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Abstract: The diagnosis of autoimmune Myasthenia Gravis (MG) remains clinical and rests on the
history and physical findings of fatigable, fluctuating muscle weakness in a specific distribution.
Ancillary bedside tests and laboratory methods help confirm the synaptic disorder, define its type
and severity, classify MG according to the causative antibodies, and assess the effect of treatment
objectively. We present an update on the tests used in the diagnosis and follow-up of MG and the
suggested approach for their application.
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1. Introduction

Myasthenia Gravis (MG) is one of the best understood human autoimmune diseases.
The pathogenic autoantibodies against structures of the neuromuscular junction can be
routinely identified in the majority of patients [1,2]. The pathophysiology of impaired
neuromuscular transmission is studied in detail, and several tests are readily available to
assess the synaptic disorder [3,4]. Some techniques have been perfected and have become
more accessible over the years, while others tend to be neglected [5,6]. While a standard
approach has been formulated in a number of texts, regional and other disparities in the
access to different tests exist so that the investigation tactic may differ according to the
circumstances. We present a review of recent experts’ opinions that may help clinicians
approach the rewarding task of MG diagnosis parsimoniously.

2. Neuromuscular Transmission

The axonal action potential, reaching the terminal branches, depolarizes them and
opens the voltage-gated presynaptic calcium channels. The influx of calcium triggers acetyl-
choline (ACh) release from the immediate store of quanta into the synaptic cleft. The ACh
diffuses to the postsynaptic membrane and interacts with the ACh receptors (AChR) on
its folds’ crests. As a result, postsynaptic membrane depolarization develops and reaches
the Na-channels in the postsynaptic folds’ depth. The resulting end-plate potential (EPP)
spreads to the sarcolemma and generates a muscle fiber action potential. In turn, it starts
the cascade of events leading to muscle fiber contraction. The ACh is hydrolyzed by the
acetylcholinesterase (AChE) into its constituents, that undergo reuptake by the terminal and
resynthesis into ACh.

The excessive amount of ACh quanta released and the specific organization of the
postsynaptic membrane ensure an EPP much exceeding the depolarization threshold of
the sarcolemma; this is the “safety factor” of neuromuscular transmission that ensures pro-
longed repetitive muscle fiber contraction. The AChR clustering and other critical features
of the end-plate are regulated by the release of the protein agrin from the terminal. Agrin
activates the enzyme muscle-specific tyrosine kinase (MuSK) in complex with low-density
lipoprotein receptor-related protein 4 (LRP4). Other features of the normal synaptic struc-
ture and function are outside our very brief synopsis; extensive reviews are available on the
subject [7].
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3. Antibodies in Diagnosis of Myasthenia Gravis

Detecting established pathogenic antibodies against some synaptic molecules in a
patient with the typical clinical features is virtually diagnostic of MG and helps define the
disease subtypes [1,5,6]. The autoantibodies to the AChR (AChR-Ab) were identified and
studied first [1]; their absence classified some patients into a “seronegative MG” group.
Research over this cohort discovered the MuSK-Ab and, recently, the LRP4-Ab as causative
in a smaller number of MG patients [8,9]. Assays are commercially available for detection
of AChR-Ab, MuSK-Ab, and LRP4-Ab and are being perfected in different aspects, while
other techniques are still restricted to “in-house” use at leading research institutions [2,5].
While not directly pathogenic, several other autoantibodies prove useful in assessing
thymoma-MG and late-onset MG [2,6]. We review the methods, the indications, and the
diagnostic significance of autoantibody tests concisely.

3.1. Anti-Acetylcholine Receptor Antibodies

In a patient with clinical features of MG, serum testing for AChR-Ab is the first
recommended step in diagnosis by most recent guidelines and expert opinions [2,5,6,10].

The most widely studied are the binding AChR-Ab, using a radioimmunoprecipitation
assay (RIPA) [1,2]. The highly selective AChR-agonist alpha-bungarotoxin, labelled with
125I, fixes to AChR extracted from muscle cell lines. The complex is then incubated with the
patient’s serum and precipitates with circulating serum AChR-Ab. Measuring the radioactiv-
ity of the precipitate assesses the quantitative titer of the antibody. The test has a very high
specificity, so the detection of elevated titers in the appropriate clinical setting is diagnostic of
AChR-myasthenia, and further testing may not be necessary [5,6,10]. A degree of diagnostic
suspicion is appropriate regarding the rare cases of antibody-positive subjects with other
disorders [11] or human and technical error [12]. The observation that some MG patients
have increased titer years before the clinical onset (as retrospectively found on preserved
sera) may explain some of the apparent false-positive results [13].The RIPA for binding Ab
is abnormal in up to 85% of adult patients with generalized MG, but only about 50% of
patients with ocular MG [2,5,6,14]. Detection of modulating and blocking AChR-Ab through
RIPA is commercially available but adds little diagnostic value [5], although others recently
emphasized their significance [15]. In selected seronegative cases, the test may be repeated
within 6–12 months, as delayed seroconversion is well-described, although rare [16].

