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Background. 0e aim of this study is to explore the interactions between effective monomers of herbal formulas and their
therapeutic targets using systems biology approaches which may be a promising approach to unraveling their underlying
mechanisms. Shentao Ruangan decoction (STRGD), which has been experimentally, clinically demonstrated to be effective in
treating liver hepatocellular carcinoma (LIHC), was selected. Methods. Bioactive ingredients and drug targets of STRGD were
retrieved from the traditional Chinese medicine systems pharmacology database and analysis platform and BATMAN-TCM
databases. LIHC-related differentially expressed genes (DEGs) and key modules were identified by a weighted gene coexpression
network analysis using 0e Cancer Genome Atlas data. 0e Kaplan–Meier analysis was used to investigate the relationship
between STRGD tumor targets and patients survival. 0e CIBERSORT deconvolution algorithm was used to analyze the
correlation between STRGD tumor targets and infiltrating immune cells. Enrichment analysis was used to analyze biological
functions. Interactions between STRGD compounds and LIHC-immune-related genes were investigated using molecular docking
and MDS. Results. We identified 24 STRGD tumor targets, which were found to be correlated with survival and the level of
immune cell infiltration in LIHC patients. Immune infiltration, gene set enrichment, and Kyoto Encyclopedia of Genes and
Genomes analyses highlighted the roles of T and B cell subsets, which were both related to activator protein 1 (AP1), in STRGD
action. Docking studies and HPLC indicated that tanshinone IIA is the main compound of STRGD in LIHC treatment, and MDS
showed that the potential LIHC-immune-related targets 1FOS and 1JUN firmly bind to tanshinone IIA. Conclusions. 0e
mechanisms of STRGD in improving the immune and survival status of LIHC patients include interactions between STRGD
compounds and LIHC-immune-related targets.0e findings of this study can guide research studies on the potential usefulness of
tanshinone IIA in the development of drugs targeting 1JUN and 1FOS for the treatment of LIHC.

1. Background

Primary liver cancer, a malignant tumor associated with
high morbidity and mortality, includes pathological types
such as liver hepatocellular carcinoma (LIHC), intrahepatic
cholangiocarcinoma (ICC), and mixed hepatocellular car-
cinoma [1]. LIHC accounts for approximately 90% of liver
cancers [2]. 0e International Agency for Research on
Cancer of theWorld Health Organization reported that liver

cancer was the sixth most common cancer worldwide in
2020 [3]. Furthermore, liver cancer ranks in the top three in
terms of mortality rate among all tumors and is the second
most common cancer in men [3]. 0e disease prognosis is
poor and with a 5-year survival rate of less than 10%, it is one
of the cancers with the worst prognosis [4].

Treatment strategies for liver cancer include surgery,
transplantation, transcatheter arterial chemoembolization
(TACE), local ablation, chemotherapy, targeted therapy,
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immunotherapy, and traditional Chinese medicine (TCM).
For small nodules of early liver cancer, surgical resection,
transplantation, and local ablation are treatment options,
whereas TACE, chemotherapy, targeted therapy, and im-
munotherapy are palliative treatments for advanced forms
[5]. TCM is a complex medical system involving the use of
multiple compounds that interact with multiple targets.
TCM plays an indispensable role as a complementary and
alternative therapy for end-stage liver disease, such as cir-
rhosis or liver cancer [6]. 0e effectiveness and safety of oral
TCM preparations in the treatment of liver cancer has been
confirmed [7]. Co-administration of oral and intravenous
TCM preparations can prevent recurrence or metastasis of
liver cancer after surgery, reduce adverse reactions of TACE,
and improve the overall efficacy of TACE [8]. Compared
with western medicine, TCM therapies for liver cancer have
the advantages of being less costly and having fewer adverse
reactions. As a symptomatic and supportive treatment, TCM
can alleviate the effects of primary causative factors of early
liver cancer, such as biological carcinogens and endocrine
disorders, by enhancing tumor immunity [9, 10]. As such,
TCM improves the survival rate, quality of life, and clinical
benefit rate in patients with advanced liver cancer [9, 10].

