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Abstract
The aim here is to investigate the effects of convective heat and mass transfer in the flow of

Eyring-Powell fluid past an inclined exponential stretching surface. Mathematical formula-

tion and analysis have been performed in the presence of Soret, Dufour and thermal radia-

tion effects. The governing partial differential equations corresponding to the momentum,

energy and concentration are reduced to a set of non-linear ordinary differential equations.

Resulting nonlinear system is computed for the series solutions. Interval of convergence is

determined. Physical interpretation is seen for the embedded parameters of interest. Skin

friction coefficient, local Nusselt number and local Sherwood number are numerically com-

puted and examined.

Introduction
The flows of non-Newtonian fluids over a stretching surface with heat transfer have many appli-
cations in engineering processes like polymers extrusion, paper production, food processing,
glass fiber, drawing of plastic films, slurry transporting and many others. Crane [1] initiated the
pioneering work for closed form solution of viscous flow over a linear stretching surface. After-
wards a large amount of research work has been reported in this direction through different
aspects of suction/blowing, heat and mass transfer, different non-Newtonian models, magneto-
hydrodynamics, different stretching velocities of surface etc. In particular, the combined influ-
ence of heat and mass transfer is important in several engineering applications including
metallurgy, solar collectors, combustion systems, chemical engineering, nuclear reactor safety etc.
Such transport processes are governed by the buoyancy forces from both thermal and mass diffu-
sion in heating and cooling chambers, energy processes, space technology, solar power technol-
ogy etc. Inspired by such facts, various researchers are still engaged for the discussion of heat and
mass transfer effects in flow over a stretching surface with radiation effect (see [2–10]). It is also
noted that heat and mass transfer in these studies and many others have been discussed by pre-
scribing both the constant temperature and concentration or by constant heat and mass fluxes at
the stretching surface. Recently some contributions have been made to discuss the heat transfer
mechanism in such flow with convective temperature condition at the surface (see [11–20]).
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In present communication, we address the convective heat and mass transfer conditions in
the radiative flow of Powell-Eyring fluid past an inclined exponentially stretching surface. Soret
and Dufour effects are taken into account. The considered Powell-Eyring fluid model is although
mathematically complex but it has certain advantages over the other non-Newtonian fluid mod-
els. Firstly, it is deduced from kinetic theory of liquid rather than the empirical relation. Secondly,
it correctly reduces to Newtonian behavior for low and high shear rates. Here suitable transfor-
mations are utilized to convert the governing partial differential equations into the ordinary
differential equations. Convergent series solutions of the problems are accomplished by using
homotopy analysis method (HAM [21–30]). This method is capable of solving a wide range
of nonlinear problems, particularly when the nonlinearity is strong. The origin of homotopy
lies in topology. Two mathematical objects are said to be homotopic if one can be continuously
deformed into the other. Homotopy is widely applied in numerical techniques. The HAM here is
preferred through the reasons as follows. Unlike perturbation techniques the homotopy analysis
method is independent of small/large parameter. It itself can provide us with a convenient way to
adjust and control the convergence region and rate of approximation series when necessary.
Interesting physical quantities are analyzed through plots and numerical values.

Mathematical Formulation
We consider steady two-dimensional flow of an incompressible Powell-Eyring fluid past an
exponential stretching sheet. Simultaneous effects of heat and mass transfer are considered.
The sheet is inclined through angle α. Both conditions of heat and mass transfer at the surface
are of convective type (see Fig 1). Under the usual boundary layer and Rosseland approxima-
tions, the present flow problem is governed by the following equations.
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where u and v represent the velocity components along α the x and y directions respectively,
Uw(x) = U0e

x / l is the stretching velocity of sheet, U0 is the reference velocity, l is the reference
length, b and c are the material fluid parameters, ρ is the density, ν is the kinematic viscosity, g
is the acceleration due to gravity, β is the volumetric coefficient of thermal expansion, βc is the
concentration expansion, T is the fluid temperature, T1 is the ambient temperature, C is the
fluid concentration, C1 is the ambient concentration, α� is the thermal diffusivity, k is the
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thermal conductivity, cp is the specific heat, qr ¼ � 16s�T31
3k�

@T
@y
is the radiative heat flux, k� is the

mean absorption coefficient, σ is the Stefan-Boltzmann constant, cs is the concentration suscep-
tibility, Dm is the molecular diffusivity of the species concentration, kT is the thermal diffusion
ratio, h is the wall heat transfer coefficient, km is the wall mass transfer coefficient, Tm is the
mean fluid temperature, convective heating process is characterized by temperature Tf and
associated concentration near the surface is Cf.