The enzyme-linked immunosorbent assay (ELISA) for binding Ab is also available,
relying on standard equipment and avoiding work with radioactivity; however, the prevail-
ing opinion seems to be that ELISA is less specific and sensitive than RIPA [2,5,6]. Another
alternative to radiolabeling may be the fluorescence immunoprecipitation assay (FIPA),
which is also under study for MuSK-Ab detection [2,6]. Recently proposed are rapid tests
for AChR-Ab detection by modified ELISA with AChR fixed on surfaces (“immunostick”,
“dot-blot” techniques) [17,18]. They are a promising development with reported high
sensitivity and specificity that needs further validation [2].

The cell-based assay (CBA) is based on the development of cell lines expressing the
AChR and transfected with rapsyn, which stimulates clustering of the receptors. The cells
are incubated with the patient serum, and immunofluorescence is applied to detect the
autoantibody, in this case, AChR-Ab against clustered receptors. The technique detects
autoantibodies to clustered AChR in about 15% of RIPA-seronegative MG patients [19].
The CBA is an in-house qualitative method, valuable in research, but highly complex and
difficult to introduce as a routine. It would miss some patients, positive by RIPA [2,16].
Some centers offer the CBA study as part of a panel for seronegative myasthenia.

3.2. Antibodies to MuSK

Autoantibodies to MuSK, the postsynaptic receptor for agrin, were identified in 2001 as
causative in a prevailing percentage of the patients with “seronegative MG” [8]. Soon after,
the collective efforts of different centers defined MuSK-MG as a specific disease subtype
that differs significantly from the AChR-MG review in [20,21]. MuSK-Ab are found in
about 6–8% of all MG cases [2,5]. Detection of MuSK-Ab is commercially available, mainly
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by RIPA, using the directly radiolabeled antigen, 125I-MuSK (extracellular domain) [20].
The study is nearly 100% specific; the sensitivity is less clear, as the proportion of MuSK-
MG patients differs among study groups according to their origin, respectively, to certain
genetic predispositions [20,21]. ELISA kits for MuSK-Ab detection are available but not
widely used [2]. CBA detected MuSK-Ab in patients, RIPA-negative both for AChR-Ab
and MuSK-Ab [20]. As some of them harbored IgM MuSK-Ab of unclear significance, an
IgG-specific CBA for MuSK-MG was developed [22].

3.3. Antibodies to Anti-LRP4

The lipoprotein receptor-related protein 4 (LRP-4) mediates agrin signaling to MuSK.
LRP4-Ab were confirmed as causative in the last decade only; their presence varies widely
and depends on the geographic area [9,23]. LRP4-Ab may be pathogenic in about 2% of MG
patients [2,23]. They are identified by CBA, RIPA, and ELISA; the methods are still being
validated [2,6]. Furthermore, LRP4-Ab are present in up to 23% of amyotrophic lateral
sclerosis (ALS) patients, a percentage of patients with other neuroimmune disorders, and
up to 20% of subjects with MuSK-MG (as defined by serological and clinical criteria) [2].
Thus, the detection of anti-LRP4-Ab is not a straightforward diagnostic, unlike that of
AChR-Ab or MuSK-Ab; it should be interpreted strictly within the clinical context [6,24].

3.4. Double-Seropositive Myasthenia Gravis

MuSK-Ab are increasingly investigated in AChR-Ab positive patients, who are treatment-
resistant or develop clinical features less typical of AChR-myasthenia [21]. Thus, a group
of double-seropositive MG patients was identified that seemed to be more frequent in
East Asian populations. Some authors suggest that these double-seropositive subjects
resembled more MuSK-MG cohorts [25]. The group of “double-seropositive” MG may
involve up to 12.5% of all patients [2]. Recently, “triple-seropositive” patients were also ob-
served [26]; this underlines the significance of an integrative approach to MG classification
and management [27].