Chinese herbal medicines, such as Rheum palmatum,
Angelica sinensis, Salvia miltiorrhiza, Semen Persicae, Panax
quinquefolius, Agrimonia pilosa, Artemisia capillaris, and
Eupolyphaga Seu Steleophaga, a ground beetle preparation,
have specific effects in the treatment of liver cancer. For
example, R. palmatum blocked the cell cycle of hepatoma
SMMC-7721 cells, whereasA. capillaris induced apoptosis of
HepG2 cells [11]. S. miltiorrhiza inhibited the proliferation
and invasion of hepatoma cells and tumor growth and
metastasis [7, 12]. P. quinquefolius inhibited tumor growth
in H22 tumor-bearing mice by regulating immunity [13].
Amygdalin in the Semen Persicae extract induced follistatin
expression in HepG2 and C2C12 cells and the extract may be
useful to treat liver fibrosis [14]. A. sinensis polysaccharide
nanoparticles have been developed as a drug delivery system
for liver cancer treatment because of their advantages of
nontoxicity, low cost, good biocompatibility, and inherent
liver targeting [15]. A. pilosa inhibited the proliferation of
HepG2 cells [16]. Eupolyphaga Seu Steleophaga inhibited
tumor growth in H22 tumor-bearing mice and induced
apoptosis of hepatoma cells by regulating immunity and
activating caspase-3 [17].

Shentao Ruangan decoction (STRGD) is a herbal
formula prepared from a mixture of R. palmatum,
A. sinensis, S. miltiorrhiza, Semen Persicae,
P. quinquefolius, A. pilosa, A. capillaris, and Eupolyphaga
Seu Steleophaga. Long-term clinical and experimental
evidence shows that STRGD is effective in the treatment of
LIHC. However, the identification of active compounds
and antitumor targets remains unclear, and its pharma-
cological mechanisms have not been fully elucidated.
STRGD inhibited the proliferation of BEL-7402 and
SMMC-7721 hepatoma cells and synergistically improved
the tumor-suppressive activity of lymphokine-activated
killer cells [18]. In H22 tumor-bearing mice, STRGD
inhibited tumor growth, enhanced interleukin-2 and

natural killer cell activity, and restored and improved
suppressed immune function [19]. STRGD has been shown
to slow down progression of liver fibrosis, reduce damage
to hepatocytes, and improve liver dysfunction [20], and to
inhibit cell proliferation, induce apoptosis, and block the
cell cycle in HepG2 cells [21]. In H22 tumor-bearing mice,
STRGD inhibited telomerase activity and reduced the
number of CD4+CD25+ regulatory Tcells to inhibit tumor
growth and increase body weight, thus improving the
general condition of the mice [22].

In a clinical study, STRGD combined with hydrox-
ycamptothecin for local interventional therapy of inoperable
large liver cancer improved the Child-Pugh grade and
indocyanine green results of patients [23]. Furthermore, this
combination prolonged survival by protecting liver function
and inhibiting tumor progression [23]. STRGD improved
the clinical symptoms, Child-Pugh grade, and indocyanine
green results of patients with recurrent liver cancer after
surgery, stabilized the tumor, improved physical function,
and prolonged progression-free and median survival [24].

0e establishment and development of systems biology
in recent years have promoted research on the systemic
mechanisms of action and active ingredients of TCM
preparations [7]. 0is development is conducive to the
elucidation of TCM compounds and principles of formu-
lated prescriptions based on TCM theory [7]. Data inte-
gration is the strength of systems biology, which allows
analyzing individual entity data on different scales to
translate the data into biological knowledge. Systems biology
mainly uses experimental and computational tools com-
bined with bioinformatics, network analysis, and statistical
methods to analyze omics and high-throughput experi-
mental data [25]. Herbal formulas with polyvalent com-
ponents act onmultiple targets in living organisms, and their
complex biological effects depend on synergism of the active
components. In contrast to conventional studies, such as
clinical trials and generic treatment studies, which are re-
ductionistic in nature, systems biology provides a holistic
approach to studying biological systems and can reveal
complex perturbations induced by herbal formulas [26].
Systems biology is beneficial for studying the network effects
of polypharmacological approaches, which are applied in
drug discovery.

In this study, a top-down multiscale system research
method was used. Protein-protein interaction (PPI) and
weighted gene coexpression network analysis (WGCNA)
topological networks were generated using high-dimen-
sional omics or high-throughput sequencing data.
Kaplan–Meier analysis, immune infiltration data, bio-
informatics analyses, and a drug-compound-target-disease
interactive network built by PPI network analysis were used
to explore the possible pharmacological mechanisms of
action of STRGD in LIHC. High-performance liquid
chromatography (HPLC) and molecular docking were used
for verification. Molecular dynamics simulation (MDS)
provided clues for understanding the dynamic binding of
lead compounds to core drug targets. 0is strategy allowed
identifying the core drug targets of STRGD and exploring
the potential interactions between lead compounds and
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LIHC. We expected the analyses to provide a theoretical
basis for future experiments and clinical trials (Figure 1).

