
Published online 15 August 2022 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3 1
https://doi.org/10.1093/nargab/lqac059

A bioinformatic-assisted workflow for genome-wide
identification of ncRNAs
Matthias Schmal1, Crystal Girod2, Debbie Yaver2, Robert L. Mach 3 and
Astrid R. Mach-Aigner 1,3,*

1Christian Doppler laboratory for optimized expression of carbohydrate-active enzymes, Institute of Chemical,
Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1A, Vienna A-1060, Austria, 2Production
Strain Technology, Novozymes Inc., California, Davis, USA and 3Institute of Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Str. 1A, Vienna A-1060, Austria

Received March 02, 2022; Revised June 29, 2022; Editorial Decision July 25, 2022; Accepted August 14, 2022

ABSTRACT

With the upcoming of affordable Next-Generation Se-
quencing technologies, the number of known non-
protein coding RNAs increased drastically in recent
years. Different types of non-coding RNAs (ncR-
NAs) emerged as key players in the regulation of
gene expression on the RNA–RNA, RNA–DNA as well
as RNA–protein level, ranging from involvement in
chromatin remodeling and transcription regulation
to post-transcriptional modifications. Prediction of
ncRNAs involves the use of several bioinformatics
tools and can be a daunting task for researchers. This
led to the development of analysis pipelines such as
UClncR and lncpipe. However, these pipelines are
limited to datasets from human, mouse, zebrafish or
fruit fly and are not able to analyze RNA sequenc-
ing data from other organisms. In this study, we
developed the analysis pipeline Pinc (Pipeline for
prediction of ncRNA) as an enhanced tool to pre-
dict ncRNAs based on sequencing data by removing
transcripts that show protein-coding potential. Ad-
ditionally, a feature for differential expression anal-
ysis of annotated genes as well as for identifica-
tion of novel ncRNAs is implemented. Pinc uses
Nextflow as a framework and is built with robust
and well-established analysis tools. This will allow
researchers to utilize sequencing data from every or-
ganism in order to reliably identify ncRNAs.

INTRODUCTION

The introduction of RNA sequencing changed the view on
the complexity of the eukaryotic transcriptome drastically.

In particular, the view on the large parts of the genome that
do not code for proteins did change from considering this as
junk DNA to sequences that presumably fulfill other roles.
However, in the early years of RNA biology, the identifica-
tion and characterization of non-coding RNAs (ncRNAs)
was a challenging task.

The group of ncRNAs is very heterogeneous and there-
fore divided into different classes. Many of those classes are
conserved across all domains of life and are known today to
play essential roles in the complex cellular machinery, such
as RNA splicing, modification of other RNAs, DNA repli-
cation (1), dosage compensation, regulation of gene expres-
sion in numerous ways (2) and most prominently translation
of mRNAs into proteins. All ncRNAs, which do not be-
long to a specific class and are longer than 200 nucleotides
(nt), are termed long non-coding RNAs (lncRNAs). This
loose definition leads to lncRNAs being such a heteroge-
neous group.

With the rapid progression of sequencing technologies in
the last two decades, RNAs and especially ncRNAs moved
into the focus of the scientific community. Deep sequencing
of the whole transcriptome became an affordable tool for
many research groups to study gene expression. However,
the necessary bioinformatic analysis of large amounts of se-
quencing data may seem overwhelming. To help researchers
with this daunting task, several data analysis pipelines have
been developed in recent years such as UClncR (3) and
LncPipe (4). These pipelines comprise all necessary data
processing and analysis steps to predict lncRNAs from se-
quencing data. A critical step within this workflow is the dis-
tinction between potential coding and non-coding RNAs.
By using linguistic features of RNA sequences, a super-
vised machine learning model can be trained. Since this ap-
proach requires curated training data, these models are ei-
ther trained on intensively studied organisms like human,
zebrafish, mouse and fruitfly or using sequence data from
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organisms across all domains of life to obtain a general
model. For example, analyzing RNA sequencing data from
the industrially applied ascomycete Trichoderma reesei was
not possible since predictions based on existing programs
were not sufficiently precise. For accurate predictions based
on RNA sequencing data of this or any other organism a
new workflow needed to be established. For the purpose
of identification of potentially novel ncRNAs from any or-
ganism Pinc was developed. It automates the whole process
of analyzing RNA sequencing data to distinguish ncRNAs
from coding RNAs.

