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Megacity pumping and preferential flow threaten
groundwater quality
Mahfuzur R. Khan1, Mohammad Koneshloo1, Peter S.K. Knappett2, Kazi M. Ahmed3, Benjamin C. Bostick4,

Brian J. Mailloux5, Rajib H. Mozumder4, Anwar Zahid3,6, Charles F. Harvey7, Alexander van Geen4

& Holly A. Michael1,8

Many of the world’s megacities depend on groundwater from geologically complex aquifers

that are over-exploited and threatened by contamination. Here, using the example of Dhaka,

Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater

exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka

has caused large-scale drawdown that extends into outlying areas where arsenic-

contaminated shallow groundwater is pervasive and has potential to migrate downward. We

evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that

incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that

preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate

deep (4150 m) groundwater within a decade, nearly a century faster than predicted through

homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be

predicted by simplified models or identified by standard measurements. Such complex

vulnerability beyond city limits could become a limiting factor for megacity groundwater

supplies in aquifers worldwide.
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D
eltas and river basins sustaining dense populations and
unique ecosystems are sensitive to environmental stres-
ses1. Nearly half a billion people, often concentrated in

megacities, live in 50 deltas around the globe2. Groundwater is
often used for water supply in deltas because of uncertainty in
surface water availability and high vulnerability to contamination,
as occurs in the Bengal Delta3. However, groundwater over-
development4–6, especially in megacities7–9, and groundwater
contamination are common in deltas and river basins10–13. Under
a changing climate, uncertainty of surface water supply is likely to
increase14, and rapid population growth in urban centres15 may
exacerbate groundwater depletion and contamination problems.

One consequence of pervasive groundwater over-development
and depletion in city centres is an increase in vertical recharge in
and around the city11,12,16,17 where the surface and near-surface
waters are often contaminated with toxic metals, organics, nitrate
and other pollutants10,11,17–20. Although sustaining the quantity
and quality of city water supply is a high priority, little attention is
given to the potentially catastrophic impacts these hydrologic
alterations can have on the water resources of surrounding peri-
urban and rural communities that do not benefit from city
supply21, and for which water treatment may not be feasible.

Dhaka, the capital of Bangladesh, shares many of the water
management problems common to major cities22 and is located
in one of the largest fluvio-deltaic basins in the world. Naturally
occurring arsenic in shallow groundwater (o50 m), the drinking
water source for tens of millions of people, is widespread in the
basin18, as in many fluvio-deltaic aquifers of Southern Asia13.
Deep (4150 m), low-arsenic aquifers are increasingly relied on
for reducing exposure of the rural population to arsenic and could
be for decades to come if properly managed23–25. Dhaka pumping,
however, has caused groundwater levels to drop more than 60 m
over the last half century, and levels are currently declining at a rate
of 43 m per year in areas of the city centre7,26. This massive
alteration to the subsurface hydrology has expanded the
management problem from local to regional because hydraulic

heads are falling tens of kilometres beyond the city limits16. Over-
pumping is lowering water levels beyond the threshold for
handpump use16 and could induce downward migration of
shallow groundwater23,24, which may transport arsenic and other
contaminants or reactive organic carbon that can fuel reductive
dissolution of iron (oxy)hydroxides and associated release of
arsenic to groundwater13,27 from deeper, older sediments28. These
risks threaten the sustainability of the deep groundwater resource
of the 10 million people living in the Dhaka metropolitan area
outside the city centre and in surrounding rural areas (Fig. 1) who
are not supplied with city water.