2. Methods

2.1. Collection ofData on theChemical Ingredients andTargets
of STRGD. Data on the chemical ingredients and targets of
STRGD (R. palmatum, A. sinensis, S. miltiorrhiza, Semen
Persicae, P. quinquefolius, A. pilosa, A. capillaris, and
Eupolyphaga Seu Steleophaga) were retrieved from the TCM
Systems Pharmacology Database and Analysis Platform
(TCMSP) (https://tcmspw.com/index.php) [27] and BAT-
MAN-TCM (http://bionet.ncpsb.org/batman-tcm/) data-
bases [28]. To identify the potential active ingredients of
STRGD, the criteria used for TCMSP database screening
were standard oral bioavailability ≥ 30% and drug-like
property ≥ 0.18. 0e screening criterion of the BAT-MAN
database was score cutoff ≥ 20 [29]. 0e gene names of
bioactive targets were then identified in the UniProt
database.

2.2. STRGD Preparation. 0e STRGD ingredients were
purchased from the First Affiliated Hospital of Guangzhou
University of Chinese Medicine. 0e ingredients were
soaked in deionized water (1 L) for 30min, boiled for 40min,
and then simmered for 1 h. 0e resulting extract was con-
centrated at 100°C, filtered, centrifuged, and dried by
lyophilization.

2.3. HPLC. HPLC is a chromatographic technique for the
separation of multicomponent samples that can process
compounds of different molecular weights and polarities. It
is widely used for the identification, separation, and puri-
fication of chemical components in herbal formulas [30].
0e sample solutions were injected into the HPLC system
(Agilent 6540 Q-TOF and Agilent 1290 UHPLC, Agilent,
Santa Clara, CA, USA) and separated using an ultrahigh
performance-LC HSS T3 column (2.1mm× 100mm,
1.8 μm, Elite, DaLian, LiaoNing, CN). 0e mobile phase
consisted of 100% ultrapure water, 0.1% methanol (a), and
100% acetonitrile (b). 0e gradient elution program was as
follows: 2% B at 0–1min, 2%–100% B at 1–55min, 100% B at
55–60min, and 100%–2% B at 60–61min. 0e flow rate was
0.4mL/min, the injection volume was 10 μL, and the column
temperature was maintained at 50°C.

2.4. Acquisition of Targets Associated with LIHC.
Transcriptome sequencing data, overall survival time, sur-
vival status, and other clinical information of patients with
LIHC were retrieved from 0e Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) [31]. 0e
Limma package [32] was used for normalization, Log2
conversion, and differential gene expression analysis of the
gene expression data. Differentially expressed genes (DEGs)
were screened out based on |log2FC |> 1 and P< 0.05.
WGCNA provides a network-based data reduction ap-
proach that uses unsupervised clustering to screen for gene

modules closely related to the characteristics of disease
samples. Moreover, in this technique, the gene modules are
visualized as a hierarchical clustering dendrogram or
heatmap plot of eigengenes [33]. 0e WGCNA R package
was used to construct a coexpression network of all genes in
the data set. Based on the scale-free network principle, the
optimal soft threshold power β of WGCNA was selected
from a threshold range of 1–20. 0e proximity matrix was
built and converted into a topological overlap matrix. Based
on the matrix, dissimilarity hierarchical clustering analysis
was conducted by dissimilarity, and modules were delin-
eated using the dynamic tree cut method. 0e minimum
number of genes in each gene network module was set to 50
and the merge height was set to 0.25 to merge modules with
similar feature vectors. Optimal modules were screened out
according to the expression difference between LIHC and
normal tissues (correlation coefficient [R]> 0.8, P< 0.01)
[34]. All genes in theWGCNA optimal module were selected
and intersected with the DEGs to identify disease targets.
Targets at the intersection of disease targets and compound
targets of STRGD were identified as tumor targets of
STRGD. Disease targets and tumor targets of STRGD were
mapped in Venn diagrams.

2.5. PPI Network Construction. PPI analysis contributes to
enhancing the understanding of biological functions of
intracellular proteins and identifying functional protein
networks, potential biomarkers, and therapeutic targets [35].
STRING uses a specific algorithm to predict functional
associations of targets and uses the estimated confidence
score as a measure for building networks or filtering in-
teractions [36]. 0e disease targets were uploaded to
STRING (https://www.string-db.org/) and the minimum
confidence score was set to ≥ 0.700.0e PPI network analysis
results and tumor targets of STRGD were imported into the
Cytoscape 3.8.0 software to construct a drug-compound-
target-disease network.

2.6. Identification of Survival-Related Targets. To find sur-
vival-related targets among the shared targets between drug
and disease targets, the Survminer and Survival R packages
were used to construct Kaplan–Meier survival curves and
implement log-rank tests.

