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Abstract
Osteoarthritis is a common, complex disease with no curative therapy. In this review, we summarize current knowledge on
disease aetiopathogenesis and outline genetics and genomics approaches that are helping catalyse a much-needed improved
understanding of the biological underpinning of disease development and progression.

Introduction
Osteoarthritis (OA) is the most prevalent musculoskeletal dis-
ease and a leading cause of disability worldwide (1–3). The im-
pact of OA across Europe has been described as immense (4,5).
OA affects 40% of individuals over the age of 70 (1), is a major
cause of pain (6) and is associated with an increased risk of co-
morbidity and death (7). Ten million people suffer from OA in
the UK alone, with a total indirect cost to the economy of £14.8
billion per annum (7). The most common OA site is the knee, af-
fecting 1 in 5 people over the age of 45 (8,9). The health eco-
nomic burden of OA is rising, commensurate with longevity and
obesity rates (8). There is currently no treatment; disease man-
agement targets the main symptoms of pain and loss of func-
tion and culminates in joint replacement surgery [1.76 million
per year in the EU (10)] with variable patient-reported outcomes
(11–13). Thus, there is a large unmet need for therapeutic inter-
ventions to alter the natural history of the disease (14). This re-
view will outline established and emerging pathways to

improving our understanding of disease aetiopathology through
genetics and genomics studies.

OA Is a Disease of The Synovial Joint
The synovial joint is a complex structure, comprising articular
cartilage, subchondral bone, synovial lining membrane, fibrous
joint capsule and supporting ligaments. The articular cartilage,
calcified cartilage and subchondral bone form the osteochon-
dral unit, a biocomposite that is uniquely adapted to transfer-
ring loads during weight bearing and joint motion. The
osteochondral unit provides tensile strength, compressive resil-
ience and a low-friction articulating surface through the colla-
gen network, proteoglycan aggregates and layer of lubricants,
respectively. Chondrocytes are the only cell type in articular
cartilage, which is avascular and aneural. Under normal physio-
logical conditions the synovial membrane consists of a thin
layer of cells with phenotypic features of macrophages and

Received: July 17, 2017. Revised: July 24, 2017. Accepted: July 25, 2017

VC The Author 2017. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

R193

Human Molecular Genetics, 2017, Vol. 26, No. R2 R193–R201

doi: 10.1093/hmg/ddx302
Advance Access Publication Date: 27 July 2017
Invited Review

Deleted Text: Introduction
Deleted Text: (
Deleted Text: )
Deleted Text: A
Deleted Text: O
Deleted Text: OA is a disease of the synovial joint
http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/


fibroblasts (15), and serves to produce synovial fluid that is re-
sponsible for maintaining nutrition and lubrication of the artic-
ular cartilage. The subchondral bone adapts its structural and
functional architecture in response to its local mechanical envi-
ronment through remodelling, regulated by osteocytes via inter-
actions with osteoclasts and osteoblasts (16).

OA is a disease characterized by a gradual process of tissue
destruction and remodelling that affects all of the structures of
the synovial joint (17,18), with degeneration of articular carti-
lage, remodelling of the underlying bone, and synovitis (18) as
its hallmarks (Fig. 1). The initiating signals that trigger the de-
velopment of OA remain poorly understood, however estab-
lished clinical risk factors include increasing age (19–21), female
sex (19,21–23), obesity (20,23,24), occupational exposure to high
levels of joint loading activity (23,24), previous joint injury and
deformity (25,26), smoking status and family history of OA (27–
30). Histological changes in OA include synovial hypertrophy
and hyperplasia, with macrophage and lymphocyte recruit-
ment, angiogenesis, and fibroblast proliferation. Those within
the osteochondral unit includes loss of chondrocytes in the su-
perficial zone with proliferation in deeper zones; loss of extra-
cellular matrix; vascularization and neuronal ingrowth across
the tidemark between calcified and non-calcified cartilage; and
remodelling of subchondral bone, resulting in sclerosis, cysts
and osteophyte formation.