4. Pharmacologic Tests

Disordered neuromuscular transmission (NMT), due to a decreased number of func-
tioning AChR, may be improved by inhibiting the AChE enzyme; it provides larger
amounts of ACh to act on the remaining AChR over an extended period [28]. For diagnos-
tic purposes, an AChE-inhibitor with immediate-onset and short-lasting action would be
optimal so that the clinical effects relate closely with its application. Edrophonium chloride
(Tensilon, Enlon) effects start within 30 s and last about 5 min after intravenous injection; it
was used in MG diagnosis since the 1950s [29]. It may cause a dramatic recovery, especially
of oculomotor functions (Figure 1).
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Edrophonium evokes cholinergic side effects, such as salivation, sweating, nausea, and
fasciculations. The risk of serious side effects is low (less than 0.2%) [31] but not negligible
and includes bradyarrhythmias to asystole and cardiac arrest, bronchospasm, seizures,
and transient ischemic attack(TIA) [31,32]. The potential liability issues have limited the
use of the study. It should be done by an expert [15] in a setting allowing to react to such
effects, monitoring the heart rate and blood pressure [10,15]. A total of 0.6 mg atropine in a
separate syringe should be available. Individual sensitivity to edrophonium differs, so the
medication is given intravenously in fractionated doses up to the maximum of 10 mg (2 mg
+ 3 mg + 5 mg, 2 mg + 8 mg within 45 s) [5,10]. Some authors advise placebo application,
but the side effects of edrophonium nearly always “unmask” the active substance and may
provoke a positive placebo result [6]. To avoid bias, one should select a measurable sign
(e.g., eyelid fissure height) and document the objective effect.

In MuSK-MG, edrophonium may worsen patients’ weakness [33], so in clinical suspi-
cion of MuSK-MG, the test is best not performed.

An alternative to edrophonium is the slower, longer-actin neostigmine, which is intro-
duced intramuscular (IM) The improvement is expected to start within 5–15 min, becomes
most apparent later, and may last hours. The selection of objective endpoints in the neostig-
mine test seems to be less reliable [10]. This test may be preferable to edrophonium in
younger children who cannot cooperate fully [5,10].

The pharmacological tests’ sensitivity and specificity have rarely been reported in a
methodologically sound way [34]. Some authors claim that the neostigmine test is more
sensitive and specific than antibody testing and electrophysiology study [35], but this
seems to contradict the prevailing experience [10,36].

In summary, pharmacological tests are useful, especially in ocular myasthenia [5], but
logistical problems related to safety, drug availability, and some ambiguity in the choice
of the endpoints have limited their use. In the USA, edrophonium has been discontinued
since 2018 [37]. The Italian recommendations mention that neostigmine may be used as
a third-line test in seronegative patients with normal electrodiagnostic results [38]. The
Guidelines of the Association of British Neurologists state that “ . . . The edrophonium test
may be difficult to interpret. Conditions that mimic myasthenia may produce a positive
result, and there are potential cardiac complications”, [39]; to our knowledge, it has not
been practiced in the UK in the last years.

On the other hand, in many areas, access to reliable serological or electrodiagnostic
study is limited or even impossible, not the least for monetary reasons. In such circumstance,
the cheap and available Neostigmine test may still be an important diagnostic tool in MG.

5. The Ice-Pack Test

Heat was noted to worsen an MG-patient’s fatigue and weakness, while cold, on
the contrary improved them [40], which gave the idea for a simple local cooling test:
application of an ice-pack over a symptomatic eye for 2–5 min was found to reduce ptosis
and ophthalmoparesis [41]. The test is used mostly in ocular MG and seems more popular
among neuro-ophthalmologists; some authors report sensitivities equal to that of single-fiber
electromyography (SFEMG) in patients presenting with ptosis and a very high negative
predictive value [42]. However, others note much lower specificity at about 25% [36].
The criterion for abnormality (improvement of ptosis by at least 2 mm) seems somewhat
arbitrary, as improvement of this magnitude was seen even with the application of heat
rather than cold (although, statistically, the cold pack was more effective in the resolution
of ptosis) [43]. Some of the suggested diagnostic algorithms or flowcharts do not include
the ice pack-test [6]. Still, this safe and straightforward bedside investigation, with the
contemporary possibilities to film the results, has its place in practice, especially when the
effect is unequivocal.

6. Electrodiagnostic Studies

The specialized electrodiagnostic techniques in MG are the repetitive nerve stimulation
study (RNS) and single-fiber electromyography (SFEMG). Routine needle electromyogroa-
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phy (EMG) and nerve conduction studies are performed to exclude alternative diagnosis
or to confirm a concomitant disorder. In routine needle EMG of a weak myasthenic muscle,
instability of the motor unit potential (MUP) with consecutive discharges may be noted by
a seasoned neurophysiologist but remains dependent on subjective interpretation [5,10].