2.7. Biological Functional Analysis. Gene set enrichment
analysis (GSEA) is a statistical method that can be used to
determine whether a predefined gene set is differentially
expressed in different phenotypes and to identify the bio-
logical processes represented by the gene set [37]. LIHC and
normal tissues were used for phenotypic grouping, and the
“c2. cp. Kegg. V7.4. symbols. gmt” cured gene set from
Molecular Signatures Database was used as a reference gene
set. 0e GSEA software was used to perform Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis of the LIHC transcriptome sequencing data,
and the number of permutations was set to 1000. Using |
normalized enrichment score|> 1, nominal P< 0.05, and
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false discovery rate (q)< 0.25 as criteria, cellular pathways
significantly, differentially expressed between LIHC and
normal tissues were screened out. Gene Ontology (GO) and
KEGG pathway enrichment analyses were conducted on
tumor targets of STRGD using the Colorspace, Stringi,
DOSE, ClusterProfiler, and Pathview R packages, with
P< 0.05 andQ< 0.05. For some key functions and pathways,
the enrichment analysis results were visualized using bar
diagrams and tree maps.

2.8. Immune Infiltration Analysis. CIBERSORT, an in silico
approach to characterizing the composition of cell subsets in
tissues based on gene expression profiles, can accurately
estimate the immune cell composition in tumor tissues [38].
0e CIBERSORT deconvolution algorithm was used to
calculate the relative proportions of 22 types of tumor-in-
filtrating immune cells based on gene transcripts from LIHC
and normal tissues. 0e screening criterion for samples was
P< 0.05, and the number of naı̈ve CD4+ Tcells in all samples
was 0. 0e distribution of the 22 immune cell types was
visualized using the bar chart and box plot in ggplot2 R
package. Using the immune cell correlation matrix com-
bined with corresponding clinical data and the median
immune cell proportions as a threshold value, the patients
were divided into high-and low-infiltration groups. Survival
analysis was conducted using the Survival and Survminer R
packages, and Kaplan–Meier survival curves and log-rank
tests were used to evaluate the correlation between immune
cell infiltration patterns and LIHC prognosis. Spearman
correlation analysis and the ggplot2 R package were used to
construct a correlation heatmap to analyze the correlation
between tumor targets of STRGD and immune cells.

2.9. Molecular Docking. Molecular docking was performed
for genes that showed significant expression differences in
the STRGD target-related survival analysis. 0ree-dimen-
sional crystal structures of core target proteins were re-
trieved from the Research Collaboratory for Structural

Bioinformatics Protein Data Bank (RCSB PDB, https://www.
rcsb.org/) [39] and AlphaFold protein structure databases
(https://alphafold.ebi.ac.uk/).0e PyMOL software was used
to remove water molecules, ions, heteroatoms, original li-
gands, and phosphate from the core target proteins.
AutoDock Tools was used to add hydrogen, calculate total
molecular charges, and save receptor files in the PDB Partial
Charge (Q) and Atom Type (T) (PDBQT) format. 0e mol2
format structures of corresponding chemical compounds
were retrieved from the TCMSP and BATMAN-TCM da-
tabases. We used AutoDock Tools to set the rotatable bonds
and save the files of ligands in the PDBQT format. We used
AutoDock-Vina for molecular docking and PyMol to ana-
lyze and visualize the docking results.

2.10. MDS and Molecular Mechanics Poisson–Boltzmann
Surface Area (MM-PBSA) Calculations. MDS was per-
formed using the Gromacs 5.14 software package [40], which
is a collection of programs and libraries suitable for all types
of MDS based on pair potentials. MDSs of the solvated and
equilibrated protein-ligand complexes were conducted for
50 ns, and the 50-ns trajectories were analyzed using the
MM-PBSA approach [41]. MM-PBSA is a computational
method to quantify the strength of biomolecular interactions
and evaluate the structural stabilities of docked complexes.
Details of theMDS andMM-PBSA calculations are provided
in the supplementary file.

