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A B S T R A C T   

Background: Bladder cancer (BLCA) is a common malignant tumor of urinary system and prog-
nostic biomarkers are needed for better clinical decision-making and patient management. Cancer 
stem cells (CSCs) are involved in carcinogenesis, development, metastasis and recurrence of 
BLCA. This study explored the prognostic and predictive value of CSCs-related genes and laid the 
groundwork for precision treatment development in BLCA. 
Methods: The mRNA data and corresponding clinical information obtained from TCGA-BLCA 
cohort was used to discover biomarkers and develop CSCs-related prognostic model, which was 
further validated in GSE32548 and GSE32894 datasets. In addition, the association between 
CSCs-related risk score and therapeutic efficacy was analyzed to explore the potential predictive 
value of the prognostic model. 
Results: We identified four CSCs-related subtypes and 900 differentially expressed genes (DEGs) 
among subtypes. Then the CSCs-related prognostic model was built based on 16 CSCs-related 
DEGs with the most significant prognostic value. Patients in the low-risk group had better 
overall survival than those in high-risk group (P < 0.001; HR, 0.42; 95 %CI, 0.31–0.57). Multi-
variable Cox analysis in training and test sets confirmed the independence of CSCs-related risk 
score as a prognostic factor (P < 0.05). The difference of survival between two risk groups were 
probably due to the significantly varied immune microenvironment based on the analysis of 
infiltrated immune cells. Additionally, the risk score was significantly associated with chemo-
therapy sensitivity and the response to anti-PD-L1 therapy (P < 0.05) which suggested a potential 
predictive value of CSCs-related risk model. 
Conclusion: We established a risk classifier based on 16 CSCs-related genes for predicting survival 
in patients with BLCA. The CSCs-related risk model has both prognostic value and potential 
predictive value for therapeutic efficacy, which brings us closer to understanding the important 
role of CSCs in BLCA and may provide guidance for clinical treatment decision-making and pa-
tient management. The clinical utility of the CSCs-related risk classifier warrants further studies.  
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1. Introduction 

Bladder cancer (BLCA) is a common malignant tumor of urinary system with more than 573,000 new cases and 213,000 deaths 
worldwide in 2020 [1]. BLCA accounts for the fourth highest number of estimated new cases in men in the United States in 2023 [2]. 
About 70 % of BLCA patients are non-muscle-invasive bladder cancer (NMIBC) and the others are muscle-invasive bladder cancer 
(MIBC) [3]. Endoscopic resection and intravesical Bacillus Calmette-Guerin (BCG) are the mainstay therapies of NMIBC, and the 
therapeutic options of MIBC range from radical cystectomy, chemotherapy, radiation, to immune checkpoint inhibitors (ICIs) [3]. The 
5-year recurrence free survival rates of patients with low-risk, intermediate-risk and high-risk NMIBC are 43 %, 33 % and 21 %, 
respectively, and most of high-risk NMIBC patients progress to MIBC with worse prognosis [3]. Thus, a prognostic model of BLCA for 
clinical management is needed. 

Cancer stem cells (CSCs) have been indicated playing a crucial role in chemotherapy resistance and tumor relapse [4]. CSCs are a 
sort of malignant tumor cells which can self-renew, differentiate and tumor-initiate, leading to the abilities of resisting anticancer 
therapy, promoting relapse and metastasis, and increasing tumor heterogeneity [4–6]. CSCs were firstly described in acute myeloid 
leukemia, and soon identified across multiple cancers, such as breast cancer [7], colon cancer [8], ovarian cancer [9], and lung cancer 
[10]. A group of specific cell surface markers can be used to distinguish CSCs from normal cells. Various markers including CD44, 
ALDH1A1, SOX2, and SOX4 have been identified and isolated from BLCA patient specimens [11]. These involved genes promote 
bladder cancer progression via regulating epithelial to mesenchymal transition (EMT), hedgehog signaling pathway, MAPKs, and 
JAK-STAT pathway [4,11]. 

