612 45 no

Dini 2008 142 71611 78 overall mortality 50 85 2867 25 no

Parissis 2009 300 65611 83 cardiac mortality+
hospitalization

12 92 2864 25 no

Smilde 2009 90 6068 85 overall mortality 156 47 2969 30 yes

EF = left ventricular ejection fraction; nr = not reported.
doi:10.1371/journal.pone.0081699.t004
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400 pg/ml), perhaps subtly telegraphing the undesirability of a

threshold out of context of clinical background information and

individual risk-benefit evaluation [103].

Selecting ‘‘optimal’’ cut points without a strong reason to

suspect a true biologic threshold is unwise [104–106]. It may

better to assume a smooth graded relationship of a continuous

variable with outcome. Moreover, excessive reverence for a

statistically optimal single cut point and cementing of it in clinical

guidelines, may impair that variable’s prognostic power when

compared with other variables proposed later. Taken to its

extreme, setting cut points that are effectively the middle of the

first positive study can lead to artificial discovery of new prognostic

markers statistically independent of the old (because the old are

handicapped).

Two easily-confused but different types of ‘‘threshold’’
It is important to distinguish between two different entities, each

of which might reasonably be called a ‘‘threshold’’. The first,

discussed extensively in this study, is the value of a variable which

most impressively separates a population into high-risk and low

risk groups: an ‘‘observed prognostic threshold’’. This study shows

that such observed thresholds routinely arise even when the

variable has a non-stepped, smoothly continuous relation to risk. A

better term than ‘‘optimal risk threshold’’ would be ‘‘middle of the

risk spectrum’’, albeit less exciting.

The second type of threshold is the ‘‘clinical decision-making

threshold’’ which is more subtle. Physicians need at times to decide

whether to intervene: this is a dichotomy with no intermediate

status. Correct decision-making depends on comparing the risk of

intervening against the risk of not intervening, in the context of

how the individual patient views such risks. Only in an imaginary

disease with somehow just one important variable, and in which

patients consistently value outcomes in the same way as a statistical

model does, might a decisional threshold be applicable. Even still,

this would be different from identifying a step change in prognosis,

and certainly different from identifying the most statistically

significant breakpoint (often simply the middle of the studied

group).

Table 5. The 20 studies reporting a positive (white) or negative (grey) statistical significance of a prognostic threshold of brain
natriuretic peptide.

Author
Publication
Year

Number of
patients

Age
(years)

Males
(%)

Primary
outcome

Max
duration of
follow-up
(months)

Number
of events

Median
(IQR) BNP
(ng/L)

Tested
threshold
(ng/L)

Tested
threshold
prognostically
significant?

Omland 1996 131 6861 75 overall mortality 48 31 33,1 (nr) 33,3 yes

Yu 1999 91 616nr 70 cardiac mortality 12 25 165 (nr) 165 yes

Bettencourt 2004 84 6969 60 overall mortality nr 17 260,4
(122,4–543,8)

260,4 yes

de Groote 2004 150 55613 nr cardiac mortality 24 35 107 (3,5–876) 260 yes

Hulsmann 2005 112 68612 64 overall mortality 43 nr 231 (nr) 231 yes

Watanabe 2005 417 64614 69 overall mortality+
hospitalization

nr 124 132 (nr) 81 yes

Lamblin 2005 546 566nr 82 cardiac mortality+urgent
trasplantantion

53 113 173 (nr) 173 yes

Bertinchant 2005 63 5467.2 89 cardiac mortality+
hospitalization

nr 47 89,5
(11–1413)

254 yes

Horwich 2006 316 53613 74 overall mortality 48 nr 452 (nr) 452 yes

Masson 2006 3916 nr nr overall mortality nr 758 99 (nr) 125 yes

Sun 2007 50 6766 58 cardiac mortality 24 12 780 (nr) 520 yes

Frantz 2007 206 606nr 80 overall mortality+
hospitalization

12 81 141 (nr) 141 yes

Christ 2007 123 63612 85 overall mortality+urgent
trasplantantion

36 28 183
(11–1672)

183 yes

Dhaliwal 2009 464 6767 99 overall mortality+
hospitalization

nr 126 490
(233–796)

350 yes

Moertl 2009 96 69612 58 overall mortality+
hospitalization

24 34 267 (nr) 267 yes

Niessner 2009 351 756nr 66 overall mortality+
hospitalization

16 175 441
(231–842)

441 yes

Cohen-Solal 2009 1038 666nr 70 overall mortality 6 nr 768 (nr) 800 yes

El-Saed 2009 173 67611 98 overall mortality 24 31 315 (nr) 492 yes

Voors 2009 224 68610 70 overall mortality+
resuscitated arrest

12 63 109 (nr) 181 no

Sachdeva 2010 1215 53613 75 overall mortality+urgent
trasplantantion

24 442 575
(190–1300)

579 yes

EF = left ventricular ejection fraction; nr = not reported.
doi:10.1371/journal.pone.0081699.t005
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That these two types of threshold differ is sketched in Figure 5,

which imagines a situation where, with only medical therapy,

mortality falls smoothly with rising peak VO2, while with

transplantation mortality is at a fixed level. In this thought

experiment, it is assumed that no other variables are relevant.