3. Results

3.1. Acquisition of Active Compounds and Targets of STRGD.
Based on the criteria of standard oral bioavailability ≥ 30%,
drug-like property ≥ 0.18, and score cutoff ≥ 20, the active
components of R. palmatum, A. sinensis, S. miltiorrhiza,
Semen Persicae, P. quinquefolius, A. pilosa, A. capillaris, and
Eupolyphaga Seu Steleophaga were retrieved from the
TCMSP and BATMAN-TCMdatabases. A total of 148 active
compounds were identified in STRGD, including 37, 84, 75,
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Figure 1: Flowchart of the study.
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22, 55, 18, 30, and 1 in R. palmatum, A. sinensis,
S. miltiorrhiza, Semen Persicae, P. quinquefolius, A. pilosa,
A. capillaris, and Eupolyphaga Seu Steleophaga, respectively
(Figure 2(a)). We retrieved 2045 drug targets of the active
compounds from the UniProt database, including 673, 1618,
957, 101, 722, 173, 896, and 32 targets for R. palmatum,
A. sinensis, S. miltiorrhiza, Semen Persicae, P. quinquefolius,
A. pilosa, A. capillaris, and Eupolyphaga Seu Steleophaga,
respectively (Figure 2(b)).

3.2. Chemical Composition of STRGD. HPLC identified the
following 10 main chemical compounds in STRGD: tan-
shinone IIB, chikusetsu saponin IVa, agrimonolide, dan-
shenxinkun A, dihydrotanshinone I, ginsenoside Rg2,
ginsenoside Rg3, cryptotanshinone, isotanshinone IIA, and
tanshinone IIA (Figure 3).

3.3. Acquisition of Targets Associated with LIHC. An LIHC
whole gene expression data set was downloaded from
TCGA. 0e project ID was TCGA-LIHC, the workflow type
was HTSeq-FPKM, and the data type was gene expression
quantification. A total of 424 samples were obtained,
comprising 374 and 50 LIHC and normal tissues, respec-
tively. Clinical data were obtained for 365 cases; samples
with missing clinical data were excluded from the analysis.
0rough differential analysis of the quality-screened data set,
1095 DEGs were obtained, including 271 upregulated and
824 downregulated genes, which are displayed in a volcano
map and heatmap in Figures 4(a) and 4(b). A gene coex-
pression network of TCGA-LIHC was constructed using the
WGCNA R package, and the optimal soft threshold power β
was determined to be 6. 0e dynamic tree cut method and
average hierarchical clustering generated 17 modules
(Figure 5(a)). Analysis of the modules and traits using a
heatmap of module-trait relationships showed that the
MEmagenta module had the closest correlation with LIHC
(R= 0.87, P< 0.01; Figures 5(b) and 5(c)). Furthermore, a
total of 253 coexpressed genes were found in the ME ma-
genta module. Considering the intersection of coexpressed
genes and DEGs, 165 genes were identified as LIHC disease
targets (Figure 2(c)). Considering the intersection of disease
targets and compound targets of STRGD, we found 24 drug-
disease targets, which were considered tumor targets of
STRGD (Figure 2(d)).

3.4. Construction of a Drug-Compound-Target-Disease
Network. Based on the tumor targets of STRGD and dis-
ease targets identified, STRING and Cytoscape 3.8.0 were
used to construct a drug-compound-target-disease net-
work, which was composed of 313 nodes (148 bioactive
compounds and 165 disease targets) and 354 edges (Fig-
ure 6). 0e network showed that some active compounds of
STRGD were present in multiple Chinese medicines.
Furthermore, a single compound could correspond to
multiple targets, and a single target could be regulated by
multiple compounds. 0e regulatory network of STRGD

was a complex system, with multiple compounds and
multiple targets acting together.

3.5. Survival Analysis. Kaplan–Meier survival curves were
constructed to analyze the effects of tumor targets of STRGD
on patient survival (Figure 7). 0e expression levels of 24
genes were found to have specific effects on survival. Insulin-
like growth factor-binding protein 3 (IGFBP3), serpin family
E member 1 (SERPINE1), fos proto-oncogene (FOS),
phosphoglycerate dehydrogenase (PHGDH), and jun proto-
oncogene (JUN) significantly affected the survival of LIHC
patients (P< 0.05) and were correlated with low survival
rates.

3.6. Biological Functional Analysis. GO and KEGG enrich-
ment analyses of the tumor targets of STRGD were con-
ducted using R. GO terms with high enrichment scores were
mainly associated with transcription factor binding; protein
kinase regulator, inhibitor, and activator activities; regula-
tion of signaling receptor activity; receptor ligand activity;
regulation of B cell differentiation; negative regulation of
B cell activation; and RNA polymerase II transcription
regulator complex (Figure 8(a)). 0e KEGG pathway en-
richment analysis results showed that STRGD may exert
anticancer effects through actions, such as neuroactive li-
gand-receptor interaction; P53, B-cell receptor, Toll-like
receptor, and T-cell receptor signaling pathways; and apo-
ptosis (Figure 8(b)). GSEA corroborated the involvement of
the above mentioned pathways. 0ese findings indicated
that STRGD exert its effects in the treatment of LIHC by
directly regulating these pathways through the targets
(Figure 8(c)).