It has been demonstrated that high-stemness signatures are negatively associated with immune reaction across 21 types of solid 
tumors [12]. Emerging evidences suggest that CSCs, infiltrating immune cells, and other cell lineages, interact with each other 
complexly and dynamically in tumor microenvironment (TME) [12–18]. For example, hypoxic TME induces the development of CSCs 
through activating Wnt and Notch signaling pathways in breast cancer [19]. CSCs can impair the activity of cytotoxic T cell and 
promote immune evasion of tumor cells by elevating inhibitory checkpoint receptors levels [20]. Chan et al. reported that the 
expression level of CD47 which bound to signal-regulatory protein alpha (SIRPα) and inhibited macrophage phagocytosis was higher 

Fig. 1. Workflow chart. Abbreviations: BLCA = Bladder cancer, CSCs = Cancer stem cells, DEGs = differentially expressed genes.  
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in bladder CSCs than that of normal cells [21]. Also, Chan demonstrated that a BLCA-CSCs signature based on differentially expressed 
genes (DEGs) from CD47+ and CD47− BLCA cells could predict the invasive progression of NMIBC to MIBC [21]. Altogether, these 
results suggest that CSCs are important in BLCA, however, whether CSCs-related genes can be used as a prognostic tool in BLCA has not 
been well reported. 

In our study, the prognostic value of CSCs-related genes in BLCA patients was explored, which might provide a better understanding 
of CSCs features in BLCA for clinical practice. We divided BLCA patients into four subtypes based on 187 CSCs-related genes in TCGA- 
BLCA cohort using unsupervised clustering method. A classifier including 16 core CSCs-related genes from DEGs among CSCs-subtypes 
was built and validated. Additionally, we systematically analyzed the distribution of clinical traits, prognostic significance, and the 
association between the risk classifier and immune cells infiltration, sensitivity to ICIs therapy and chemotherapy, and changes in 
biological pathways. These efforts can potentially guide clinical treatment decision based on distinct risk levels and bring new insights 
of CSCs in BLCA. 

2. Method and material 

2.1. Samples and patients 

Datasets used in this study were acquired from TCGA, gene expression omnibus (GEO), and IMvigor210 datasets. The TCGA-BLCA 
cohort comprising of 400 cancer samples (with somatic mutation, clinical and mRNA expression matrix data) were obtained from 
TCGA (https://tcga-data.nci.nih.gov/tcga/) and UCSC XENA database (https://xenabrowser.net/datapages/) [22]. We also down-
loaded GSE32548 (n = 131) [23] and GSE32894 (n = 308) [24] cohorts from the GEO database harnessed as the external validation 
sets. Above three cohorts of BLCA were included in the present study, and the corresponding clinical information was summarized in 
Supplementary Table S1. Moreover, the clinical and mRNA gene expression data of 298 metastatic urothelial carcinoma (mUC) pa-
tients treated with atezolizumab from IMvigor210 cohort was retrieved via R package “IMvigor210CoreBiologies” and used to explore 
the difference in response to anti-PD-L1 therapy [25]. The design for this study is shown in Fig. 1. 

2.2. Identification of BLCA subtypes based on CSCs-related genes 

To identify the different stemness status of BLCA samples, “ConsensusClusterPlus” R package was used for consensus clustering 
based on a total of 187 CSCs-related genes which was obtained from a previous research (Supplementary Table S2) [26]. We extracted 
the expression data of CSCs-related genes from the TCGA-BLCA cohort. Then partition around medoids cluster was performed using 80 
% of samples each try with the standard of Euclidean distance for 100 iterations. Clustering score was used to choose the best cluster 
number for the cumulative distribution function curve with area under the curve monitored. 