We introduce the following dimensionless variables
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Fig 1. Physical model and coordinate system.

doi:10.1371/journal.pone.0133831.g001
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With the help of above dimensionless variables, Eq (1) is identically satisfied and Eqs (2–5)
yield
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where λ1 and λ2 are the fluid parameters, λ denotes thermal buoyancy parameter, δ stands for
solutal buoyancy parameter, Pr is the Prandtl number, Du is the Dufour number, Sr is the
Soret number, Sc is the Schmidt number, Bi1 is the thermal Biot number, Bi2 is the concentra-
tion Biot number and R is the radiation parameter. The definitions of these parameters are
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The local Nusselt number Nux, local Sherwood number Shx and skin-friction coefficient Cf x

are defined by
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Dimensionless forms of Eqs (12–14) are:
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where Rex ¼ UwðxÞx
u is the local Reynolds number.

Methodology of Solution
It should be noted that there is a great freedom to choose initial guess and auxiliary linear oper-
ator. Also there are some fundamental rules which direct us to choose the mentioned parame-
ters in more efficient way. Therefore, initial guesses for the velocity, temperature and
concentration fields are taken in such a way that they satisfy the boundary conditions given in
Eq (10). We choose linear operators involving base functions of the exponential type. In fact
such preferences of exponential type function accelerate the convergence of the series solu-
tions.
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where Ci (i = 1–7) are the arbitrary constants determined from the boundary conditions. If p
2[0,1] denotes an embedding parameter, ℏf , ℏy and ℏ� the non-zero auxiliary parameters then

the zeroth order deformation problems are
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whereNf,Nθ andNϕ are the nonlinear operators defined as follows:

Nf ½f̂ ðZ; pÞ; ŷðZ; pÞ; �̂ðZ; pÞ� ¼ ð1þ l1Þ
@3 f̂ ðZ; pÞ

@Z3
þ f̂ ðZ; pÞ @

2 f̂ ðZ; pÞ
@Z2

� 2
@ f̂ ðZ; pÞ

@Z

 !2

�l2l1

@2 f̂ ðZ; pÞ
@Z2

 !2

@3 f̂ ðZ; pÞ
@Z3
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and when p variation is taken from 0 to 1 then f(η,p), θ(η,p) and ϕ(η,p) approach f0(η), θ0(η)
and ϕ0(η) to f(η), θ(η) and ϕ(η). Now f, θ and ϕ in Taylor's series can be expanded as follows:
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Here the convergence depends upon ℏf , ℏy and ℏ�. By proper choices of ℏf , ℏy and ℏ�, the

series (31–33) converge for p = 1 and hence

f ðZÞ ¼ f 0ðZÞ þ
X1
m¼1

f mðZÞ: ð35Þ

yðZÞ ¼ y0ðZÞ þ
X1
m¼1

ymðZÞ: ð36Þ

�ðZÞ ¼ �0ðZÞ þ
X1
m¼1

�mðZÞ: ð37Þ

Themth- order deformation problems are

Lf ½f mðZÞ � wmf m�1ðZÞ� ¼ ℏfR
m
f ðZÞ: ð38Þ

Ly½ymðZÞ � wmym�1ðZÞ� ¼ ℏyR
m
y ðZÞ: ð39Þ

L�½�mðZÞ � wm�m�1ðZÞ� ¼ ℏ�R
m
� ðZÞ: ð40Þ

f mð0Þ ¼ f
0
mð0Þ ¼ f

0
mð1Þ ¼ 0; y

0
mð0Þ � Bi1ymð0Þ ¼ ymð1Þ ¼ 0;