3.7. Immune Infiltration Analysis. A bar chart and box plot
of the proportions of immune cells in LIHC and normal
tissues were constructed using R (Figures 9(a) and 9(b)).0e
results indicated that naı̈ve B cells, plasma cells, resting and
activated memory CD4+ T cells, regulatory T cells (Tregs),
cδT cells, activated and resting natural killer cells, mono-
cytes, M2macrophages, resting dendritic cells (DCs), resting
and activated mast cells, and neutrophils showed statistically
significant differences in their degree of infiltration between
LIHC and normal tissues.

Kaplan–Meier survival curves and log-rank tests were
used to evaluate the correlation between the infiltration
degree of each immune cell type and prognosis (Figure 9(c)).
0e results showed that naı̈ve B cells, resting memory CD4+
T cells, CD8+ T cells, follicular helper T cells, Tregs, M0
macrophages, M2 macrophages, monocytes, activated and
resting DCs, and neutrophils were significantly related to the
prognosis of LIHC.

Spearman correlation analysis of the correlation be-
tween the expression of tumor targets of STRGD and the
infiltrating immune cells is illustrated in Figure 9(d). 0e
results showed that the immune cells that were highly,
significantly associated with high expression of drug-dis-
ease target genes were T-and B-cell subsets, such as naı̈ve
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B cells, activated and resting memory CD4+ T cells, and
Tregs.0ese results were consistent with those of GSEA and
KEGG analysis of these genes, highlighting the roles of T-
and B-cell subsets in mediating the therapeutic effects of
STRGD.

3.8. Molecular Docking. Molecular docking was conducted
to calculate the binding energy between major chemical
compounds of STRGD (azelaic acid, β-sitosterol, c-sitos-
terol, hexadecanoic acid, kaempferol, miltirone, neo-
cryptotanshinone_Ii, progesterone, quercetin, rhein,
serotonin, and tanshinone IIA) and the core target proteins
related to prognosis (IGFBP3, SERPINE1, FOS, PHGDH,
and JUN). 0e batch molecular docking results are shown in
a heatmap in Figure 10(a). 0e results indicated that nearly
all the active ingredients involved in the docking had specific
regulatory effects on the target proteins. 0is observation
corroborated that the regulatory STRGD network is a
complex system with multiple compounds and targets.

3.9. MDS and MM-PBSA Calculations. Root-mean-square
deviation (RMSD) analysis of protein atoms showed that the
1FOS complex with tanshinone IIA had an average RMSD
value of 0.64 nm (Figure 11(a)). However, the 1JUN complex
with tanshinone IIA had a higher average RMSD value of
0.93, suggesting it is less stable than the former complex
(Figure 12(a)). Moreover, these results provided evidence
supporting the docking scores. It is also important to
measure the RMSD of ligand atoms. For the 1FOS and
1JUN complexes with ligands, tanshinone IIA had similar
deviations with average RMSD values of 0.30 and 0.41,
respectively, suggesting improved stabilization in both
cases (Figures 11(a) and 12(a)). Generally, the gyrate of
1FOS and 1JUN protein-ligand complexes showed a
downward trend. 0e complexes of 1FOS and 1JUN with
tanshinone IIA had average gyrate values of 17.38 Å and
21.55 Å (Figures 11(b) and 12(b)), respectively. Root-mean-
square fluctuation (RMSF) is a good measure of binding
site adaptation and other phenomena. For complexes of
1FOS and 1JUN with tanshinone IIA, the fluctuations in a

2021141 24
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Figure 2: Diagram of compounds and targets in STRGD against LIHC. (a) Number of compounds of 8 herbs from STRGD. (b) Number of
targets of 8 herbs from STRGD. (c) Venn diagram of targets related to LIHC. (d) Venn diagram of drug-disease intersection targets.0e 165
targets of LIHC are mapped to the 2045 targets of STRGD to screen out the 24 common targets.
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cluster of binding site residues were minimal. 0e minor
fluctuations at the binding site residues were nearly similar
for both complexes (Figures 11(c) and 12(c)). 0e results of
protein-ligand contact analysis indicated that tanshinone
IIA produced hydrophobic and water bridges with many
key residues at the binding site (Figures 13 and 14). As for

the MDS of 1FOS protein-ligand complexes, the MM-
PBSA results showed that tanshinone IIA had van der Waal
and binding free energy values of −28.19 and −36.09 kJ/
mol, respectively, whereas the corresponding results for
1JUN protein-ligand complexes were −22.34 and −27.88 kJ/
mol, respectively.
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Figure 5: WGCNA analysis. (a) Clustering dendrogram (top) and gene modules with different colors (bottom). (b) Correlation heatmap of
modules and clinical traits. (c) Gene correlation scatter plots of the MEmagenta model.