2.3. Identification of DEGs among BLCA subtypes 

To identify genes with differential expression among subtypes, we sequentially screened the DEGs between samples of one subtype 
and the rest subtypes using “limma” R package [27]. The up-regulated and down-regulated genes which were generated with |log 
ration of fold change| > 1 and adjusted P value < 0.05 as cutoff values, were considered as subtype-specific DEGs. To explore the 
biological significances of these DEGs, we performed function enrichment analysis with R package “clusterProfile” [28]. The signif-
icant enriched genes were accepted with adjusted P value < 0.05 as threshold. 

2.4. Construction and validation of the CSCs-related prognostic model 

To explore the prognostic significance of CSCs-related genes, we constructed a CSCs-related prognostic model in TCGA-BLCA 
cohort. Firstly, all DEGs from different cluster subtypes were used to perform univariable Cox analysis for overall survival (OS) to 
screen candidate genes (P value < 0.01 as threshold). Secondly, the least absolute shrinkage and selection operator (LASSO) Cox 
regression analysis was used to screen core prognostic signature genes with standard parameter. A risk model originated from 16 CSCs- 
related DEGs was established based on the formula: The risk score =

∑16
i coefficientsi ∗ expi (coefficientsi represents the Cox coefficients 

for gene i; expi represents the expression value for gene i). Based on the median risk score, patients were split into low-risk and high-risk 
groups. The OS between patients in different risk group was compared by Kaplan-Meier survival analysis and log-rank test. To confirm 
the prognostic power of the CSCs-related risk stratification model, we also utilized the receiver operating characteristic (ROC) analysis 
and area under curve (AUC) for evaluation with R package “timeROC”. Notably, GSE32548 and GSE32894 datasets were analyzed as 
independent validation sets to confirm the performance of the CSCs-related prognostic model. Specially, the risk score and other 
clinicopathological features (including age, sex, grade and TNM stage) were included in successive univariable and multivariable Cox 
regression analysis to test the independence of the risk score as a prognostic factor of BLCA. 

The RNA-seq data used in this study was transformed into fragments per kilobase million (FPKM) data and then processed by log 
(FPKM+1) transformation before analysis both in the model training cohort and model validation cohort. CSCs-related risk score was 
calculated according to the same formula, and patients were all split into low-risk and high-risk groups based on the median risk score. 
Statistical analysis methods were consistent across all cohorts to ensure comparability and reproducibility. 
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2.5. Correlation analysis between the risk score and cancer hallmark pathways 

The Molecular Signature Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/; v7.4) is one of the largest and most 
popular repositories of gene sets [29]. Single sample gene set enrichment analysis (ssGSEA) algorithm was applied to calculate the 
enrichment scores of target pathways based on corresponding mRNA data from TCGA-BLCA cohort and gene sets (hallmark and KEGG 
pathway gene sets) retrieved from MSigDB. The ssGSEA which derived from the GSEA method was implemented by “GSVA” R package 
[30]. Spearman correlation analysis was applied to evaluate the correlation between risk scores and cancer hallmark pathways. 

2.6. Estimation of immune cells infiltration and immune score 

Tumor infiltrating leukocytes (TILs) are integral components of TME and associate with prognosis and response to therapy. The 
deconvolution approach Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) (http://cibersort. 
stanford.edu/) was used to measure the abundances of 22 distinct leukocyte subsets via mRNA profile [31,32]. CIBERSORT gene 
signature matrix, termed LM22, encompasses 547 genes and differentiates 22 human immune cells including seven T cell types, naive 
and memory B cells, plasma cells, natural killer (NK) cells, and myeloid subsets. The proportion of immune cells in TCGA-BLCA cohort 
was calculated to explore TILs pattern in different risk groups. 

Besides, immune and stromal cells are the two main non-cancer components in TME, and they have important implications for 
tumor diagnosis and prognosis [15,33–35]. Thus we estimated the ratio of immune and stromal cells base on Immune Score, Stromal 
Score and Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) Score, which were 
calculated from specific gene expression profiles by ESTIMATE algorithm [34]. 