�
0
mð0Þ � Bi2�mð0Þ ¼ �mð1Þ ¼ 0: ð41Þ

Rm
f ðZÞ ¼ ð1þ l1Þf

000
m�1 þ

Xm�1

k¼0

ðf m�1�kf
@
k � 2f

0
m�1�kf

0
kÞ

�l2l1
Xm
k¼0

Xk

l¼0

f @l f
@
k�l

 !
f
000
m�k

þðlym�1 þ d�m�1ÞcosðaÞ:

ð42Þ

Rm
y ðZÞ ¼ 1þ 4

3
R

� �
y@
m�1 þ Prð

Xm�1

k¼0

y
0
m�1�kf kÞ þ PrDu�@

m�1:

Rm
� ðZÞ ¼ �@

m�1 þ ScSry@m�1 þ Scð
Xm�1

k¼0

�
0
m�1�kf kÞ: ð43Þ

χm ¼
(
0; m � 1

1; m > 1
ð44Þ

Convective Heat and Mass Transfer in Flow of Powell-Eyring Fluid

PLOS ONE | DOI:10.1371/journal.pone.0133831 September 1, 2015 7 / 19



The general solutions of Eqs (38–41) are given by
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where f �m, y
�
m and ��

m are the particular solutions. Constants Ci (i = 1–7) are determined by
boundary conditions (40).

Convergence of the HAM Solution
Unlike other analytic techniques for nonlinear problems, the homotopy analysis method gives
a one-parameter family (in the auxiliary parameter ℏ) of results at any given order of approxi-
mations it is the auxiliary parameter ℏ which provides us with a convenient way to adjust and
control the convergence of approximations. Any convergent series given by the homotopy
analysis method at p = 1 must be one of the exact solutions of considered nonlinear problem.
Hence for the given initial guesses and auxiliary parameters, one only needs to choose proper
values for ℏ ensuring the series (38–40) converge. To determine the convergence of HAM solu-
tion, the ℏ- curve is plotted. Figs 2–4 show that the range of admissible values of ℏf , ℏy and ℏ�

for some fixed values of parameters are�1:1 � ℏf � �0:4,�1:3 � ℏy � �0:4 and

�1:4 � ℏ� � �0:5. The series solutions converge in the whole region of η when ℏf ¼ �0:8,

ℏy ¼ �0:8 and ℏ� ¼ �1:0. It is obvious from Table 1 that series solutions converge at 25th

order of approximation.

Results and Discussion
In order to get a better physical insight of the problem, the dimensionless velocity, temperature
and concentration fields are shown graphically. Dimensionless velocity profile f0(η) is depicted
in Figs 5–8 for various values of physical parameters. Influence of fluid parameter λ1 is shown
in Fig 5. By increasing λ1 the viscosity decreases and hence velocity and momentum boundary
layer thickness is increased. Fig 6 presents the effect of fluid parameter λ2. Increase in λ2 shows
decrease in the velocity and momentum boundary layer thickness. The inclination angle α has
decreasing impact on the velocity field (see Fig 7). In fact an increase in α reduces the buoyancy

Fig 2. ℏf – curve for velocity field.

doi:10.1371/journal.pone.0133831.g002
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Fig 4. ℏ� – curve for concentration field.

doi:10.1371/journal.pone.0133831.g004

Fig 3. ℏy – curve for temperature field.

doi:10.1371/journal.pone.0133831.g003

Table 1. Convergence of HAM solutions for different orders of approximations when λ1 = 0.8, λ2 = λ = δ = 0.2, Sr = 0.3,Bi1 = 0.7, Bi2 = 0.5, R = 0.1,
Du = 0.2, Pr = 1.0, Sc = 0.8 and α = π / 4.

Order of approximations -f@(0) -θ0(0) -;0(0)
1 0.936518 0.34653 0.27612

5 0.919520 0.30253 0.23949

10 0.918187 0.30032 0.23607

15 0.918285 0.30049 0.23608

20 0.918294 0.30049 0.23613

25 0.918291 0.30049 0.23613

30 0.918291 0.30049 0.23613

35 0.918291 0.30049 0.23613

doi:10.1371/journal.pone.0133831.t001
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Fig 5. Influence of fluid parameter (λ1) on f0(η).

doi:10.1371/journal.pone.0133831.g005

Fig 6. Influence of fluid parameter (λ2) on f0(η).

doi:10.1371/journal.pone.0133831.g006

Fig 7. Influence of angle of inclination (α) on f0(η).