OA Is a Complex Genetic Disease
Both environmental and genetic factors play a role in the
aetiology of OA, with genetic factors accounting for half of
the variation in OA susceptibility (30). To date, and all within
the last 10 years, 21 robustly established OA genetic loci have
been reported (Fig. 2). With the exception of GDF5, which was
originally identified by a candidate gene-based approach, the
remaining loci were established by genome-wide association
studies (GWAS). Primarily the studies were carried out in
populations of European descent, with two studies per-
formed in Asian populations and none in African. The major-
ity of associations are joint-specific with differences in effect
between end-stage and radiographic OA, as well as between
males and females. Most of the variants are common (minor

allele frequency>4%) with small to moderate effect sizes
[largest odds ratio (OR) 1.79 for GDF5]. All of these character-
istics typify the polygenic and complex genetic architecture
underpinning OA.

A recent study of end-stage hip OA in Icelanders identified
two rare variants located in the chondroadherin-like protein
(CHADL) and cartilage oligomeric matrix protein (COMP) genes,
with substantially larger effect sizes than previously seen (OR
7.7 and 16.7, respectively) (31). The COMP variant c.1141 G>C
(allele frequency 0.026%) is a missense variant unique to the
Icelandic population. COMP is a functional constituent and
abundantly expressed in the extracellular matrix of cartilage
(32), and has served as a serum biomarker for cartilage degrada-
tion (33,34). The CHADL variant rs532464664 (homozygote fre-
quency 0.15%, recessive model association) is an insertion
resulting in a frameshift and has been observed in other, mostly
European populations. CHADL is expressed in cartilaginous tis-
sue and is involved in fibrillogenesis and regulation of chondro-
cyte differentiation (35). Possession of these rare variants in
COMP and CHADL significantly decreased the age at which total
hip replacement was performed by 13.5 and 4.9 years,
respectively.

Among the 21 established OA loci, several have been found
to have potentially pleiotropic effects; GDF5 is also associated
with height; FTO with body mass index (BMI) (with FTO exerting
its effect on OA through BMI); and a recently established OA lo-
cus in SMAD3 with bone mineral density (BMD) (36).
Furthermore, variants in astrotactin (ASTN2) are associated
with total hip replacement in females (37) and also with
migraine (38). ASTN2 is highly expressed in the developing brain
and is involved with migrating neurones. Shared pathophysio-
logical features between migraine and OA remain unclear, al-
though it is noteworthy that the major symptom of OA is pain.
Genome-wide linkage disequilibrium regression analyses can
identify genetic correlations between OA and a wide range of
complex physiological, molecular and behavioural traits, fol-
lowed by formal Mendelian randomization approaches to deter-
mine the direction of effect.

Several of the established OA loci also have some transla-
tional potential. Variants in the carbohydrate (chondroitin 4)
sulphotransferase 11 (CHST11) gene are associated with hip
OA (37). The protein catalyses the transfer of sulphate groups
in chondroitin sulphate, the principal proteoglycan in carti-
lage. Chondroitin sulphate can be taken as a nutritional sup-
plement for OA and although numerous trials have been
performed the clinical benefits and pain relief evidence is in-
consistent (39). Variants in the parathyroid hormone-related
protein (PTHLH) gene are associated with hip OA (37). PTHLH
is involved in the regulation of endochondral bone develop-
ment and its analogs are prescribed for osteoporosis because
of their anabolic actions on bone formation (40). Subchondral
bone remodelling is also a consistent feature in OA (17,18),
and may provide a novel target for intervention in OA
progression.

OA cannot be considered to be a single disease. The re-
quirement for better phenotype definition and homogeneity
in much larger sample sizes is a prerequisite for untangling
the genetic complexity underlying pathogenesis and pro-
gression. Electronic health records provide an excellent op-
portunity as they provide the ability to study large sample
sizes with a wealth of clinical information. Furthermore,
longitudinal information can improve phenotype definition
and depth, and coupled with large scale, can improve
power.

Figure 1. Illustration showing the key pathological features of osteoarthritis.

The left side of the image shows the normal knee and the right side shows the

diseased joint.
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Insights from Rare Musculoskeletal Diseases
Studying severe phenotypes of rare diseases can shed insights
into the mechanisms underpinning more common disorders
and identify potential therapeutic targets, e.g. the study of rare
bone disorders contributed to the development of bisphospho-
nates (41,42). Similarly, the study of rare cartilage syndromes
and developmental skeletal dysplasias can glean insights into
important genes and potential targets for OA (43,44).