2.7. Prediction of drug sensitivity 

We collected the data of molecular markers associated with drug sensitivity and the response data to drugs in cancer cells from the 
public database referred as Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/) [36], including 138 
anti-cancer drugs and almost 700 cancer cell lines. We evaluated half-maximal inhibitory concentration (IC50) value to predict drug 
sensitivity in each patient with “pRRophetic” R package [37]. To assess the association between CSCs-related genes and the sensitivity 
to anti-cancer drugs, we compared the difference of IC50 of patient samples between high- and low-risk groups. 

2.8. Statistical analysis 

All statistical tests were performed using R software, version 4.0.1 (R Foundation for Statistical Computing Vienna, Austria). 
Differences in OS between risk groups were compared using Kaplan-Meier curves, with P-values calculated via the log-rank test using 
the “survival” R package. Hazard’s ratio and its 95 % confidence interval (CI) were determined by univariable Cox regression. The heat 
maps were plotted by “pheatmap” R package. The differences of drug sensitivity, immune cells infiltration, Stromal Score, Immune 
Score, and ESTIMATE Score between risk groups were compared by Mann Whitney test. The differences of immunotherapy response 
and BRCA1/BRCA2 mutation between risk groups were compared by Chi-square test. All P < 0.05 was considered statistically sig-
nificant, if otherwise stated. 

3. Results 

3.1. Identification of CSCs-related subtypes and subtype-specific DEGs in BLCA 

To explore the molecular function of CSCs-related genes, we performed non-supervised clustering analysis based on the expression 
of CSCs-related genes in TCGA-BLCA cohort and divided samples into four CSCs-subtypes named as cluster 1–4 (Fig. 2A). To analyze 
the relevance of CSCs-subtypes and OS, we performed Kaplan-Meier analysis and found that the OS of four clusters were significantly 
different (P = 0.02, Fig. 2B). 

Then, we identified a total of 900 subtype-specific DEGs among the four subtypes, including 65 DEGs in cluster 1 vs cluster 2/3/4, 
162 DEGs in cluster 2 vs cluster 1/3/4, 494 DEGs in cluster 3 vs cluster 1/2/4, and 259 DEGs in cluster 4 vs cluster 1/2/3. To reveal the 
underlying biological characteristics of each CSCs-subtype, we conducted functional enrichment analysis in each group of subtype- 
specific DEGs. The results showed that the DEGs in cluster 1 were mainly involved in development and cell differentiation 
(Fig. 2C). DEGs in cluster 2 were mainly involved in extracellular matrix related pathways (Fig. 2D). DEGs in cluster 3 mainly regulate 
immunity (Fig. 2E). And the main involved regulation of DEGs in cluster 4 was metabolism (Fig. 2F). Altogether, we identified four 
clusters in BLCA patients with different survival and enriched pathways based on the CSCs-related genes. 

Fig. 2. Non-supervised clustering of CSCs-related genes and gene enrichment results of DEGs. 
(A) The non-supervised clustering of CSCs-related genes in TCGA-BLCA cohort. (B) Kaplan-Meier curves for the four CSCs-subtypes of patients. (C–F) 
Enrichment analysis of subtype-specific DEGs in cluster 1 (C), cluster 2 (D), cluster 3 (E) and cluster 4 (F). 

X. Chen et al.                                                                                                                                                                                                           

https://www.gsea-msigdb.org/gsea/msigdb/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
https://www.cancerrxgene.org/


Heliyon 10 (2024) e24858

6

3.2. Development and validation of a CSCs-related risk stratification model in BLCA 

As prognostic monitoring is important for BLCA clinical management, we focused our efforts on the discovery of CSCs-related 
biomarkers, which could serve as potential effective prognostic indicators. Using univariable Cox regression analysis, 63 CSCs- 
related DEGs that were significantly associated with OS in BLCA patients were identified (P < 0.01, Supplementary Table S3). The 
candidate genes were utilized to establish the CSCs-related prognostic model to predict the OS of patients in TCGA-BLCA cohort. We 
penalized the unimportant features using LASSO Cox regression analysis and finally selected 16 CSCs-related biomarkers (including 
CD109, SERPINB2, PRELP, HNF1B, ZNF683, ETV7, FN1, SMAD6, SPOCD1, SLC45A3, HOXB3, OVGP1, GOLGA8A, CTSE, PTPRR, and 
MST1R) to build the CSCs-related prognostic model (Fig. 3A–B). 