Above a certain level of peak VO2, medical therapy is safer; below

it, transplantation is safer. This is therefore the ideal clinical-

decision-making threshold. But if improved medical therapy were

developed, for example, this ideal decision-making threshold

moves left. Exactly where this decision-making threshold lies

cannot established by looking only at outcomes in non-transplant-

ed (or transplanted) population alone. It can only be established by

examining outcomes in both non-transplanted and transplanted

populations. In real life, other variables are very important, and

therefore the decision-making threshold cannot be established by

comparing outcomes in patients who have been allocated by

Figure 3. Mathematical simulation of sample selection from the general population: correlations between the sample mean and the
apparently-optimal prognostic threshold. Sub-populations with different ranges of risk simulating a shift in the mean peak VO2 were created
and strong correlations between population mean and optimal thresholds by Kaplan-Meier and ROC analysis were found.
doi:10.1371/journal.pone.0081699.g003
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routine clinical methods to transplant or no transplant. A

randomized controlled trial is the most secure basis, because this

design gives the best chance of matching all variables, both those

that can be observed and quantified and those that cannot.

Prognostic studies
If it is desired to test for a prognostic threshold in a variable,

there are straightforward statistical methods for doing so. For

example, a flexible nonlinear function can be fitted and displayed

with confidence bands for incremental log odds over the whole

span of the marker; seeking a point such that risk is flat on both

sides of that point but the risk on one side is much different from

the risk on the other side (Figure 6). Such a phenomenon amongst

cardiovascular prognostic studies is a rarity.

If for academic reasons there is a desire to seek a clinical

decision-making threshold for a condition that has a single

dominant prognostic marker, the reliable method is to conduct a

randomized controlled trial which enrolls patients with values in

the vicinity of the suspected threshold, and see where (with

random allocation) the flexible nonlinear risk curves cross over

(Figure 7). For all diseases evaluated by continuously distributed

variables, the location of this crossover will always have a wide

uncertainty (error bar) unless a very large number of events occur.

Pooled analysis using multiple trial datasets has successfully used

this approach to explore a decision-making threshold in QRS

duration for implantation of biventricular pacing devices [107].

Without elucidation of why we believe thresholds exist it might

be difficult to advance our methods of deciding on advanced

Figure 4. Apparently-optimal prognostic thresholds in twelve different types of relationship between the risk factor and mortality.
For each type of relationship, 10 simulations were conducted, and the 10 apparently-optimal thresholds derived from Kaplan Mayer analysis were
found. They are shown by vertical arrows (where multiple arrows would have been superimposed, they have been placed one above another).
doi:10.1371/journal.pone.0081699.g004

Figure 5. Apparent optimal prognostic threshold, by Kaplan-Meier and ROC method, arising from a mathematically simulated
population with known, smooth gradation of risk. The position of the apparently optimal threshold is almost completely determined by the
risk factor mean. Several overlapping samples are taken from a single population of smoothly varying risk.
doi:10.1371/journal.pone.0081699.g005
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intervention (such as transplantation, or device implantation)

beyond their current state. Continuous markers such as peak VO2,

EF and BNP can be treated alongside other risk markers in

multivariate fashion to finely grade prognosis. Clinging to or

arguing over particular historically-documented threshold values

may impede, rather than support, advances such as incorporating

new information from potentially simple, cheap and effective

supplemental prognostic markers [108–110]. Simple clinical

variables such as age, sex and ECG QRS duration may capture

as much or more prognostic power as more elaborately-obtained

variables [108,111]. Even strong markers when used in this

dichotomous fashion may not live up to expectations [112].

Recognising and displaying [113] their continuous and progressive

value may be preferable [114]. Cutpoints can synthesise apparent

relationships when there are really none [115], and apparently-

optimal diagnostic cutpoints can shift substantially with change in

even a simple covariate such as cough [116].

Nor is it correct to assume that maximisation of diagnostic

accuracy is a wise target, since this is only optimal if false positive

and false negative categorisation are exactly equally undesirable.

Cutpoints, especially when automatically constructed, impede our

ability to understand the spectrum of risk, hide the existence of the

intermediate zone, and encourage information destruction.

Clinical implications
Reporting an optimal prognostic threshold of a variable,

without enumerating the actual shape of the risk profile, may be

little more than an elaborate and time-consuming way of

describing the middle of the population being studied. Conversely

studies testing a pre-specified prognostic threshold, and finding no

statistical significance, do not invalidate the prognostic meaning of

the variable, especially if the average value in that study is far from

the pre-specified threshold.