Pathway to Mechanism of Disease Progression
Unlike in most other common complex diseases, the relevant
tissue for OA is readily accessible at joint replacement surgery.
OA leads to changes in the joint tissue that can be captured
macroscopically (Fig. 3). This provides an opportunity to study
the key osteochondral unit components in order to identify sig-
natures of disease progression. There has been great progress in
understanding changes in the composition, functional proper-
ties and structure of the osteochondral unit during the evolu-
tion of OA (16,18), but it is important to also understand at the
molecular level how interactions between cartilage and bone
cells affect disease development.

Recent advances have signalled the development of high-
resolution, high-throughput genome-wide technologies for as-
sessing genome function, including spatial transcription (45–
47), chromatin accessibility (48) and 3-dimensional conforma-
tion (49). The epigenome, transcriptome and proteome are
unique for each tissue and cell type. Although systematic
cataloguing of molecular maps has been carried out for many
tissues (50–52), the landscape of cell types relevant to OA largely
remains unknown. The accessibility of relevant tissue at joint
replacement surgery enables the deployment of multi-omics to
dissect the molecular disease processes in the right cells.
Functional genomics is a nascent, but emerging, field in OA (53).
Previous work has compared intact and degraded cartilage in
modest numbers of patients (median n¼ 20) (54), investigating
genome-wide methylation (55–58), gene (57–60) and/or protein
expression (58,61,62), primarily through microarray technolo-
gies. Despite overall limited replicability (due to design, technol-
ogy and analysis differences), pathways such as WNT
signalling, angiogenesis, immune response and matrix degrada-
tion have been implicated by more than one study (59–61,63–
72). The molecular architecture of genome regulation underly-
ing disease mechanisms in OA tissue, for example as elegantly
demonstrated through the study of chromatin conformation in
T and B-cells in rheumatoid arthritis (73,74), remains unclear.

Figure 2. Established OA loci. Each locus is identified by the nearest gene(s) and coloured black to represent association in both sexes, blue for males only and red for fe-

males only. The discovery study population is of European descent unless indicated by an asterisk in which case the population is Asian (BTNL2 was identified in a

combined Asian and European analysis).
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Integration of Genetics and Genomic
Information
Despite progress in identifying genomic regions that harbour OA-
associated variants, we know very little about the specific genes
involved or the way in which they mediate changes in the joint.
Most of the established OA loci discovered to date (75) reside in
non-coding sequence, making their biological interpretation chal-
lenging. Indeed, even though>80% of all published complex dis-
ease loci are found outside of protein-coding exons (76–78), we
still have a very limited understanding of the way in which they
act on disease pathogenesis (50,79–81). Identification of the causal
variants and the genes they affect requires experimental analysis
of genome regulation in the right cell type. Evidence is emerging
from targeted studies using cell lines and patient samples that
OA risk variants are likely to exert their effects on gene expres-
sion levels (82–87). Integration of genetic and genomic informa-
tion is required to define molecular mechanisms through which
the non-coding variants underlying association signals exert
their effects on OA susceptibility (88).

Mechanistic Studies
The molecular mechanisms linking sequence variation to cellu-
lar functions remain poorly described. To date, the character-
ization of OA-associated variants has mainly focused on the
effect of the variant on the candidate target gene expression.
Only a small number of studies have investigated the cellular
and molecular mechanisms played by the identified OA suscep-
tibility genes during OA development.

One of the best functionally characterized OA susceptibility
signals is rs143383, which negatively affects the activity of the
GDF5 gene promoter, reducing the levels of GDF5 expression
(82,83,89). GDF5, a member of the BMP family and TGF-beta su-
perfamily, plays a key role in chondrogenesis during joint devel-
opment (90) and also in postnatal joint tissue homeostasis. Mice
deficient in GDF5 show severe joint damage, decreased sub-
chondral bone density and abnormal arrangement of collagen
fibres in the bone (91). Also, recent studies in human primary
chondrocytes have shown that GDF5 stimulation reduces the

expression of the matrix degrading enzymes MMP13 and
ADAMTS4 (92), both implicated in cartilage extracellular matrix
degradation in OA (93,94).