Fig. 3. Construction and validation of the CSCs-related prognostic model 
(A) The results of the least absolute shrinkage and selection operator Cox regression analysis for core prognostic gene selection. (B) Regression 
coefficients of the 16 genes included in the prognostic model. (C) The relationship of four CSCs-subtypes, risk groups, and survival outcome of 
patients. (D–F) Kaplan-Meier curves of overall survival (OS) between patients with high and low CRCs-related prognostic score in TCGA-BLCA 
cohort (D), GSE32584 cohort (E) and GSE32894 cohort (F). (G–I) Time-dependent ROC curve analysis for risk score in TCGA cohort (G), 
GSE32584 cohort (H) and GSE32894 cohort (I). 
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By weighting the expression levels of the 16 genes with corresponding regression coefficients, a risk stratification model was 
developed to predict patients’ survival. Patients were divided into high-risk and low-risk groups based on the median value of risk 
scores. The association between four CSCs-subtypes and the two risk groups is depicted in Fig. 3C, with most of the patients in cluster 1 
stratified into high-risk while most of the patients in cluster 4 stratified into low-risk. The Kaplan-Meier survival analysis revealed that 
the low-risk patients had a better OS than those with high-risk (median OS, 3183 vs 623 days; P < 0.001; HR, 0.42; 95 % CI, 0.31–0.57, 
Fig. 3D). Meanwhile, we validated the prognostic value of CSCs-related prognostic model using GSE32894 and GSE32548 validation 
sets, and similar results were observed (GSE32894: P < 0.001; HR, 5.23; 95 % CI, 1.98–13.81, Fig. 3E; GSE32548: P < 0.001; HR, 3.99; 
95 % CI, 1.59–10.01, Fig. 3F). To further evaluate the performance of CSCs-related prognostic model, we applied ROC analysis for OS 
and found that the AUC was 0.710, 0.723 and 0.713 at 1-, 3- and 5-years, respectively in TCGA-BLCA cohort (Fig. 3G). Meanwhile, the 
AUC was 0.75, 0.697, 0.713 for 1-, 3- and 5-years in GSE32548 dataset, and 0.755, 0.817, 0.833 for 1-, 3- and 5-years in GSE32894 
dataset (Fig. 3H–I). 

To further explore the independence of the risk score as a prognostic factor, multivariable Cox regression was performed adjusting 
several clinicopathological variables including sex, age, stage, and grade. The results indicated that the risk score was independently 
associated with OS in TCGA-BLCA, GSE32548, and GSE32894 cohorts (Table 1). 

3.3. Association between the risk score from CSCs-related risk model and the sensitivity to anti-cancer drugs 

To explore whether the risk score can potentially predict the response to chemotherapy in BLCA patients, we compared the IC50 
values of multiple anti-cancer drugs between the two groups with different risk. The IC50 value of cisplatin, gemcitabine, vinblastine, 
and doxorubicin in the patients of high-risk group was lower than that of low-risk group (P < 0.05, Fig. 4A–D), suggesting a higher 
responsiveness when treated with these chemotherapeutic drugs in patients with high risk. On the contrary, the IC50 value of 
methotrexate of the high-risk group was higher than that of the low-risk group (P < 0.05, Fig. 4E). 