MATERIALS AND METHODS

Pinc uses state-of-the-art tools to be as robust and versatile
as possible.

Pre-processing

Raw sequencing reads need to pass several quality control
and processing steps. These steps include adapter removal,
read filtering and read trimming. If the output of the pre-
processing is of poor quality, results may be compromised.
This makes this arguably the most important step in the
analysis pipeline. In order to simplify the procedure, Pinc
uses fastp, a fast and all-in-one solution that can be cus-
tomized to meet all possible needs (5).

Transcript assembly

Two ways can be chosen to build transcripts from RNA se-
quencing data, a de novo assembly or a genome-guided ap-
proach. As de novo assemblies are very complex and often
require manual curation of data, they are not suitable for
an automated pipeline. Therefore, the reads first need to be
aligned against a reference genome. HISAT2, the successor
of TopHat, was chosen as alignment tool because it is fast,
memory-efficient and sensitive (6). Speed and low mem-
ory usage are important considerations especially for RNA
sequencing data, which usually consists of large datasets
that may even be generated in replicates and/or for differ-
ent conditions for differential gene expression analysis. Af-
ter the reads are aligned, they need to be assembled into
partial transcripts, also called transfrags. Since Pinc was
expected to be suitable for prokaryotic as well as eukary-
otic organisms, the assembler needs to accommodate for
splice variants of eukaryotic genes. Another consideration
is the possible presence of long reads generated by Third-
Generation-Sequencers such as Oxford Nanopore or Pacific
Biosciences SMRT sequencing technologies. StringTie was
incorporated into the pipeline as it can utilize short reads,
long reads or a combination of both (7). Using StringTie’s
-merge mode, the assembled transfrags across of samples
and replicates are merged into one non-redundant set to fa-
cilitate downstream differential gene expression analysis. As
of today, Pinc only supports short reads, however, the op-
tion to process long reads can be added at any point without
the need to reconstruct major parts of the pipeline.

Filtering of transcripts

Since the goal of Pinc is to predict potentially novel ncR-
NAs, the constructed transcriptome needs to be filtered. By