When making decisions about individual patients in the clinical

setting we as physicians are often cautious about extrapolating

from studies, acknowledging the differences between the popula-

tion recruited (and the care delivered) in formally designed trials

versus ‘‘real-life’’ practice. This same caution is rarely extended to

the application of cutpoints to the individual patient, even though

published cutpoints turn out to often be merely an indirect index

of the middle of the sample described. We therefore risk treating

patients simply according to whether, in the context of a previous

study, they are above-average or below-average.

It might well be reasonable for a resource in short supply to be

offered to simply the higher risk half of the population, but we

should openly state that the threshold for therapy is merely the

mid-point of the first adequately-powered prognostic study; it is

not necessary to pretend that a threshold identified thus has any

physiological universality or clinical permanence. This applies not

only to heart failure but throughout clinical medicine, since many

prognostic variables (e.g. blood pressure, cholesterol, prostate

specific antigen) are continuous variables.

Clinician scientists wishing to ascribe special status to a

threshold should perhaps be obligated to provide evidence of

several criteria.

N There must be a difference in outcome below versus above the

threshold.

N There should be almost flat risk profiles on both sides of the

threshold.

Figure 6. Two different types of threshold: apparently-optimal versus decision-making thresholds. Cartoon illustrating two distinct,
unrelated, values that are both called ‘‘threshold’’. The statistically optimal threshold value of a continuous risk factor for subdividing the population
(left panel) has no relevance to the question of what value of a risk factor should be used to decide whether to intervene or not (right panel). The
former, the ‘‘observed prognostic threshold’’, will generally be the middle of whatever population happens to be studied, if mortality varies roughly
linearly with the risk factor. The latter, the ‘‘ideal clinical decision-making threshold’’, will critically depend also on the outcomes with intervention,
and will move as the success of the package of medical therapy (and of transplantation) changes with time. There is no sense in using one as a proxy
for the other.
doi:10.1371/journal.pone.0081699.g006
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N Enough data should be accrued to test whether the threshold is

a true point of discontinuity when risk is evaluated using a

flexible function of the marker.

For commonly-used cardiological markers, the second and third

will only rarely be confirmed.

Study limitations
This study does not prove the cause of the disagreement in

optimal threshold in peak VO2 or EF or BNP between studies, or

of the apparent loss of prognostic significance of this parameter

over time. It only shows that the most statistically significant

threshold has nothing to do with the optimal clinical decision-

making threshold, nor is its existence evidence of any special-

change in risk at that point.

This study cannot establish the optimal clinical decision-making

thresholds for therapy. If they exist, they can only be obtained

reliably by randomized controlled trials.

Conclusions

Conflict between reported optimal prognostic thresholds in

variables such as peak VO2, EF, BNP between studies result

almost entirely from differences in average values of these variables

between studies.

Clinical guideline writers should hesitate to specify a threshold

in a variable for therapeutic decisions arising from such

observational studies. Their readers might question how a

committee can know what is best for an individual patient whom

it has not met, knowing only whether one continuous variable is

above or below an essentially meaningless threshold; this might

weaken the credibility of the guideline as a whole.

Manuscript authors should not expend effort synthesising, and

clinicians should not spend time reading, unnecessarily elaborate

explanations for apparent movement of thresholds between

studies, since the widely-used procedures generate for almost any

continuous risk factor an artifactual apparently-optimal threshold

near the middle of any patient group examined. We should study

prognosis without these misapprehensions.
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52. Szabó BM, van Veldhuisen DJ, van der Veer N, Brouwer J, De Graeff PA, et al

(1997) Prognostic value of heart rate variability in chronic congestive heart

Giannoni: Apparently-Optimal Prognostic Thresholds

PLOS ONE | www.plosone.org 14 January 2014 | Volume 9 | Issue 1 | e81699



failure secondary to idiopathic or ischemic dilated cardiomyopathy.

Am J Cardiol 79:978–80.

53. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, et al (1997) Wasting

as independent risk factor for mortality in chronic heart failure. Lancet

349:1050–3.

54. Wijbenga JA, Balk AH, Meij SH, Simoons ML, Malik M (1998) Heart rate

variability index in congestive heart failure: relation to clinical variables and

prognosis. Eur Heart J 19:1719–24.

55. Metra M, Faggiano P, D’Aloia A, Nodari S, Gualeni A, et al (1999) Use of

cardiopulmonary exercise testing with hemodynamic monitoring in the

prognostic assessment of ambulatory patients with chronic heart failure. J Am

Coll Cardiol 33:943–50.

56. Isnard R, Pousset F, Trochu J, Chafirovskaı̈a O, Carayon A, et al (2000)

Prognostic value of neurohormonal activation and cardiopulmonary exercise

testing in patients with chronic heart failure. Am J Cardiol 86:417–21.

57. Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, et al (2000)

Prognostic usefulness of the tricuspid annular plane systolic excursion in

patients with congestive heart failure secondary to idiopathic or ischemic

dilated cardiomyopathy. Am J Cardiol 85:837–42.
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