6.1. Repetitive Nerve Stimulation

Muscle responses to supramaximal repetitive nerve stimulation of different frequency,
duration, and pattern are studied in synaptic (including the presynaptic) pathology and in
some channelopathies for assessment of neuromuscular blocks, etc. Below, we focus on the
changes in MG. Jolly (1893) initially observed them, using mechanical equipment to record
the decrease of consecutive responses cited after [44]; the decline of electrically registered
muscle potentials was documented in MG Harvey and Masland, 1941, after [44].

The compound muscle action potential (CMAP), in response to a supramaximal elec-
tric stimulus over the corresponding nerve, represents the sum of the action potentials
(APs) of all muscle fibers within that muscle. In healthy muscle, all fibers respond to
repeated stimulation in the physiological range of discharge rates. This stability is ensured
by the “safety factor”: the amount of ACh released is larger than the required release, and
the structures of the postsynaptic membranes are arranged in such a way that the end-plate
potential (EPP) generated by the nerve impulse is much higher than the threshold values
of the muscle fiber membrane [45]. Successive stimuli at a low rate produce smaller EPP, as
only ACh from the immediate store is released, but the EPP remains high enough to depo-
larize the sarcolemma. This and other adaptations facilitate neuromuscular transmission
and synchronize muscle fibers’ discharges in time [7].

The “take away” knowledge from this brief synopsis is that, with low stimulation rates
(below the physiological), usually 2 or 3 Hz, the successive CMAPs in a healthy muscle
will be identical by amplitude and area. With higher stimulation rates in the physiological
range (10–20 Hz) and after prolonged voluntary contraction at maximal effort, the adaptive
changes lead to some increase of the amplitude of the CMAP, but its area remains constant.
This phenomenon is known as pseudofacilitation [4,7]. A schematic representation of the
events during the normal RNS test at a slow rate can be found in Figure 2.

In MG, the safety factor is decreased due to the loss of acetylcholine receptors, sodium
channels, and the derangement of the normal postsynaptic structure [46]. As a result, at a
low rate of stimulation, the physiological drop in EPP amplitudes reaches a stage at which
the EPP remains below the threshold for muscle fiber activation. The muscle fiber remains
inactive, i.e., blocking appears. With successive stimuli, a growing percentage of the muscle
fibers will block. The CMAP decreases in amplitude and area with repeated stimuli; an
abnormal decrement is observed. This drop-in amplitude is calculated as a percent of the
initial CMAP and is maximal between the first and second responses but reaches a nadir at
the fourth and fifth responses [4,7,10], e.g., a 35% lower amplitude will translate to “35%
decrement observed” at the fourth response. The responses then stabilize and may even
increase on behalf of the true facilitation mentioned. These processes are schematically
illustrated in Figure 2. The “staircase” or “U” shape of the train of stimuli is considered
characteristic of postsynaptic pathology (Figures 3 and 4) [47,48].

The abnormality limit for decrement is 10% of the initial amplitude/area, but with
technically perfect recording, any decrement of the typical pattern is suspicious and de-
serves clarification [49]; the original traces for any non-physiological changes (movement,
baseline instability). A minor decrement in single muscles should not be overestimated
as diagnostic. In some cases, a muscle with normal or borderline initial RNS reveals true
decrement immediately after 1-min of maximal contraction [48].
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Changes of RNS due to postsynaptic pathology are further characterized by the effects
of tetanic muscle contraction. It may be achieved via high-frequency electrical stimulation
(30–50 Hz), which is poorly tolerated; most laboratories use maximal voluntary contraction
over a brief period (10–60 s) instead [4,48,49]. Thereafter, the accumulation of calcium in
the terminal mobilizes the ACh stores and tends to compensate or even completely reverse
the transmission failure seen at lower frequencies. Therefore, the CMAPs immediately
after exertion demonstrate some true increase (post-tetanic or post-exercise facilitation).
However, further stimulation reveals worsening of decrement (post-tetanic or post-exercise
exhaustion lasting 2–5 min) by mechanisms that are still not completely clear [48,49]. These
phenomena are illustrated in Figure 5. The full sequence of post-exercise events is not
often seen in postsynaptic pathology but is very prominent and is an obligatory study in
suspected presynaptic disorder [50]. In MG, the additional diagnostic value of post-exercise
testing was assessed at a few percent only, and some authors suggest to skip this step,
using the time for testing other nerve-muscle combinations instead [51].
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The accuracy of RNS in different nerves/muscles has been amply studied for decades,
with variable results easily explained by study design, spectrum, and incorporation bias,
choice of muscle, and, not the least, by different normative values for decrement. In
generalized MG, RNS of distal muscles is abnormal in 30–35% of patients, while in proximal
muscles, it is abnormal 60–70% [52,53]. In ocular MG or ocular onset MG, the RNS of
distal muscles is disappointing at about 10% sensitiviy, while in the facial muscles, it may
reach 35–38% [48–50]. Studies on new-onset MG patients compared to real-life differential
diagnostic groups may be most useful but are not numerous [34,52,53]. One should note as
a standard feature the high specificity of RNS, which reaches about 97% in generalized MG
and 94% in ocular MG [34], or even 100% when studying six pairs of muscles [54].