comparing the assembled transfrags against the provided
reference annotation gffcompare assigns each transfrag a
tag based on the relationship to each annotated gene (8).
Keeping only transfrags, which are labeled with ‘u’ (un-
known), ‘i’ (fully contained within an intron) or ‘x’ (exonic
overlap on complementary strand to annotated feature), ef-
fectively reduces the transcriptome to only transfrags that
are either not annotated or have a high chance of being ncR-
NAs (see gffcompare manual for a detailed description of
labels). The remaining transfrags might still contain RNAs
coding for a protein, thus, an additional filtering step is ap-
plied. However, approaches that include aligning sequences
to databases are not feasible for large datasets. Therefore,
in recent years many tools expanded on linguistic features
of sequences. This allows faster processing of sequences and
can even yield better results, especially for lncRNAs. As this
is a binary classification problem, there are several machine
learning approaches to choose from. The two most straight-
forward ones would be either a Support-Vector-Machine
(SVM), which predicts labels for each RNA, or a regres-
sion model, which calculates the probability to be a protein-
coding RNA. Due to the extensive research on RNAs, a lot
of data for ncRNAs are available to be applied in super-
vised learning in order to train the model. However, based
on the training data, the model might be suitable to pre-
dict ncRNAs from humans but might yield rather poor
results on other organisms. This led to the availability of
models that are trained on well-studied species like Homo
sapiens, Drosophila melanogaster or Arabidopsis thaliana on
one hand, or models that can predict ncRNAs across all
species with the trade-off of slightly lower accuracy. In or-
der to tackle this problem, a novel strategy to reliably pre-
dict ncRNAs using data from not exhaustively studied or-
ganisms was developed. For this purpose we use a com-
bination of CPC2 (9) and CPAT (10) in order to remove
transcripts with protein-coding potential. CPAT uses four
linguistic features of known coding and non-coding RNAs
and transforms them into scores to build a ‘logistic regres-
sion’ model. CPAT comes with four pre-trained models,
which are trained on datasets of human, mouse, zebrafish
and fruitfly, respectively. In an optimal case, sequence data
for mRNAs and ncRNAs of the investigated organism itself
is available and can be used to train an organism-specific
model. However, in most cases there is not enough infor-
mation about lncRNAs to train a model specific for a target
organism. CPC2 is a general classifier and is used to screen
all transcripts for their protein-coding potential. Based on
this pre-classification an organism-specific CPAT model is
trained. As CPAT applies a logistic regression model to cal-
culate coding potential, a probability cut-off needs to be
found to distinguish predicted non-coding from protein-
coding RNAs. In the end, all transcripts that show protein-
coding potential are removed and in an ideal case only ncR-
NAs are remaining. During the training of the model, train-
ing data undergo 10-fold stratified cross-validation where in
every iteration the optimal probability cut-off is calculated
using a weighted variant of the Youden’s index (11) based on
a receiver operating characteristic (ROC) curve. From these
10 iterations, the median of all cut-offs will be calculated
and used for the final performance evaluation. The weight
can be chosen between 0 and 1. A weight of 0.5 means equal



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3 3

Figure 1. Overview on the process of generation of training data for the test runs. (A) Coding sequences (CDS; blue boxes) of H. sapiens, A. thaliana and
S. cerevisiae were taken directly from RefSeq. Sufficient data for ncRNAs are available for human and thale cress; whereas the dataset of S. cerevisiae is too
small to train CPAT solely on. Therefore, all RefSeq entries of ncRNAs of the phylum ascomycota were used as non-coding training data for CPAT. CDS
were split. Right part: a portion of the CDS was used to contaminate the set of ncRNAs (white box) with coding RNAs in a ratio of 5:1 (blue, hatched box).
This was done to simulate not annotated coding transcripts, which might still be in the dataset after filtering out all annotated CDS of the genome. CPC2
was used to predict ncRNAs within this mixed RNA pool. 80% of the sequences predicted as non-coding were used as non-coding training set (white box)
for CPAT and 20% as the non-coding test set. Left part: Remaining CDS were split again: 80% for the coding training set, 20% for the coding test set. (B)
The training datasets of ncRNAs (white and hatched boxes) CDS (blue box) were combined in a ratio of 1:1. 10-fold stratified cross-validation (CV) was
used to calculate the model-specific ‘optimal’ cut-off. In each iteration the weighted Youden’s index was used to calculate the cut-off. The mean of cut-offs
from all 10 iterations is used to predict ncRNAs based on their coding probability calculated by CPAT.

contributions of specificity and sensitivity to determine the
cut-off. Decreasing the weight towards 0 will set the cut-off
very loose and will lead to higher true-positive rate, how-
ever, the false-positive rate will also increase as a trade-off.
An increase of the weight will make the cut-off more strin-
gent and predicted lncRNAs will have higher confidence at
the cost of potentially missing lncRNAs. To visualize the
training process the ROC curves, as well as the performance
in dependence on the cut-off, are plotted during each itera-
tion.