Figure 6: 0e drug-compound-target-disease network of STRGD for the treatment of LIHC. Nodes represent compounds and targets. 0e
node below indicates the 148 active compounds and the colors represent different component sources. 0e node enclosed in a circle
indicates 165 LIHC disease targets, in which blue is the co-expressed gene obtained fromWGCNA and red is DEGS.0e red edges represent
the interaction between the compounds and the targets; the blue edges symbolize the interaction between the targets.
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4. Discussion

In this study, transcriptomics, Kaplan–Meier analysis,
HPLC, molecular docking studies, MDSs, immune infil-
tration analysis, and bioinformatics analyses were conducted
to systematically explore the relationships between STRGD
compounds and survival prognosis as well as immunity in
patients with LIHC.

Initially, we compared clinical data retrieved from the
TCGA-LIHC data set with those from the SEER database
and found that they were similar (Figure 15). Most cases
involved male patients and patients diagnosed early,
demonstrating the relative reliability of the TCGA-LIHC
dataset.

0e database search identified 148 bioactive compounds
and 2045 drug targets for the eight Chinese medicines that
serve as the base materials of STRGD preparation. 0e most
significant LIHC-related gene modules were identified using
WGCNA, which revealed that genes in the MEmagenta
module were the most significantly related to LIHC. At the
intersection with DEGs, 165 genes were found, which were
LIHC disease targets. 0ere were 24 shared genes between
drug and disease targets. Kaplan–Meier analysis and log-
rank tests showed that five genes, i.e., IGFBP3, SERPINE1,
FOS, PHGDH, and JUN, were significantly associated with
the survival of LIHC patients. Previous studies have indi-
cated that SERPINE1 and FOS can serve as predictive
markers of overall survival [42, 43] and that IGFBP3 is also
related to survival [44].

GSEA of LIHC and normal tissues suggested specific
biological and pharmacological mechanisms underlying

LIHC development and STRGD action, respectively.
GSEA revealed similar signaling pathways as KEGG en-
richment analysis, such as neuroactive ligand-receptor
interaction; P53, B-cell receptor, Toll-like receptor, and
T-cell receptor signaling pathways; and apoptosis. A
previous study suggested that annexins played a role in
LIHC carcinogenesis and development through the
neuroactive ligand-receptor interaction pathway [45].
High expression of CCNB1, RRM2, and CDK1 enriched in
the P53 signaling pathway has been correlated with poor
survival [46]. 0e P53 Pro/Pro and MDM2 G/G genotypes
may be involved in the occurrence and progression of
LIHC and are prognostic risk markers for LIHC with
malignant characteristics [47]. CD2+B cells,
CD27−isotypic conversion memory B cells, and primitive
B cells have been identified as prognostic determinants of
survival and are associated with higher survival rates [48].
Engineered Tcells can be used in combination with cancer
vaccines and immune checkpoint blockers to improve the
efficacy of LIHC immunotherapy [49]. Emodin extracted
from Radix rhei Et Rhizome may induce apoptosis of
LIHC cells through apoptosis-related pathways [50]. Our
study indicates that the therapeutic mechanisms of
STRGD may be mediated through the direct regulation of
targets, affecting the identified key pathways with high
LIHC-related significance.

0e tumor microenvironment, including both innate
and adaptive immune cells, is a target of immunotherapy
approaches and affects the survival and prognosis of
patients with LIHC [51]. 0e expression levels of the
tumor targets of STRGD were found to be closely related

Figure 7: Identification of key genes affecting overall survival of LIHC from tumor targets of STRGD. According to the median expression
level, patients are divided into high-level and low-level groups.
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Figure 10: Continued.
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(c)

Figure 10: Continued.
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to the levels of immune cell infiltration. Kaplan–Meier
analysis and log-rank tests showed that T- and B-cell
immune subsets, such as naı̈ve B cells, resting memory
CD4+ T cells, and Tregs, were also positively associated
with the survival of LIHC patients. Tregs may be an
important immunosuppressive target in LIHC [52]. B-
and T-cell infiltration may be related to good prognosis
of immune-high LIHC [51], whereas CD4+ T cell over-
expression may inhibit the occurrence of LIHC [53]. We
found that STRGD promotes tumor immunity by
modulating multiple immune cell populations, thus
improving the survival and prognosis of LIHC patients.