Predicting the extent to which a hydrologic perturbation of this
scale jeopardizes the quality of groundwater resources outside of
pumping centres is confounded by geologic complexity. The large-
scale heterogeneity characteristic of river basins and deltas creates
groundwater flowpaths that can contaminate groundwater
resources29,30, yet aquifers of this type host more than half of 47
indexed groundwater mega-depletion cases worldwide6. Typical of
such systems, the aquifer system surrounding Dhaka is a highly
heterogeneous, kilometres-thick sequence of fluvio-deltaic deposits
centred in the 200,000 km2 Bengal Basin31. Numerous studies over
the past four decades have addressed the influence of aquifer
heterogeneity on transport of solutes, but many focus on small-
scale, low-variance heterogeneity relevant to plumes observed on
the scale of tens of metres32–34. Indeed, the importance of local
heterogeneity in controlling transport of As and organic carbon has
been demonstrated in As-affected aquifers of Cambodia35 and
Bangladesh36–38. At the basin scale, however, we must consider
heterogeneity in geologic features that spans tens of kilometres and
many orders of magnitude in hydraulic conductivity (K)39.
Predicting the vulnerability of groundwater on this large scale
requires numerical modelling, but the complexity and unknown
nature of the aquifer system often necessitates a simplified
approach using spatially averaged aquifer properties40. This
approximation may miss the small fraction of flowpaths which
are fast and most relevant to water quality vulnerability41.
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Figure 1 | Map of the study area. Colours represent percentage of tubewells with 450mg l� 1 As (a) within the study area and (b) within the Bengal Basin.

The orange polygon outlines the basin-scale (coarse-grid) model and the black rectangle outlines the locally refined (fine-grid) model. Arsenic data sources:

DPHE-JICA59 for Bangladesh and Chakraborti et al.60 for West Bengal. DWASA only supplies municipal water within the central city area.
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Here, we explicitly represent aquifer heterogeneity in a
groundwater flow model to explore the existence and predict-
ability of fast flowpaths, and associated vulnerability of ground-
water resources to contamination around the Dhaka megacity
pumping centre. Using lithologic data, we developed a statistical
model that represents the lateral and vertical correlations among
four lithofacies and simulated 60 equally probable realizations of
aquifer heterogeneity on the 10 km scale, with smaller-scale
structure represented as within-facies vertical anisotropy in K.
We then simulated groundwater flow through these realizations
and compared the results to a simplified, upscaled flow model in
which an effective value for uniform, but anisotropic, K
represented all scales of heterogeneity within the domain and
reproduced the same bulk flow as the heterogeneous K-field. We
show that concentrated groundwater pumping typical of mega-
cities induces preferential flowpaths that threaten groundwater
quality well outside the city limits.

Results
Effects on regional flow system. All of the simulations show that
Dhaka pumping has fundamentally changed the natural hydro-
logic system, both within and far outside of the city centre
(Fig. 2a,b). As a result, simulated net recharge increased to more

than four times natural levels and rivers near the city changed
from net gaining to net losing (Supplementary Figs 1 and 2). Both
measured and modelled heads within the city centre are very low
at all depths (Supplementary Figs 3–6). However, in surrounding
areas up to 25 km from the city centre, deep (4150 m) hydraulic
heads are more affected than those at shallow depths
where groundwater is readily recharged from the surface,
resulting in lower head at depth nearly everywhere in the study
area (Fig. 2d).

Implications for arsenic exposure. There are two important
consequences of this altered groundwater system. First, deep
handpump tubewells, installed to mitigate exposure to high
levels of arsenic in shallow groundwater in outlying areas
without access to city water supply, are becoming inoperable
because the lift required to bring water to the surface is greater
than can be provided by suction handpumps (B9 m; ref. 16).
Our simulations indicate that should pumping continue at
current levels, hydraulic heads would equilibrate such that
handpumps on deep wells would be inoperable within a
B25 km radius from the city centre within 10 years, affecting
an area of 2,400 km2 (Fig. 2c) and a population of over 5 million
outside the city centre. Second, the induced vertical hydraulic
gradient (Fig. 2e) is driving downward flow in much of the
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Figure 2 | Effects of Dhaka pumping on the flow system. Hydraulic head (contours) and flowpaths (black arrows) within the study area simulated for

homogeneous conditions at 150 m depth for (a) pre-development (before 1980) and (b) current pumping (2015) conditions. (c) Extent of 9 m water level

depth (suction limit for handpump wells) at 150 m depth. The steady-state condition in c is based on current Dhaka pumping levels. (d,e) Cross-sectional

views of hydraulic head at depths of 50 m (shallow) and 150 m (deep) and the vertical gradient, respectively. Cross-sections are shown along the W–E

transect shown in b.
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study area (Fig. 3a,b). Backward particle tracking shows that in
many areas outside the city, low-arsenic groundwater at 150 m
depth originates in shallow zones (Fig. 3c,d) where arsenic
concentrations are high (Fig. 1).