To investigate whether the risk score could be used to potentially guide ICIs therapy, we conducted survival analysis in mUC 
patients treated with anti-PD-L1 regimen in IMvigor210 cohort. The low-risk group was significantly associated with favorable OS 
(median OS, not reached vs 10.9 months; P = 0.01; HR, 0.51; 95 % CI, 0.29–0.87; Fig. 4F). Additionally, the objective response rate 
(ORR) of low-risk patients was also significantly higher than that of high-risk patients (45 % vs 24 %, Chi-square test, P = 0.04), 
suggesting that low-risk patients could gain more benefit from ICIs (Fig. 4G). Particularly, patients with complete response (CR) had 
the lowest risk scores and the risk scores among patients with CR, PR, SD, and PD were significantly different (Kruskal-Wallis, P = 0.03, 
Fig. 4H). Overall, the predictive value of risk score from CSCs-related risk model for chemotherapeutics and ICIs was observed. 

3.4. The CSCs-related risk groups reflected different molecular characteristics 

To explore possible contribution of the differences between risk groups, we further analyzed the molecular characteristics and 
somatic mutations by R package “Maftools” in TCGA-BLCA cohort. The top 5 genes with highest mutation frequency were ERCC2, 
TET1, CHEK2, ASCC3, and NDC80 in high-risk group (Fig. 5A), and ERCC2, CENPE, CHEK2, PTPRC, and TET1 in low-risk group 
(Fig. 5B). In high-risk group, the mutation frequencies of ASCC3 and NDC80 were significantly higher, and that of CENPE and PTPRC 
were lower than low-risk group. 

We also conducted ssGSEA analysis in TCGA-BLCA cohort to study the correlation between risk score and the activity of cancer 
hallmarks pathway. The top 30 significant cancer hallmarks pathways correlated with risk score are exhibited in Fig. 5C. The hallmark 

Table 1 
Multivariable Cox regression analysis of risk score and clinicopathological characteristics for OS in TCGA, 
GSE32584, and GSE32894. 
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epithelial to mesenchymal transition (EMT), hallmark unfolded protein response (UPR), hallmark apical junction, angiogenesis and 
hedgehog signaling pathway were most significantly positively correlated to the risk score, while the hallmark peroxisome and 
hallmark bile acid metabolism were most significantly negatively correlated to the risk score (Fig. 5D). Taken together, the results 

Fig. 4. Prediction of chemotherapeutic sensitivity and the response to ICI therapy. 
(A–E) Comparison of the IC50 value of cisplatin (A), gemcitabine (B), vinblastine (C), doxorubicin (D) and methotrexate (E) between high- and low- 
risk groups. (F) Kaplan-Meier curves of OS between patients treated with immune checkpoint inhibitors (ICIs) in high- and low-risk groups in 
IMvigor210 cohort. (G) Comparison of objective response rate between high- and low-risk groups. (H) Comparison of the risk scores between 
patients with different responses to immunotherapy. Abbreviations: CR = complete response, PR = partial response, SD = stable disease, PD =
progressive disease. 

Fig. 5. Comparison of molecular characteristics between CSCs-related risk groups. 
(A–B) Distribution of somatic mutations in high- (A) and low- (B) risk groups in TCGA-BLCA cohort. (C) The heat map of Spearman correlation 
between risk score and the activity of cancer hallmark pathway. (D) Cancer hallmark pathways with statistically significant correlation with risk 
score were shown. (E) Comparison of the homologous recombination deficiency (HRD) score between high- and low-risk groups. (F–G) Comparison 
of the percentages of mutated and wild-type BRCA1 (F) or BRCA2 (G) between high-risk and low-risk group pf patients. 
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suggested that CSCs-related genes included in the risk model were involved in complex and multifaceted biological processes in BLCA. 
Since homologous recombination deficiency (HRD) has been demonstrated to be associated with neo-adjuvant chemotherapy in 

BLCA [38], we further compared the HRD score between high-risk and low-risk groups. It was found that HRD score in high-risk group 
was higher than that in low-risk group (P = 0.003, Fig. 5E), suggesting that the genome in high-risk patients were more unstable. 
Considering that the key molecules involved in HRD process are BRCA1 and BRCA2, we further analyzed the association between risk 
score and BRCA gene mutation, however, there was no significant difference in the risk score between BRCA mutated and wild groups 
(Fig. 5F–G). 