The muscle to study by RNS should ideally be clinically involved. Testing more
muscles increases the diagnostic yield [52–54]. The choice of nerve/muscle is determined
by a patient’s tolerance and technical factors, in addition to the expected sensitivity. The
hand muscles are easier to test and are better tolerated, but less sensitive [10,52]. Proximal
muscles (like deltoid) give a high yield but require adequate immobilization and excellent
cooperation [10,49,55]; among them, the trapezoid seems easier to test [56]. The anconeus
muscle at the elbow is rated among the most sensitive in ocular MG [54] and in oculobulbar
MG in some studies [57]. In the facial muscles, the sensitivity is the highest, and they are
instrumental in ocular MG [54], but technically, they are more demanding and prone to
patient movement issues [48]. In bulbar onset MG, stimulation of the hypoglossal nerve
while recording from the submental muscle complex [54] is recommended. approaches,
which aren’t standard, emerge in particular settings, e.g., masseteric nerve stimulation via
a monopolar needle in bulbar onset or phrenic nerve RNS in respiratory weakness [58,59].

A recent study questions the 10% limit of abnormality for the decrement; with a 7%
cut-off, the sensitivity of RNS increases significantly, while the specificity is much less
affected [60]. Previous reports have also noted decrements of 5–7% at low rate RNS as
maximal in healthy controls [50]. However, introducing a stricter cut-off limit increases the
technical requirements.

A decremental response may be seen in denervating/reinnervating muscles, partic-
ularly with ALS, but differs from the typical postsynaptic decrement in distribution and
pattern [55]. In a large cohort of 85 ALS patients, none had a significant decrement in a
facial muscle; besides, the typical “U” shape, with some reversal of decrement at the fifth
and sixth responses, was not observed in ALS [49,55].

Besides the high specificity, advantages of RNS are the easy repeatability and the
correlation of RNS changes with the severity of neuromuscular transmission defect [61].
Thus, it may be used to monitor treatment response. RNS abnormality in a peripheral
muscle in ocular onset MG increases the risk of generalization, according to some au-
thors [62,63]. In an emergency setting, RNS may distinguish a cholinergic crisis from a
myasthenic crisis [48]. It is useful in seronegative myasthenia [5,6,10]. However, the study
is not always well-tolerated, especially in facial and proximal muscles or in obese patients.

6.2. Neuromuscular Jitter Study

In the early 1960s, Ekstedt and Stalberg designed EMG electrodes able to record the
potentials of single muscle fibers in situ (single-fibre EMG, SFEMG), intended mostly for
the study of physiological fatigue [64]. With the ingenious research of Stalberg, Trontelj,
and others, the single-fiber electromyography (SFEMG) developed into an essential tool in
the research and diagnosis of neuromuscular disorders [65].

Recently, because of epidemiological restrictions, the disposable, smallest size con-
centric EMG needle (28–30 G) is used for jitter measurements, although it is clear that
the potentials recorded are not always true single muscle fiber potentials [66]. The study
performed with such an electrode should be called “jitter measurement with concentric
needle electrode” or “concentric needle (CNE)jitter” [66,67].