Aquifer heterogeneity and deep aquifer sustainability. The
homogeneous and heterogeneous models yield essentially the
same groundwater flow directions (Fig. 3a,b), recharge amounts
(Supplementary Fig. 2) and locations, and simulated hydraulic
heads (Fig. 2d) across the 61 simulations, but the similarities are
deceptive. Local vertical gradients are highly variable in hetero-
geneous cases (Fig. 2e), as are the distributions of travel time
between 50 and 150 m depth (Fig. 3c–f, Supplementary Figs 7
and 8). Although the median travel times are similar for
both homogeneous and heterogeneous aquifer representations

(Table 1), the tails of the distributions are much different
(Fig. 3e,f, Supplementary Figs 7 and 8). Importantly, there are
some flowpaths through heterogeneous fields that are very short
(Supplementary Fig. 9). The minimum travel time predicted by
the simplified homogeneous model is 89 years. In contrast, in the
heterogeneous simulations, 8% of travel times are shorter than 89
years, with a minimum of only 7 years. Travel times o100 years
exist in an average of 9% of locations in heterogeneous simula-
tions, compared with o0.5% in the homogeneous case (Fig. 3c,d
and Table 1). In these heterogeneous aquifers, nearly all of the
flow in the lateral direction and 495% of the flow in the vertical
direction occurs through medium to coarse sands
(Supplementary Fig. 10). Thus, the connectivity of high-K sedi-
ments determines the length of the flowpaths, a small proportion
of which are short connections between contaminated and
uncontaminated depths.

The complexity of flow through fluvio-deltaic sediments
creates high variability such that for the same hydrologic
forcing, vulnerability varies widely. The probability of
contamination at 150 m depth within 200 years was determined
over the 60 equally probable heterogeneous simulations
(Fig. 4a). If we consider probability of contamination to be
highly likely or highly unlikely if 490% of realizations have
flowpaths at a location that are unsafe or safe, respectively, then
only 0.05% of the area is highly likely to be contaminated, and
56% of the area is likely safe. In the rest of the study area,
represented by a standard deviation of 430% in Fig. 4b,
uncertainty is high.

Unpredictable contamination pathways. An added complication
that results from heterogeneous stratigraphy is that no local
hydrogeologic features serve as a reliable indicator of vulner-
ability. In the simplified homogeneous model, the local vertical
hydraulic gradient is a strong indicator of vulnerability (Figs 3c
and 5a). However, aquifers are heterogeneous and, with the
realistic representations of heterogeneity used for our simulations,
particle travel time does not correlate with either the vertical
hydraulic gradient or total thickness of fine sediments in the
vertical stratigraphic section between 50 and 150 m depth, as can
be observed in cores or driller logs (Fig. 5b,c). This finding is
consistent with local measurements that display a similar lack of
correlation between groundwater age (based on 14C and 3H) and
the thickness of overlying clay42. Exceptions are locations with no
fine sediments in the stratigraphic column. There, the vertical
gradients are too small (o0.001) to be measured reliably using
local methods, yet many travel times are short (Supplementary
Fig. 11). These areas should always be considered vulnerable
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Figure 3 | Comparison of flowpaths and travel times for homogeneous

and heterogeneous aquifer systems. Cross-sectional views along the W–E

line in panel c of streamlines for the (a) homogeneous and (b)

heterogeneous model simulations. Simulated travel time for (c)

homogeneous model and (d) a heterogeneous model (Realization 1). Travel

times are determined by backtracking particles from 150 m depth at every

model cell to 50 m depth. White indicates areas where particles terminate

on the lateral boundaries of the fine-grid model (distant recharge). The red

line in c is the contour within which vertical hydraulic gradient is

41.3� 10� 2. Histograms and cumulative distribution functions of

simulated particle travel times for (e) the homogeneous case and (f) all 60

heterogeneous realizations. In e and f, the red line indicates the median

travel time. Only particles initially located in sands and terminating within

the fine-grid model are included in e and f.