Training of classifier

The training of the classifier for Pinc is a two-step process
as it combines the potential of both CPC2 and CPAT. Af-
ter filtering of novel transcripts using gffcompare, the cod-
ing potential will be assessed using CPC2. All transcripts,
which are predicted as ‘non-coding’, comprise the non-
coding training set for CPAT. To complete the training set,
protein-coding transcripts originating from the genome an-
notation are used. As CPC2 will most likely produce false-
positives among those predicted non-coding transcripts, we
looked into how these falsely classified transcripts will af-
fect the predictive power of the resulting CPAT classifier.
In order to estimate the impact of false-positives of CPC2
in the downstream process, the training set of known ncR-
NAs was ‘contaminated’ with known protein-coding se-
quences. This dataset for ncRNAs contained 80% ncRNAs
and 20% protein-coding RNAs. The sequences used to sim-
ulate false-positives are removed from the set of CDS origi-

nating from the genome annotation. On the ‘contaminated’
dataset CPC2 was used to predict the coding-potential.
Sequences predicted as ‘non-coding’ will be used to train
CPAT. Transcripts predicted as ‘coding’ by CPC2 will be
discarded for the training process only, however, they will
be included in the final prediction of the coding potential
of novel lncRNAs. A graphical overview of this procedure
can be seen in Figure 1A.

In order to evaluate the efficacy of the training, datasets
of H. sapiens, A. thaliana and ascomycota were chosen.
Since generally little is known about ncRNAs, high-quality
datasets are only available for such well-studied organisms.
For this reason, the datasets of human and A. thaliana
comprise exclusively organism-specific mRNAs and ncR-
NAs. The dataset for ascomycetes is composed of mRNAs
from Saccharomyces cerevisiae and ncRNAs from all as-
comycetes. All datasets are based on RefSeq entries for
the respective organism or phylum. The dataset of ascomy-
cota is designed to simulate an RNA sequencing experi-
ment to identify potentially novel ncRNAs in a rather un-
explored organism. As in most cases, a reference genome
of the studied organism is available, while data on ncRNAs
are lacking, the combination of mRNAs (or mRNAs based
on genome annotation predictions) from the studied organ-
ism and ncRNAs from related organisms shall simulate the
aforementioned case.

The resulting datasets are split into a training and test set.
This allows testing of the trained classifier on data, which
it has never ‘seen’ before. As CPAT only calculates coding
probabilities, a cut-off needs to be determined to distinguish
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Figure 2. Overview of the process of generation of training data used in Pinc. (A) Right part: The filtered transfrags (white box) were subjected to CPC2
prediction of ncRNAs. 80% of the sequences predicted as non-coding were used as non-coding training set for CPAT and 20% as the non-coding test set.
Left part: Coding sequences (CDS; blue boxes) are taken from the provided genome annotation and were split: 80% for the coding training set, 20% for
the coding test set. (B) The training set that consists of ncRNAs (white box) was combined with the CDS training set (blue box) in a ratio of 1:1. 10-fold
stratified cross-validation (CV) is used to calculate the model-specific, ‘optimal’ cut-off. In each iteration the weighted Youden’s index was used to calculate
the cut-off. The mean of cut-offs from all 10 iterations is used to predict ncRNAs based on their coding probability calculated by CPAT.

coding from non-coding RNAs. In order to estimate such a
cut-off, we employ 10-fold stratified cross-validation. The
training set will be randomly split again into a training and
test subset in such a way, that each resulting subset contains
the same ratio of protein-coding to non-coding RNAs. Af-
terwards, CPAT will be trained on one subset, and the op-
timal cut-off is calculated using a weighted Youden’s Index.
This procedure was repeated 10 times. The final cut-off is
the median of all tens cut-offs calculated during the cross-
validation (see Figure 1B). After training a separate CPAT
classifier with each dataset, the three resulting models will
be benchmarked against each other, CPC2 and a pretrained
CPAT classifier, which was trained on human data.