doi:10.1371/journal.pone.0133831.g007
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forces. Combined effects of thermal and solute buoyancy parameters are depicted in Fig 8. By
increasing λ and δ the buoyancy forces increase which enhance the velocity field. Figs 9–15
illustrate the temperature field for different physical parameters involved in problem. Fig 9 dis-
plays the variation of temperature profile for various values of λ1 and λ2. Larger values of these
parameters correspond to the decrease in temperature and thermal boundary layer thickness.
Through simultaneous increase of λ and δ the buoyancy forces are increased. As a result the
temperature field is decreased (see Fig 10). Fig 11 shows that a pronounced increase is observed
in the temperature and corresponding boundary layer thickness when there is an increase in
thermal Biot number Bi1. Larger values of radiation parameter R have the tendency to enhance
the thermal boundary layersee Fig 12. Effect of Prandtl number Pr on the temperature field is
plotted in Fig 13. Increase in Prandtl number greatly reduces the temperature and thermal
boundary layer. Temperature profile for collective variation of Dufour and Soret numbers is
shown in Fig 14. It is noticed that an increase in Du (decreasein Sr) serves strongly to increase
temperature field in the regime. Figs 15–19 illustrate the behavior of concentration field corre-
sponding to involved physical parameters. Effect of fluid parameters (λ1 and λ2) is to decrease
concentration boundary layer see Fig 15. Increase of λ and δ, has tendency to decrease the

Fig 9. Influences of fluid parameters (λ1 and λ2) on θ(η).

doi:10.1371/journal.pone.0133831.g009

Fig 8. Influences of thermal and solute buoyancy parameters (λ and δ) on f0(η).

doi:10.1371/journal.pone.0133831.g008
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concentration field and associated boundary layer (see Fig 16). Fig 17 indicates that increase of
mass Biot number enhances the concentration field. The variation of Schmidt number Sc on
the concentration field is displayed in Fig 18. Larger values of Schmidt number increase the vis-
cosity and consequently the concentration field is reduced. Combined variation of Dufour and
Soret numbers is displayed in Fig 19. Increasing Dufour number Du (decreasing Soret number
Sr) decreases the influence of temperature gradient on the concentration and finally it reduces
the concentration field.

Tables 2–4 are prepared to see the values of local skin friction coefficient, local Nusselt and
local Sherwood numbers for different embedding parameters involved in the problem. In par-

ticular, from Table 2 it is observed that jCf xRe1=2x j increases with the increase of λ2 and α while
reverse behavior is observed for larger values of λ1, λ and δ. It is noticed from Table 3 that Nus-
selt number decreases for larger values of λ2 and α but it increases by increasing λ1, λ, δ and R.
The variations of Pr, Du, Sr and Sc on the temperature gradient can be seen in Table3. Opposite
trend is observed for surface heat transfer coefficient by increasing thermal and concentration
Biot numbers (Bi1 and Bi2). Local Sherwood numbers are tabulated in Table 4. It is found that
the values of local Sherwood number decrease with an increase in λ2, Bi1 and Sr. It is also

Fig 10. Influences of thermal and solute buoyancy parameters (λ and δ) on θ(η).

doi:10.1371/journal.pone.0133831.g010

Fig 11. Influence of thermal Biot number (Bi1) on θ(η).

doi:10.1371/journal.pone.0133831.g011
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Fig 12. Influence of radiation parameter (R) on θ(η).

doi:10.1371/journal.pone.0133831.g012

Fig 13. Influence of Prandtl number (Pr) on θ(η).

doi:10.1371/journal.pone.0133831.g013

Fig 14. Influences of Dufour and Soret numbers (Du and Sr) on θ(η).

doi:10.1371/journal.pone.0133831.g014
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Fig 15. Influences of fluid parameters (λ1 and λ2) on ϕ(η).

doi:10.1371/journal.pone.0133831.g015

Fig 16. Influences of thermal and solute buoyancy parameters (λ and δ) on ϕ(η).

doi:10.1371/journal.pone.0133831.g016

Fig 17. Influence of concentration Biot number (Bi2) on ϕ(η).

doi:10.1371/journal.pone.0133831.g017
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Fig 18. Influence of Schmidt number Sc on ϕ(η).

doi:10.1371/journal.pone.0133831.g018

Fig 19. Influences of Dufour and Soret numbers (Du and Sr) on ϕ(η).

doi:10.1371/journal.pone.0133831.g019

Table 2. Values of skin-friction coefficient Cf x Re
1=2
x for different parameters.