Table 1 | Summary particle travel time statistics from 50 to
150 m depth.

Particle statistics Homogeneous Ensemble mean
(heterogeneous

realizations)

Minimum 89 7
Mean (fastest 10%) 131 67
1st quartile 291 220
Median 496 589
Mean 747 6,736
3rd quartile 846 1,959
Maximum 1.2� 104 1.5� 107

% Travel time o100 years 0.5 9.2

The statistics are based on only those particles that were originally placed in sands and ended
inside the fine-grid model. Travel times are in years.
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unless a gradient driving upward flow is evident. Proximity to the
pumping centre, athough an important factor, also does not
reliably predict travel time (Figs 3d and 5d). This unpredictability
is likely because the combination of concentrated pumping and
the spatial distribution of fine and coarse sediments creates
tortuous, three-dimensional preferential flow paths (Fig. 3b,
Supplementary Fig. 9).

Discussion
This unpredictability of contaminant migration in heterogeneous
aquifers is likely to be exacerbated by other factors. The modelling
analysis includes only advective transport and heterogeneity at
scales larger than the grid blocks. Physical heterogeneity beneath
the scale represented in our models may result in earlier arrival
times of solute through additional dispersive processes. Sorption
has been shown to slow arsenic transport25, but heterogeneity in
the sorptive properties of aquifer sediments has not been well
characterized. Thus, our simplified approach may underpredict
uncertainty in vulnerability.

Although uncertainty may be underestimated, this analysis
likely overpredicts the vulnerability to arsenic migration because
sorption and other reactions that may immobilize arsenic
and retard its movement are neglected. Laboratory-based
estimates of the sorptive properties of Bengal Basin sediments
vary greatly43–46, but in situ estimates of arsenic retardation
factors in the deep Pleistocene sediments of the Bengal Basin25

are 13 to up to 110, and 16–20 in a similar Pleistocene aquifer in
Vietnam28. This means that in the absence of preferential
low-sorption flow pathways, breakthrough will likely be greatly
delayed in deeper Pleistocene parts of the flow system relative to
the advective travel times considered here. More extensive
characterization of sediment chemistry will improve our ability
to predict the evolution of As concentrations in vulnerable areas.
However, preferential transport of more conservative
contaminants or reactive organic carbon in this and other
systems may be less delayed by reaction.

In many highly populated deltas and river basins worldwide,
water resources are stressed and surface pollution is widespread.
We show that pumping to supply water to megacities in these
regions, even in the water-rich system of the Bengal Basin,

threatens the safety of regional groundwater resources by
inducing fast, preferential transport of contaminants to depth,
even in areas tens of kilometres outside the city limits. We
demonstrate that traditional indicators of vulnerability to
contamination may not be predictive in thick fluvio-deltaic
aquifers and that pumping may impact groundwater quality
more quickly than anticipated. We also establish that simplified
models can replicate hydraulic head distributions and physical
hydrologic changes while failing to fully predict vulnerability to
solute transport in the presence of intensive pumping. These
uncertainties are particularly worrying when detrimental effects
extend far beyond the area where populations receive city
resources.

These findings have important implications for both hydro-
geologic analysis of contaminant migration and for city water
management. First, even the best-calibrated models can miss the
most relevant information if the potential for preferential flow is
neglected. Though this is a well-known problem in contaminant
transport, this example illustrates that it is amplified in the
presence of intensive pumping in a three-dimensional flow field.
Second, municipal water managers must consider not only the
challenge of providing enough water to a dense population, but
also the impacts of its extraction on both the quantity and quality
of water in the region beyond the city. Because hydrogeologic
data cannot be used to predict the locations of preferential flow,
conservative management would avoid all vulnerability. However,
this is usually not possible in practice, and prevention of
health effects will require extensive water quality monitoring
programmes, potentially operating outside of city management
districts. Unfortunately, detection will indicate that aquifers are
already compromised.