Understanding of jitter measurement returns us to synaptic transmission mechanisms.
The time from ACh release to EPP generation and further, to muscle fiber activation, nor-
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mally fluctuates within tens of microseconds, depending on the random oscillations of the
amount of ACh, the number of refractory receptors, and the sarcolemmal potential. Thus,
even in a healthy muscle, there is a variation in the transmission time; a neuromuscular
jitter. It is calculated according to a specific algorithm as the mean consecutive difference
(MCD) in time between successive discharges. It is estimated for individual fibers/pair
of fibers (MCD per pair) and as a mean for the studied muscle (MCD per study) [7,68].
The jitter may be measured for a pair of fibers, voluntarily activated by the same axon
(volitional jitter). In this case, one fiber was used as a trigger. With the stimulated CNE
jitter, one applied repetitive, low stimuli over the motor nerve that activated only several
axons at a time (microstimulation). The examiner adjusted the recording needle to select
fiber potentials, corresponding to specific criteria. A schematic explanation of the recording
methods may be seen in Figure 6.
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In postsynaptic pathology, the EPP becomes even more variable on behalf of decreased
receptor numbers and deranged synaptic morphology. It may reach the threshold later
than normal, with greater differences in time between discharges, i.e., the jitter will be
abnormally high. When the EPP does not reach the threshold at all, blocking will be
registered [7,68]. Schematic presentation of jitter recordings is given in Figure 6. Examples
of normal jitters are seen in Figures 7 and 8, and abnormal jitter recordings are shown in
Figures 9–11.
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Figure 11. “Ex ungue leonem”: (A) flawless recordings of normal and abnormal stimulation jitter, (B) abnormal volitional
jitter, and (C) the paradigmatic U-shaped CMAP decrement, from an article with co-author Professor E. Stalberg. Copyright
© 2020 Kouyoumdjian, Paiva, and Stålberg. From: Kouyoumdjian JA, Paiva GP, and Stålberg E. Concentric Needle Jitter in
97 Myasthenia Gravis Patients. Front Neurol. 2020;11:600680. Published 2020 Nov 13. doi:10.3389/fneur.2020.600680, under
CC BY license.

The jitter study is the most sensitive indicator of impaired neuromuscular transmis-
sion [4,5,10]. Studies of RNS and jitter performed on the same muscle discovered that
decrement never appears without a jitter abnormality; on the contrary, muscles with nor-
mal RNS may show prominent jitter changes, sometimes with up to 50% blocking [69,70].
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The CNE jitter is abnormal in 98–100% in generalized MG and above 90% in ocular MG.
These results have been replicated numerous times [7,14,34,52,53,68]. The most sensitive
are the facial muscles around the eye, especially in ocular MG or ocular onset MG. Like
in RNS, one should focus on a clinically involved muscle (the masseter or the tongue in
bulbar onset, the cervical paraspinals in dropping head/axial onset, deltoid in generalized
fatigue). After a routine EMG, making sure the muscle is not denervated or myopathic, the
CNE-jitter will be measured and compared to established normative values per muscle. A
normal jitter measurement in a weak muscle or in three optimally chosen muscles excludes
MG [7] or at least carries a very strong negative predictive value of about 98% [71]. An
important feature of jitter measurement is its sensitivity in seronegative myasthenia [72].
The degree of abnormality corresponds to the severity of the disease [61]. Like with RNS,
some very mild changes should not be overemphasized [6,7].

While highest in sensitivity, jitter measurements are not specific and may be abnor-
mal in other synaptic disorders, in denervation and reinnervation processes (poly- and
mononeuropathies), some myopathies, and with motor neuron disorder (MND) in particu-
lar [7,52,53,68]. Recently, it has been stated that botulinum toxin’s cosmetic or therapeutic
application should always be excluded by directed history [73]. In the clinical setting,
the low specificity of SFEMG may be compensated, partially because not so many of the
conditions with increased jitter appear as clinical MG-mimics [74]. The choice of muscle
is also important in this aspect, e.g., in a patient with a history of radiculopathy C7, one
would not rely on EDC muscle jitter study. Our collective has established that, in known
diabetic neuropathy, jitter in the frontalis muscle is preserved, except in some very severe
cases; in contrast, the EDC muscle jitter shows significant changes in most patients [75].

As the most sensitive technique in neuromuscular transmission disorders, jitter mea-
surement may be decisive in seronegative MG. However, it is not readily available, even
in the developed world; this is an expert study, much dependent on operator expertise
and strict adherence to the technical criteria of recording and patient cooperation and
tolerance [76].

In pediatric practice, a stimulated CNE jitter modification was introduced recently,
which obviates the need for longer and deeper sedation in infants and young children
(Stimulated Potential Analysis using Concentric Electrode (SPACE)). Complex signals
consisting of multiple peaks are recorded from the orbicularis oculi muscle after repetitive
stimulation of the zygomatic branch and analyzed visually and by peak-detection software;
a detailed description of the technique is available in Pitt, 2017 [77].

7. Thymus Imaging

Thymoma is present in up to 15% of MG-patients, mostly in those with detectable
AChR-Ab [6]. Several clinical and serological features are positively and negatively predic-
tive for thymoma (e.g., in MuSK-MG, thymoma is seen in single cases only; in the presence
of striational antibodies, thymoma is very likely), but none are absolutely reliable, so imag-
ing of the thymus is advised in all confirmed or strongly-suspected MG patients [5,6,39].
The techniques for detecting and classifying thymic pathology and assessment for malig-
nancy, etc., are outside the scope of the review. CT, MRI, PET, radioisotopic techniques
all have a place [78], but for screening, CT seems preferred [5,10]. On the other hand, all
patients with thymoma should be investigated for MG, as up to one-third of them develop
the disease [79]; AChR-Ab may be positive in thymoma patients without clinical evidence
of synaptic disorder, so electrodiagnosis may be necessary in dubious cases.