Pinc employs a similar approach to train the classifier (see
Figure 2). Based on the provided genome annotation, Pinc
extracts mRNAs and uses them as coding transcripts during
the training. For ncRNAs, first a non-redundant transcrip-
tome is built based on all RNA sequencing samples. Using
gffcompare all annotated features are removed and the cod-
ing probability of the remaining transfrags is assessed using
CPC2. Transfrags labelled as ‘non-coding’ will contain pri-
marily ncRNAs and in most cases also some coding RNAs,
which are protein-coding genes missing in the annotation.
Based on these datasets CPAT is trained and used to predict
the coding potential of all novel transfrags.

Differential expression analysis

Pinc gives the possibility to perform a differential expres-
sion analysis using edgeR (12). A basic workflow that allows
to compare two conditions is integrated into Pinc. This does
not only identify differentially expressed genes, but also dif-
ferentially transcribed ncRNAs. If replicates for each con-
dition are provided, not only the fold changes of transcripts
are reported, but also a statistical significance analysis can

be performed. As recommended by the manual, the raw
read counts of transcripts should be given to edgeR. For
this, the tool HTSeq-count of the HTSeq package is used
(13).

Implementation of Pinc

Analysis of sequencing data requires many tools to be
installed and maintained. Most tools can only be used
through a command-line interface. This can be the first ob-
stacle, since working with those programs can be quite a
challenge for users who are not familiar with this environ-
ment. Pipelines help researchers by automating running all
programs and handle the data flow between those. Pinc is
embedded in a Nextflow framework which allows building
very intuitive pipelines. However, this still requires that all
used programs are installed on the user’s system. Therefore,
Pinc will be distributed by using a Docker image. This image
is a whole-in-one solution as it comes with its own operating
system and all required programs installed within the vir-
tual environment. A graphical overview on the whole work-
flow can be inferred from Figure 3. This allows researchers
to use Pinc independent of the operating system and with-
out the tedious installation and setup of multiple programs.
In addition, the stand-alone Nextflow pipeline will also be
available at GitHub when all necessary programs are al-
ready installed on the system.

Generation of test data

RNA sample preparation. During the extensive, large-scale
cultivation Trichoderma reesei industry strains, such as
Iogen-M10, can gradually lose their ability to produce the
target product (i.e. cellulases) and transform into a non-
producing (cel–) population in contrast to the initial, highly
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Figure 3. Graphical overview on Pinc. Raw Sequencing reads are filtered
based on quality and length using fastp. Subsequently, HISAT2 aligns the
reads against the reference genome. StringTie assembles aligned reads into
transfrags. Transfrags of already annotated features are removed by filter-
ing for putative novel ncRNAs based on gffcompare’s transfrag classifi-
cation code. Together with the protein-coding RNAs from the reference
annotation an organism-specific model is trained using CPC2 and CPAT
to assess the coding probability of all putative, novel, non-coding trans-
frags. As edgeR requires the total count of reads mapped to each transfrag
for a differential expression analysis, HTSeq-count was used to count the
reads.

productive (cel+) population (14). A (cel+) and a (cel–)
strain were cultivated in triplicates in Mandels-Andreotti
medium supplemented with 1% (w/v) glucose as the sole
carbon source and 0.1% (w/v) peptone or 1% (w/v) lac-
tose and 0.1% (w/v) peptone. These conditions represent
low cellulase producing and high cellulase producing condi-
tions, respectively (15). After 48 h of cultivation, mycelium
was harvested and total RNA was extracted. To enrich
RNAs of interest, an rRNA depletion was performed us-
ing ‘NEBNext® RNA Depletion Core Reagent Set’. All
samples were split into three sets, each set containing a sam-
ple from each condition, to ensure fast handling. 50 DNA
probes were used to degrade rRNA using RNase H. Probes
were designed to leave rRNA fragments of 50–70 nt length
after RNase H-mediated degradation. Parameters for pu-
rification of samples by size exclusion were chosen as rec-
ommended by the manufacturer to obtain RNA fragments
of ∼200 nt length.