Other OA candidate genes studied in cellular or animal models
are RUNX2 (rs12206662/rs10948155, associated with hip cartilage
thickness and hip OA) (95) and DOT1L (rs1298744, rs11880992, asso-
ciated with hip cartilage thickness and hip OA) (95–97). For exam-
ple, knocking down the expression of Dot1l in the chondrogenic
cell line ATDC5 results in reduced chondrogenesis differentiation
accompanied of up-regulation of matrix metalloproteinase 9, re-
duced collagen content and less sulphated proteoglycans, suggest-
ing a protective role of DOT1L in OA development (96). Knocking
out Runx2 in articular chondrocytes in a mouse model of OA could
rescue part of the cartilage degradation and subchondral sclerosis
as well as reduce the expression of MMP13 (98).

Despite these recent advances, the mechanism of action of
most OA susceptibility loci remains unknown. An important
current effort to advance the systematic genetic, molecular
and cellular functional study of genetic variation in OA is being
carried out by the Origins of Bone and Cartilage Disease
(OBCD) consortium, which carries out high-throughput mus-
culoskeletal phenotyping of knockout mice (99). Cellular ge-
netics and phenotyping models can further enhance our
understanding of aetiopathogenesis. The combined use of hu-
man induced pluripotent stem cells (hiPSC) and genome edit-
ing technologies, such as the CRISPR-Cas9 (100) system, allows
the targeted modification of the human genome and the gen-
eration of isogenic hiPSC lines that differ only at the specific
gene or variant of interest (100–103). In the case of OA, the re-
sulting hiPSC lines could then be differentiated towards chon-
drocytes (104,105), osteoblasts (106) or any other relevant cell
type, creating a genetically controlled experimental model of
OA. Such a model would allow the systematic study of the in-
dividual contribution of OA disease-associated variants to the
disease molecular and cellular phenotype (Fig. 4).
Furthermore, the possibility to derive hiPSCs from somatic
cells from patients and differentiate them into disease-
relevant cell types, for example chondrocytes, offers a unique
opportunity to recapitulate human development and patho-
genic processes.

Figure 3. Intact and degraded cartilage-bone interface (osteochondral unit). (A) Cartilage/bone interface showing fibrillation and loss of articular cartilage (blue);

(B) magnified image showing clustering of chondrocytes in the deeper cartilage layers; (C) magnified image of the cartilage/bone interface showing blood vessels

invading the cartilage layer; (D) loss of proteoglycan indicated by loss of Alcian blue staining.
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Pathway to New Therapies for OA
Osteoarthritis is typically diagnosed on the basis of relevant
clinical symptoms and signs, and corroborated with consistent
radiographic features. No robust laboratory biomarkers exist for
OA. Pharmacological therapies such as paracetamol and non-
steroidal anti-inflammatory drugs can be effective in relieving
pain but are incapable of reversing cartilage damage (107). In
the absence of a curative therapy, management strategies cur-
rently focus on interventions early in the OA joint degeneration
process and targeting disease progression (18), including emerg-
ing regenerative therapies that hold the potential to promote
cartilage repair and ultimately restore the original tissue struc-
ture and function. A better understanding of the molecular pro-
cesses underpinning OA in the joint will be crucial to inform
and accelerate the success of this new generation of
treatments.

Future Perspective
There are currently no approved disease-modifying treatements
available for OA and treatment focusses on surgical replace-
ment of the diseased joint. However, the field of OA genetics
and genomics is currently witnessing an exciting alignment of
opportunities to deploy a multi-pronged attack to solve the cur-
rent therapeutic impasse. These approaches include massive-
scale genetics with linkage to deep clinical phenotypes and
patient-reported pain indices through electronic health records,
access to primary disease tissue following joint replacement
surgery for deep characterization of the local molecular land-
scape and biomarker discovery, high-throughput genome edit-
ing techniques in primary and hiPSC-derived chondrocytes to
pin down causal genes, coupling joint imaging to genomics,
leveraging lessons from rare musculoskeletal disorders, and
emerging regenerative medicine approaches. Taken together,
these technologies have the potential to alter the natural his-
tory of OA and improve the lives of these patients in the same
way that the introduction of biologic treatments has changed
the lives of patients with inflammatory arthritis.
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