λ1 λ2 α δ λ −CfxRex1/2

0.8 0.2 π/4 0.2 0.2 0.917213

0.5 0.998027

0.8 0.917213

1.0 0.872685

0.0 0.900719

0.1 0.909740

0.25 0.921701

π/6 0.904726

π/4 0.917213

π/3 0.933805

0.1 0.931610

0.3 0.903116

0.4 0.889291

0.3 0.931095

0.4 0.903555

0.5 0.890106

doi:10.1371/journal.pone.0133831.t002
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observed from the Table that increasing values of λ1, Bi2, Du and Sc cause the increase in mass
transfer coefficient. Similar trend is observed for λ and δ here.

Conclusions
Simultaneous effects of convective heat and mass transfer in the flow of Powell-Erying fluid
past an inclined exponential stretching surface with Soret and Dufour effects are investigated
in this article. The following points of performed analysis are worthmentioning.

• The velocity field has opposite results for both the fluid parameters λ1 and λ2.

• Inclination angle α reduces the velocity and momentum boundary layer.

Table 3. Values of local Nusselt number Nux=Re
1=2
x for different parameters.

λ1 λ2 δ λ α R Pr Du Sr Sc Bi1 Bi2 Nux/Rex1/2

0.3 0.8 0.2 0.2 π/4 0.1 1.0 0.2 0.3 0.8 0.7 0.5 0.33581

0.4 0.34055

0.5 0.34322

0.5 0.34035

0.8 0.34015

1.0 0.33993

0.3 0.34161

0.4 0.34261

0.5 0.34357

0.3 0.34153

0.4 0.34314

0.5 0.34336

π/6 0.34147

π/4 0.34055

π/3 0.33929

0.1 0.34055

0.2 0.36593

0.3 0.38986

1.1 0.35180

1.2 0.36206

1.3 0.37145

0.1 0.34840

0.3 0.33263

0.4 0.32465

0.3 0.34055

0.4 0.34148

0.5 0.34242

0.7 0.34173

0.9 0.33953

1.0 0.33862

0.5 0.28813

0.6 0.31655

0.8 0.36110

0.5 0.34055

0.6 0.33914

0.8 0.33695
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• The temperature and concentration are decreased by increasing values of fluid parameters λ1
and λ2.

• Variation of thermal and solute buoyancy parameters on the temperature and concentration
fields is reverse to that of velocity.

• Prandtl number has remarkable effect on the temperature while dual behavior is observed for
concentration field.

• The behaviors of thermal and mass Biot numbers corresponding to temperature and concen-
tration are quite similar.

• Qualitatively opposite behavior is observed for temperature and concentration profiles for
Soret and Dufour numbers.

• A concentration profile is decreasing function of Sc.

• As Bi1, Bi2 !1, the convective boundary conditions are reduced to limiting case of pre-
scribed surface temperature and concentration respectively.

• When fluid parameters λ1 and λ2 ! 0, the present problem reduces to viscous case.

Table 4. Values of local Sherwood number Shx=Re
1=2
x for different parameters.

λ λ λ δ Sc Sr Du Bi1 Bi2 Shx/Rex1/2

0.5 0.2 0.2 0.2 0.8 0.3 0.2 0.7 0.5 0.23278

0.8 0.23613

1.0 0.23802

0.1 0.23626

0.3 0.23600

0.4 0.23586

0.1 0.23540

0.3 0.23683

0.4 0.23749

0.1 0.23532

0.3 0.23689

0.4 0.23760

0.7 0.22663

0.9 0.24439

1.0 0.25166

0.2 0.24358

0.3 0.23613

0.5 0.22110

0.1 0.23533

0.3 0.23694

0.4 0.23775

0.5 0.23941

0.6 0.23763

0.8 0.23484

0.4 0.20882

0.6 0.25870

0.8 0.29386

doi:10.1371/journal.pone.0133831.t004
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