Methods
Flow modelling. A groundwater flow model was developed from an existing
MODFLOW47 model of the Bengal Basin24,48,49 that was refined locally in the
study area (Supplementary Fig. 12) with the MODFLOW local grid refinement
(LGR2) package50. The basin-scale model encompasses the permeable sediments of
the Bengal Basin. Boundary conditions outside the study area were specified head
at the land surface, representative of a water table near the surface23,48,49. Within
the study area, pumping has lowered the water table; therefore, the surface
boundary condition was specified recharge with constant head boundaries along
the rivers within the embedded fine-grid model. In this area, a constant recharge
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rate of 0.5 m per year was used with a drain boundary that removes excess recharge
that would result in a water table above land surface. The simulated recharge is
within the range of hydrograph-based regional recharge estimates3 and isotope-
based local recharge estimates51,52 in the study area. All other model boundaries
were zero flux24,48,49, corresponding to either the impermeable hard rocks in the
north, west and east, or the offshore subsea aquifer in the south (Supplementary
Fig. 12). The model bottom was also a zero flux boundary corresponding, where its
location could be mapped, to the very low permeability Upper Marine Shale
member of the Bokabil Formation31. The boundary fluxes along the sides and
bottom of the fine-grid model were calculated iteratively by the MODFLOW-LGR2
package50.

The coarse-grid, basin-scale model consisted of 124 rows, 117 columns and 37
layers. Each of the columns and rows were of equal width, 5 km, and the layers
varied in thickness. The embedded fine-grid model was 105 km� 105 km� 326 m
and centred on Dhaka city (Supplementary Fig. 12). It consisted of 105 rows and
105 columns of equal width, and 66 layers, each 5 m thick except the top layer
which was 1 m thick.

Outside the study area, hydraulic conductivity (K) was represented as
homogeneous, with horizontal and vertical values representative of the large-scale
system, Kh¼ 5� 10� 4 m s� 1 and Kv¼ 5� 10� 8 m s� 1, a result of basin-scale
model calibration48,49. This anisotropy incorporates effects of heterogeneity that
are not explicitly represented. Inside the study area, both homogeneous and
heterogeneous representations were used. The homogeneous Kh and Kv values
within the study area were calibrated and validated against historic records
(median record length of 21 years with a range from 3 years to 28 years between
1986 and 2015) of weekly measured hydraulic head data at 75 monitoring stations
at variable depths (7–277 m) located within the fine-grid model (see ‘Calibration’
section below; Supplementary Fig. 3). The calibrated values of Kh and Kv for the
homogenous system were 2.0� 10� 4 and 1.0� 10� 7 m s� 1, respectively. The
storage coefficient was 1.0� 10� 4, with the exception of the top layer, where it was
0.1, corresponding to a value of specific yield divided by cell height (1 m). This
mimics unconfined conditions despite using MODFLOW confined conditions to
avoid cell drying. Comparison with simulations with unconfined conditions that
allowed cell drying indicated the maximum error associated with that assumption
to be 8 m (10% of head). However, errors were negligible in the area of interest
beyond the city boundaries (Supplementary Fig. 6), so confined conditions were
retained.

The simulations were transient with 38 stress periods. The first and last stress
periods were steady-state, the remaining 36 annual stress periods represented the
time period from 1980 to 2015. For each stress period, the total annual
groundwater pumping was assigned in terms of area using the MODFLOW Well
Package. A steady-state flow simulation for the period prior to 1980, when
pumping began, was the initial condition for transient simulation from 1980 to
2015. In heterogeneous models, the aquifer zones within the pumping depth

intervals within the study area were assigned homogenous equivalent values to
avoid unrealistic drawdown due to pumping within clays.