8. Diagnostic Approach

From the simple confirmation of an acquired postsynaptic disorder, the diagnosis of
autoimmune MG has developed into the task of identifying the disease subtypes along
several axes: the type of causative antibody, distribution of weakness, and age of onset,
relation to thymic pathology [6,27,39]. Such classification proves very important in man-
agement, as those subtypes differ in pathophysiology and may require different treatments,
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e.g., thymectomy is recommended in AChR-MG of early onset but not in AChR-MG of
late onset; anticholinesterases are less effective and may even worsen MuSK-MG, etc. The
expected approval of biologicals targeting specific steps in pathophysiology (antibody
production, complement action) stressed the need to distinguish the subtypes further.

Accordingly, the first step in a patient with the clinical features of myasthenia should
be tested for AChR-Ab and MuSK-Ab. A positive result is diagnostic and there is no
need of further confirmation, according to some authors [5,6,27]. The patient should be
referred for screening of the thymus and thyroid function tests to exclude comorbidities.
However, authoritative sources recently report specificities of 90–95%, with dozens of false
positives in large series of patients tested for MG [15]. Such results may relate to the use of
antibody testing as a screening rather than as a confirmatory test. This underlines the need
for an index of suspicion in patients with less typical clinical features and a liberal use of
additional tests and possible Ab retesting.

In a seronegative patient, electrodiagnostic tests are the next objective step in diagnosis.
The RNS is less sensitive, but highly specific and more available. If the tests are negative,
jitter measurement is performed. Electrodiagnostic studies should be directed at clinically
involved muscles; it is wise to include as many muscles as possible (tolerated by the
patient). If electrodiagnosis confirms postsynaptic disorder, the diagnosis is definite [6,10].

The pharmacological test (where available and when objectively unequivocal) may be
sufficient for definite diagnosis of MG [5] and may be used as an alternative to electrodiag-
nosis as a second-line method, especially in ocular MG [14]. The use of a pharmacological
test is also dependent on the availability of the medication.

The ice-pack test is recommended by some at this step as well, especially in ocular MG;
again, many experts would not include it in the guidelines or suggested algorithms [6,38,39],
but there are also proponents of its high accuracy [42].

If a patient is negative for all diagnostic procedures above and the clinical picture is
of clearly fluctuating asymmetric ptosis and double vision, then ocular MG is probable;
treatment with clinical observation and retesting should be considered, especially if the
duration of disease at first tests was short. According to some UK guidelines [39], brain
imaging may be appropriate to exclude some of the rare mimics due to structural brain
disease. Thyroid finction tests are appropriate in all definite or probable MG cases [39,80].

The remaining patients, negative for all available objective studies but still symp-
tomatic, are unlikely to suffer from MG. Notably, such cases that remain undiagnosed after
2 years of observation at a highly specialized MG Clinic may represent over 10% of the
referrals [71]. Still, reassessment of some of them, according to clinical judgement, may
be indicated, considering the fluctuating course of MG and the possibility for technical or
human errors.

9. Conclusions

The diagnosis of autoimmune Myasthenia Gravis in the contemporary setting aims at
defining the disease subtypes, which inevitably relies on serological methods and makes
them the first-line investigation in suspected MG. Re-testing the patient in clinical doubt
and using other test modalities makes sense, as cases of “false positives” or delayed
seroconversion may be not so rare.

The electrodiagnostic tests have lost some of their significance in the new paradigm,
but in seronegative cases, in ocular myasthenia, they may confirm diagnosis and help
follow up the patient’s condition objectively.

The pharmacological tests are neglected in some countries with better access to serol-
ogy and electrodiagnosis, but may still be useful where the appropriate anticholinesterases
are available and access to serology and electrodiagnosis is limited. They might replace the
electrodiagnosis when unequivocally positive. The icepack is a useful addendum in cases
of ocular myasthenia, although in the opinion of this author, the abnormality criteria are
somewhat arbitrary.
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The possibility to control the great majority of MG cases makes diagnosis of MG grati-
fying; the advances in treatment that are already around the corner will make knowledge
of MG and its timely diagnosis even more responsible and rewarding.
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76. Sanders, D.B.; Arimura, K.; Cui, L.; Ertaş, M.; Farrugia, M.E.; Gilchrist, J.; Kouyoumdjian, J.A.; Padua, L.; Pitt, M.; Stålberg, E.