3.5. The CSCs-related risk groups reflected different immune features 

To further explore the association between the CSCs-related risk stratification model and immune system, the proportions of 22 
immune cell infiltrates between two risk groups were compared by CIBERSORT analysis. It was found that the proportions of activated 
dendritic cells, resting dendritic cells, activated NK cells, plasma cells, regulatory T cells (Tregs), T follicular helper cells, and CD8+ T 
cells were significantly higher in low-risk group, while the proportions of macrophages M0, M1 and M2 and neutrophils were 
significantly higher in high-risk group (P < 0.05, Fig. 6A). Spearman correlation analysis also demonstrated that the CSCs-related risk 
score was significantly positively correlated with the infiltration level of macrophages M0 and M2, whereas negatively correlated with 
the infiltration level of Tregs, T follicular helper cells, CD8+ T cells, and activated dendritic cells (P < 0.05, Fig. 6B). 

Based on the three scores generated by the ESTIMATE algorithm, the difference of the overall ratio of stromal and immune cells 
were respectively analyzed. The association between the three scores (stromal, estimate and immune) and CSCs-related risk score is 
presented in Fig. 6C–E. Both the stromal score and estimate score were observed significantly higher in high-risk group (P < 0.001, 
Fig. 6C–D), and the immune score was borderline significantly higher in high-risk group (P = 0.05, Fig. 6E), suggesting a lower tumor 
purity in the patients of high risk group. 

4. Discussion 

CSCs have been hypothesized as the main reason of high recurrent rate in BLCA. In our study, a risk model based on 16 CSCs-related 
signature genes was built and validated. It was found that the prognosis of two risk groups was significantly different in the training 
and validation sets. To further explore the biological and clinical association of the risk score, the clinical, immune, and mutational 

Fig. 6. Immune infiltration analysis between CSCs-related risk groups. 
(A) Comparison of the proportions of the 22 immune cell infiltrates between low- and high-risk groups in TCGA-BLCA cohort. (B) Spearman 
correlation analysis between the risk score and immune cell infiltrates. Immune cells with statistically significant correlation were shown. (C–E) 
Comparison of the Stromal score (C), ESTIMATE score (D), and Immune score (E) between high- and low-risk groups. 
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characteristics between the high-risk and low-risk groups were compared. The most frequently mutated genes in each group were 
related to multifaceted biological processes such as cell growth, mitosis, and oncogenic transformation. Anti-tumor immune cells 
including activated dendritic cells, resting dendritic cells, activated NK cells, T follicular helper cells, and CD8+ T cells were signifi-
cantly higher in low-risk group, in contrast macrophages M0, M1 and M2 were higher in high-risk group. The chemotherapy sensitivity 
and response to ICIs therapy of the two groups was also significantly different. 

In our study, a CSCs-related prognostic model with good performance was developed. There are several other studies which also 
focused on the prognostic role of tumor stemness (TS)-related biomarkers. Zhang et al. reported a risk model including 61 TS-related 
genes which were associated with EMT and CSCs in BLCA [39]. The TS-related risk model could distinguish prognosis and also was 
associated with immunotherapy response. Our results are consistent with what they found in their study that patients with high TS 
scores demonstrated a lower ICIs therapy response rate. In their study, the immunotherapy response of patients was predicted based on 
tumor immune dysfunction and exclusion (TIDE), while in our study, data from a phase II IMvigor210 study was used to analyze 
immunotherapy response, which made our conclusion more reliable and robust. The comparison of our study and other studies 
exploring the TS-related prognostic value was summarized in Supplementary Table S4 [40–43]. 