Domestic and irrigation pumping rates were estimated on the basis of either
upazila-wise (for the greater Dhaka metropolitan area) or district-wise (for the rest
of the basin) data of population density and irrigated area, respectively, following
the procedure in Michael and Voss24,48,49. Outside the city, pumping was assigned
between 15 and 50 m depth, the range of most pumping in rural areas. Within
Dhaka city, pumping was assigned on the basis of data from the Dhaka Water
Supply and Sanitation Authority26 between 50 and 150 m depth before 2004. From
2004 onward, some of the wells were deepened due to large drawdowns, so a
portion of the total pumping was assigned between 170 and 270 m depth.
Population data are available for census years 1981, 1991, 2001 and 2011
(Bangladesh Bureau of Statistics Population Census) and the irrigation area data
are available for irrigation census year 1996, and 2008 (Bangladesh Bureau of
Statistics Agriculture Census). Population between census years was determined
using the calculated population growth rate between census years. A linear growth
rate was used to calculate the irrigated area between census years 1996 and 2008.
For the period before 1996, the 1996 irrigated area data were used, and for the
period after 2008, the 2008 irrigation area data were used.

Model calibration and validation. The homogeneous, anisotropic model was
calibrated against historic records (record length varies from 19 to 28 years
between 1986 and 2014) of weekly measured hydraulic head data at eight
monitoring stations of the Bangladesh Water Development Board at depths
between 75 and 100 m located within Dhaka city (Supplementary Figs 3 and 4).
The simulated head at each location was compared with the mean annual head for
that station (Supplementary Fig. 4). In addition, the model was calibrated against
continuous head measurements made for this study and Knappett et al.16, using
data loggers at depths from 150 to 280 m along the transect shown in
Supplementary Fig. 3 for the year 2014 (Supplementary Fig. 5b). This allowed
us to constrain the shape of the cone of the depression in the deeper part of the
aquifer system. We also used projected head from observations made by IWM
& DWASA26 at three locations on the transect (circled in Supplementary Fig. 5b).

The calibrated model was then validated against hydraulic head measurements
made in this work and obtained from the Bangladesh Water Development Board
(record length varies from 3 years to 28 years between 1986 and 2014) at 64
locations within the fine-grid model (Supplementary Fig. 3). There was good
agreement between the observed and simulated heads for both the homogeneous
(Supplementary Fig. 5a) and the heterogeneous cases (Supplementary Fig. 5c). The
overall root mean square error for the observed versus simulated head is about
3.5 m, which is within the seasonal variation in the observed data.

Geostatistical simulations of aquifer heterogeneity. Sixty realizations of
heterogeneous aquifer stratigraphy (Supplementary Fig. 13) were generated with
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sequential indicator simulation53. Variograms were developed from and
simulations conditioned to lithological data from 433 driller logs obtained in this
work and from IWM & DWASA26,54, DPHE and JICA55, MacDonald56

(Supplementary Figs 12 and 13). The lithologies from driller log descriptions were
categorized into four lithofacies: clay, silt, very fine and fine sand, and medium and
coarse sand, with proportions 13, 15, 26 and 46%, respectively.

Variogram models were fit to the experimental variograms derived from the
lithologic data. The variogram model used for each lithofacies is:

gI
Clay hð Þ ¼ 0:04�Sph 10 m; 1 kmð Þþ 0:07�Sph 45 m; 10 kmð Þ ð1Þ

gI
Silt hð Þ ¼ 0:04�Sph 10 m; 0:5 kmð Þþ 0:08�Sph 50 m; 2:5 kmð Þ ð2Þ

gI
F Sand hð Þ ¼ 0:10�Sph 20 m; 2 kmð Þþ 0:10�Sph 100 m; 15 kmð Þ ð3Þ

gI
M&C Sand hð Þ ¼ 0:15�Sph 25 m; 1 kmð Þþ 0:10�Sph 150 m; 50 kmð Þ ð4Þ

In equations 1–4, the first number in parentheses is the range of the variogram in
the vertical direction and the second is the range in the horizontal direction; Sph is
a standard spherical variogram model. The search ellipse used in simulation had a
horizontal radius of 10 km and a vertical radius of 30 m. An example simulated
field is shown in Supplementary Fig. 13e.