Library preparation. Library preparation of rRNA de-
pleted samples was done using the NEBNext® Ultra™ II
Directional RNA Library Prep Kit for Illumina®. RNA
was fragmented by incubating at 94◦C for 7 min. For PCR
enrichment of adapter-ligated DNA 10 cycles was chosen as
500 ng of rRNA-depleted RNA was used in the beginning.
Otherwise, the recommended protocol of the manufacturer
was followed.

Table 1. Accuracy of differently trained models. This table shows the per-
centage of correct predictions of each trained model on each test dataset.
Rows (‘Trained’) indicate the organism/phylum of which data were used
to train the model. Columns (‘Tested’) represent the organism/phylum of
which the dataset was used for the evaluation of the performance of the
model. ‘Ascomycota’, ‘Arabidopsis’, and ‘human’ refer to the datasets men-
tioned in the manuscript section Training of classifier. ‘CPAT-human’ indi-
cates the model, which is pretrained on human data. ‘Human test’ indicates
the CPAT model trained on published human RNA sequencing data as de-
scribed in the manuscript section Evaluation of trained classifier. ‘T. reesei’
indicates the model, which is trained using the RNA sequencing data from
T. reesei strain Iogen-M10, produced by Pinc. The ‘Ascomycota’ model per-
forms overall best. The models ‘Human’ and ‘Human test’ perform very
similarly, and outperform ‘CPAT-human’ as well as ‘CPC2’. The accuracy
of the ‘T. reesei’ model is very poor and the model is not suitable for pre-
dicting ncRNAs. All models perform worst on the Arabidopsis test data in
terms of accuracy

Accuracy Tested

Ascomycota Arabidopsis Human Mean

Trained Ascomycota 0.9928 0.9894 0.9981 0.9934
Arabidopsis 0.9458 0.9569 0.9840 0.9622
Human 0.9624 0.9693 0.9949 0.9755
CPC2 0.9472 0.9528 0.9681 0.9561
CPAT-human 0.9241 0.9337 0.9564 0.9380
Human test 0.9647 0.9734 0.9931 0.9771
T. reesei 0.5563 0.7629 0.8850 0.7347

Sequencing. Sequencing was done on an Illumina
NextSeq 500 system to acquire a depth of about 20 million
paired-end reads per sample.

RESULTS AND DISCUSSION

Evaluation of trained classifier

Especially for lncRNAs the line between coding and non-
coding linguistic features blurs, which poses a hard chal-
lenge for every prediction tool. The first step was to eval-
uate the impact of false-positive prediction of ncRNAs by
CPC2 as well as possible contamination by not annotated
protein-coding sequences. We determined the false-positive
rate of CPC2 on the protein-coding sequences used to ar-
tificially contaminate the training set. In total, the false-
positive rate of CPC2 was 2.2%, 1.3% and 9.3% for the
human, A. thaliana and ascomycota datasets, respectively.
Those missclassified sequences were kept in the workflow
to see how they will affect the final performance. Anyhow,
this result demonstrates that even general models have diffi-
culties to reliably predict the coding potential when working
with non-model organisms.

In order to evaluate the performence we calculated three
different measures, i.e. accuracy, F1-score and informed-
ness. Our analysis shows that an initial filtering step of ncR-
NAs will result in accuracies of at least 0.945 across all
datasets. We compared our three trained models against
the results of CPC2 and CPAT-human, a model specifically
trained on human data. In Table 1 accuracies of each clas-
sifier are given and Table 2 provides the F1-scores. The ta-
ble for informedness is provided in the supporting material
(Supplementary Table S1).