0e results of the enrichment and immune infiltration
analyses indicated that the therapeutic effect of STRGD on
LIHC involves the P53 and apoptosis pathways and is
closely related to T and B cells. Survival analysis based on
drug-disease intersection targets showed that STRGD

regulates targets such as JUN and FOS to promote the
survival of LIHC patients. 0e T- and B-cell receptor
signaling pathways identified by GSEA show that both are
related to activator protein 1 (AP1). AP1 is a dimeric
transcription factor composed of JUN, FOS, ATF, and
MAF proteins. FOS protein is often dimerized with JUN
proteins to form AP1. Treg overexpression may promote
LIHC progression by activating AP1 and inhibiting den-
dritic cell-mediated immunity [51]. STRGD has been re-
ported to reduce the expression of Tregs and restore
immune function [22], which is consistent with our pre-
liminary results.

Molecular docking results showed that tanshinone IIA
had good binding activity with IGFBP3, SERPINE1, FOS,
PHGDH, and JUN. 0is indicates that tanshinone IIA may
be the main active compound of STRGD in LIHC treat-
ment, which is consistent with the HPLC results. To

(d)

(e)

Figure 10: Results of molecular docking. (a) Heat map of molecular docking results. (b, c) Binding poses of tanshinone IIA at the binding
site of 1JUN and 2D interaction diagrams. (d, e) Binding poses of tanshinone IIA at the binding site of 1FOS and 2D interaction diagrams.
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investigate the effect of tanshinone IIA binding to AP1, we
visualized the target proteins 1FOS and 1JUN docked with
tanshinone IIA (Figures 10(b)–10(e)). Furthermore, MDS

and post MDS analysis were conducted for the equilibrated
protein-ligand complexes. MDS provides more accurate
binding patterns of ligands than molecular docking does,
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Figure 11: Analysis of MD trajectories generated by Gromacs for 1JUN-tanshinone IIA. (a) RMSD of protein and tanshinone IIA.
(b) Gyrate. (c) RMSF in residues of proteins.
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Figure 12: Continued.
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Figure 12: Analysis of MD trajectories generated by Gromacs for 1FOS-tanshinone IIA. (a) RMSD of protein and tanshinone IIA.
(b) Gyrate. (c) RMSF in residues of proteins.
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Figure 13: Nonbonded interactions between the molecules and the residues at the binding site for 1JUN-tanshinone IIA. (a) Timeline
representation of the interactions and contacts (H-bonds, Hydrophobic, Ionic, Water bridges). (b) Top panel shows the total number of
specific contacts the protein makes with the ligand over the course of the trajectory.0e bottom panel shows which residues interact with the
ligand in each trajectory frame. Some residuesmakemore than one specific contact with the ligand, which is represented by a darker shade of
orange, according to the scale to the right of the plot.
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eliminating the limitations of docking studies and pro-
viding an in-depth understanding of binding free energy
and binding affinity [54]. Parameters such as RMSD and
RMSF for ligands and proteins are indicative of the stability
of the system during the MDS timescale [55]. 0e strength
and binding affinity of the complexes depends on non-
bonded interactions, such as hydrogen bond and ionic and
hydrophobic interactions [56]. Gyrate provides informa-
tion on the relationship between proteins and ligands

during MDS [57]. MM-PBSA calculations were used to
estimate the binding free energies of the post-MDS tra-
jectories [58]. 0e results indicated that tanshinone IIA
forms a stable complex with 1FOS and 1JUN proteins and
could potentially inhibit these proteins. 0us, the docking
studies and MDS indicated that the potential LIHC-im-
mune-related targets 1FOS and 1JUN bind firmly with
tanshinone IIA.
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Figure 14: Nonbonded interactions between the molecules and the residues at the binding site for 1FOS-tanshinone IIA. (a) Timeline
representation of the interactions and contacts (H-bonds, Hydrophobic, Ionic, Water bridges). (b) Top panel shows the total number of
specific contacts the protein makes with the ligand over the course of the trajectory.0e bottom panel shows which residues interact with the
ligand in each trajectory frame. Some residuesmakemore than one specific contact with the ligand, which is represented by a darker shade of
orange, according to the scale to the right of the plot.
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5. Conclusion

0e mechanisms underlying the improvement in the im-
mune and survival status of LIHC patients by STRGD in-
clude interactions of STRGD compounds with drug-disease
cross targets and regulation of gene expression and tumor
immunity. Computational evaluation and network phar-
macology methods can be used in further studies on the
potential usefulness of tanshinone IIA, identified as a lead

compound of STRGD in this study, in the development of
drugs targeting 1JUN and 1FOS for the treatment of LIHC.
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