It has been reported that CSCs are one of the main reasons of the discrepancies in the treatment outcomes of patients with BLCA 
receiving chemotherapy [44]. Since the standard first-line treatment strategy for BLCA is chemotherapy including MVAC regimen 
(methotrexate, vinblastine, doxorubicin and cisplatin), GC regimen (gemcitabine and cisplatin), and CMV regimen (cisplatin, meth-
otrexate and vinblastine) [45], the predicted IC50 value of these drugs was compared to assess the association between chemotherapy 
sensitivity and the CSCs-related risk score. High-risk patients have a higher chemotherapy sensitivity to cisplatin, gemcitabine, 
vinblastine and doxorubicin, which all inhibit cancer cells’ growth by affecting DNA replication. We suspected that this was due to a 
greater genetic instability in high-risk group. To test the hypothesis, we compared HRD scores and the frequencies of gene mutation 
between two risk groups. HRD scores were significantly higher in high-risk group, while there was no significant difference in the 
frequency of BRCA mutation between the two groups. Besides, ERCC2 and CHEK2 with the highest mutation frequency in both risk 
groups, are related to the pathways of response and repair damage to DNA [46–48]. These results indicated that the difference of HRD 
score between risk groups was probably due to multiple genes related to DNA repair response, rather than BRCA1/2. The above results 
suggested that CSCs-related risk score might imply genome instabilities, thus could indicate the chemotherapy benefit for patients with 
different risk stratification. 

Moreover, considering the survival advantage of immunotherapy, we analyzed the prognostic value of the risk score for ICIs 
therapy by assigning patients in the IMvigor210 cohort. As expected, results showed that low-risk patients had longer OS and increased 
response rate when treated with ICIs. Taken together, the risk stratification model based on CSCs-related genes had potential predictive 
value for chemotherapy and immunotherapy. The relationship between the risk score and immune cells infiltrated in TME was further 
studied. Researchers have proved that patients who had high numbers of infiltrating macrophages M0, M1, M2 and neutrophils ob-
tained a significantly poor prognosis [17,49], whereas activated dendritic cells, resting dendritic cells, activated natural killer cells, T 
follicular helper cells, and CD8+ T cells are often recognized as anti-tumor immune cells indicating favorable prognosis [50,51]. These 
conclusions supported our findings that activated dendritic cells, resting dendritic cells, activated natural killer cells, plasma cells, T 
follicular helper cells and CD8+ T cells were higher in low-risk group. Surprisingly, Tregs were higher in low-risk group which was in 
contradiction to that Treg cells are generally referred as pro-tumorigenic immune cell [52]. However, recently, a study demonstrated 
that Tregs displayed extreme heterogeneity in bladder TME and had varied contribution to anti-tumor responses [53], implying that 
the proportion of TILs should be carefully regarded as prognostic and predictive indicators because of the plasticity of immune cells. To 
sum up, the infiltration of more anti-tumor immune cells formed a relative immune-activated TME in the BLCA patients with low-risk, 
which probably contributed to the better prognosis observed in low-risk group. 

Our study has several limitations that should not be ignored. First, The CSCs-related genes in BLCA have not been fully studied, 
which may limit the performance of our risk stratification model due to incomplete CSCs gene list included in this study. Besides, the 
underlying mechanism of bladder CSCs interacting with immune infiltrated cells, stromal cells, and other non-CSC cells needs to be 
further studied to better interpret the results of our study. 

In conclusion, we established a risk classifier based on 16 CSCs-related genes for predicting survival in patients with BLCA. The low- 
risk patients had better prognosis compared to high-risk patients, and the survival benefit might be derived from the relative immune- 
activated TME. This observation was further confirmed in patients with ICI therapy that low-risk patients were more responsive to anti- 
PD-L1 regimen. In contrast to immunotherapy, high-risk patients were more likely benefit from chemotherapy. The CSCs-related risk 
model has both prognostic value and potential predictive value for therapeutic efficacy, which brings us closer to understanding the 
important role of CSCs in BLCA and may provide guidance for clinical treatment decision-making and patient management. The 
clinical utility of the CSCs-related risk classifier warrants further studies. 
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