Guidelines for single fiber EMG. Clin. Neurophysiol. 2019, 130, 1417–1439. [CrossRef] [PubMed]
77. Pitt, M.C. Use of stimulated electromyography in the analysis of the neuromuscular junction in children. Muscle Nerve 2017, 56,

841–847. [CrossRef]
78. Priola, A. Imaging of thymus in myasthenia gravis: From thymic hyperplasia to thymic tumor. Clin. Radiol. 2014, 69, e230–e245.

[CrossRef]
79. Marx, A.; Pfister, F.; Schalke, B.; Saruhan-Direskeneli, G.; Melms, A.; Ströbel, P. The different roles of the thymus in the

pathogenesis of the various myasthenia gravis subtypes. Autoimmun. Rev. 2013, 12, 875–884. [CrossRef] [PubMed]
80. Nacu, A.; Andersen, J.B.; Lisnic, V.; Owe, J.F.; Gilhus, N.E. Complicating autoimmune diseases in myasthenia gravis: A review.

Autoimmunity 2015, 48, 362–368. [CrossRef] [PubMed]

http://doi.org/10.1002/mus.1140
http://www.ncbi.nlm.nih.gov/pubmed/11494281
http://doi.org/10.1002/mus.24745
http://www.ncbi.nlm.nih.gov/pubmed/26109387
http://doi.org/10.1002/mus.25374
http://www.ncbi.nlm.nih.gov/pubmed/27511866
http://doi.org/10.1097/CM9.0000000000000117
http://www.ncbi.nlm.nih.gov/pubmed/30807353
http://doi.org/10.1002/mus.880070211
http://www.ncbi.nlm.nih.gov/pubmed/6717491
http://doi.org/10.1016/j.clinph.2004.05.024
http://www.ncbi.nlm.nih.gov/pubmed/15546785
http://doi.org/10.1002/mus.20001
http://www.ncbi.nlm.nih.gov/pubmed/15052625
http://doi.org/10.1136/thx.47.8.640
http://www.ncbi.nlm.nih.gov/pubmed/1329247
http://doi.org/10.1002/mus.26999
http://www.ncbi.nlm.nih.gov/pubmed/32530515
http://doi.org/10.1002/mus.25539
http://www.ncbi.nlm.nih.gov/pubmed/28029691
http://doi.org/10.1016/j.jns.2008.05.023
http://www.ncbi.nlm.nih.gov/pubmed/18602121
http://doi.org/10.1186/s12883-020-01805-1
http://www.ncbi.nlm.nih.gov/pubmed/32527235
http://doi.org/10.1002/mus.10140
http://doi.org/10.1002/mus.10141
http://doi.org/10.1002/(SICI)1097-4598(200005)23:5&lt;715::AID-MUS8&gt;3.0.CO;2-V
http://doi.org/10.1111/j.1749-6632.2012.06775.x
http://doi.org/10.1016/b978-0-444-64032-1.00019-9
http://doi.org/10.1002/mus.880170207
http://www.ncbi.nlm.nih.gov/pubmed/8114786
http://doi.org/10.1016/S1388-2457(00)00544-7
http://doi.org/10.1016/j.clinph.2013.11.005
http://doi.org/10.1016/j.nmd.2009.09.005
http://doi.org/10.3390/toxins12090549
http://www.ncbi.nlm.nih.gov/pubmed/32867187
http://doi.org/10.1196/annals.1254.066
http://www.ncbi.nlm.nih.gov/pubmed/14592921
http://doi.org/10.1097/WNP.0000000000000087
http://www.ncbi.nlm.nih.gov/pubmed/25271685
http://doi.org/10.1016/j.clinph.2019.04.005
http://www.ncbi.nlm.nih.gov/pubmed/31080019
http://doi.org/10.1002/mus.25685
http://doi.org/10.1016/j.crad.2014.01.005
http://doi.org/10.1016/j.autrev.2013.03.007
http://www.ncbi.nlm.nih.gov/pubmed/23535159
http://doi.org/10.3109/08916934.2015.1030614
http://www.ncbi.nlm.nih.gov/pubmed/25915571

	Introduction 
	Neuromuscular Transmission 
	Antibodies in Diagnosis of Myasthenia Gravis 
	Anti-Acetylcholine Receptor Antibodies 
	Antibodies to MuSK 
	Antibodies to Anti-LRP4 
	Double-Seropositive Myasthenia Gravis 

	Pharmacologic Tests 
	The Ice-Pack Test 
	Electrodiagnostic Studies 
	Repetitive Nerve Stimulation 
	Neuromuscular Jitter Study 

	Thymus Imaging 
	Diagnostic Approach 
	Conclusions 
	References