Each of the simulated lithofacies was assigned a Kh and a Kv value typical of
that sediment type. Using a MATLAB script, these facies K values were adjusted
until the equivalent Kh and Kv of each of the heterogeneous cases, as determined by
numerical simulation of Darcy flow horizontally and vertically across the domain,
were within 20% of that of the homogeneous, calibrated values. These are
summarized in Supplementary Table 1 and Supplementary Fig. 14. Most of the
boreholes in the study area were drilled using a reverse circulation rotary method,
commonly known as the donkey method. The sediment samples collected at the
terminal of the fluid circulation system usually contain a mixture of sediments over
the sampling depth intervals (B3 m). This tends to under-sample thin lenses of silt
and clay, which are easily washed away. Chances of missing these thin lenses of fine
sediments are greater for intervals of very fine and fine sands, because the
likelihood of coexisting silt and clay is greater with fine sands than for medium to
coarse sands. These thin lenses of small lateral extent would likely affect the vertical
flow more than the horizontal flow. Therefore, vertical anisotropy (Kh/Kv) values of
10 and 100 were applied for medium and coarse sands and very fine and fine sands,
respectively. Hydraulic heads simulated by heterogeneous and homogeneous
models are similar (Fig. 2d and Supplementary Fig. 5); heads are less sensitive to
local heterogeneity than to effective aquifer properties.

Simulation of advective transport. MODPATH57 particle tracking was used
to determine the travel time and flowpaths of water reaching a depth of 150 m,
approximately the shallowest depth of deep wells drilled for arsenic mitigation58.
The particles were tracked backwards from 150 m depth to either 50 m depth, the
approximate lower boundary of the highly arsenic-contaminated zone18, or at the
lateral and bottom boundaries of the fine-grid model. Travel times of particles that
terminated at the lateral and bottom boundaries of the locally refined grid were not
included in the analysis, as these likely have very long travel times and terminate in
low-arsenic areas. We note that while we focus on 150 m depth because it is
considered widely As-safe, many wells draw water from low-As zones in
intermediate (50–150 m) depths, and travel times to these depths would be less.

Many particles were originally located in silts and clays, which led to significant
tailing effects (Supplementary Fig. 7). Since groundwater is pumped primarily
through high-permeability sands, we also plotted the distribution of travel times
using only particles originating in medium to coarse sands. This resulted in less
significant tailing (Supplementary Fig. 7), though it was still greater than the
homogeneous case. All of the subsequent results are reported only for particles
initially located in sand. The summary statistics of particle travel time are shown in
Supplementary Table 2 and Supplementary Fig. 8.

Sensitivity analysis. The horizontal range for the lithofacies variogram is the
parameter with the largest uncertainty in our geostatistical model. To consider how
this uncertainty may affect the results, we performed a sensitivity analysis to
quantify the impact of the horizontal variogram range on simulated hydraulic
heads and advective travel time distributions. Two additional sets of heterogeneous
realizations (60 in each set) were simulated, one with a horizontal variogram range
half of the original case and one with twice the range. Variograms of all of reali-
zations of the three sets are shown in Supplementary Fig. 15. Facies Kh and Kv

values were varied such that all realizations have the same equivalent Kh and Kv as
the calibrated homogeneous model, regardless of the variogram range. All of the
simulated fields were conditioned to the 433 lithologic logs. Because of the high
density of points used to condition the realizations, the facies Kh and Kv values
were similar across realizations (Supplementary Table 1). Furthermore, the
horizontal variogram range had a small effect on both the simulated heads and
travel times (Supplementary Figs 16 and 17, and Supplementary Table 2). Thus,
the sensitivity analysis provides some confidence that the geostatistical simulations
are sufficiently constrained by field data.

Data availability. The numerical models and data original to this study are
available from the authors.
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