Across all test datasets, the models trained with pre-
filtered data outperform CPC2 and CPAT in every perfor-
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Table 2. F1 score of differently trained models. The F1 score is a mea-
sure of the accuracy of a given classifier. The best possible score is 1;
the worst is 0. The score is impacted by a low true-positive rate and/or
a high false-positive rate. True-negative as well as false-negative rates are
not taken into account. Rows (‘Trained’) indicate the organism/phylum
of which data were used to train the model. Columns (‘Tested’) represent
the organism/phylum of which the dataset was used for the evaluation of
the performance of the model. ‘Ascomycota’, ‘Arabidopsis’, and ‘human’
refer to the datasets mentioned in the manuscript section Training of clas-
sifier. CPAT-human indicates the model, which is pretrained on human
data. ‘Human test’ indicates the CPAT model trained on published human
RNA sequencing data as described in the manuscript section Evaluation of
trained classifier. ‘T. reesei’ indicates the model, which is trained using the
RNA sequencing data from T. reesei strain Iogen-M10, produced by Pinc.
Also using the F1 score the ‘Ascomycota’ model performs best followed by
‘Human’ and ‘Human test’

F1 score Tested

Ascomycota Arabidopsis Human Mean

Trained Ascomycota 0.9958 0.9941 0.9988 0.9962
Arabidopsis 0.9678 0.9753 0.9896 0.9776
Human 0.9779 0.9825 0.9967 0.9857
CPC2 0.9686 0.9729 0.9795 0.9737
CPAT-human 0.9546 0.9620 0.9723 0.9630
Human test 0.9794 0.9850 0.9956 0.9867
T. reesei 0.6730 0.8510 0.9236 0.8159

mance measure, most notably the models trained on the as-
comycete and human dataset (Tables 1 and 2). Even the A.
thaliana model, which performs worst out of the three, is
still better than the control classifiers.

As these tests were run on highly curated data, good re-
sults were expected. In order to simulate results that re-
flect the usage of less curated data, we run Pinc on rRNA-
depleted human RNA sequencing samples (16) to assess the
predictive power of the resulting CPAT model. Two condi-
tions were chosen, each having three RNA sequencing runs,
respectively. The same method of generating training data
for the model was used as shown in Figure 1. Two condi-
tions with three RNA sequencing samples respectively were
chosen as testing data. Then, the model was tested on all
mRNAs and ncRNAs of H. sapiens, A. thaliana and the
ascomycota data. The trained model performed very simi-
larly compared to the models trained on the curated data,
also outperforming CPC2 and CPAT human. This demon-
strates that this method of training results in a model ca-
pable of distinguishing between ncRNAs and coding tran-
scripts without the necessity of the availability of highly cu-
rated data. Using Pinc we predicted 3902 novel ncRNAs, all
longer than 200 nucleotides and therefore classified as lncR-
NAs. In contrast, we used lncpipe as comparison, which
predicted 53 784 lncRNAs based on the same already pub-
lished human dataset (16) using standard parameters. In the
authors’ opinion it is not plausible that next to the already
identified ncRNAs, there are still >50 000 novel lncRNAs
present. We would rather assume that lncpipe yields a high
false-positive rate.

LncRNAs, which show protein-coding features such as
long open-reading-frames, seem to diminish the predictive
power, as the model tries to fit them within the group of
ncRNAs. This leads to a blurry separation between coding
and non-coding transcripts and thus, likely miss-annotated

protein coding gene fragments. Removing those ambiguous
transcripts seems to help to correctly predict RNAs that
don’t show distinctive features of either class.

Results of Pinc using data of T. reesei

Before the sequencing reads were fed into Pinc, we assessed
the efficiency of the rRNA depletion. Sequencing reads were
mapped against the sequences of the 25S, 18S and 5S rRNA
retrieved from the RFAM database (17, 18). This reveals
that rRNA depletion worked very well on all samples in set
1 with <3% reads aligning to rRNA sequences. However, in
samples from sets 2 and 3 there are between 70% and 80%
reads belonging to rRNA. Samples from set 2 have the high-
est fraction of reads aligning to rRNA genes (see Supple-
mentary Table S2). After transfrags belonging to annotated
sequences were removed, 3178 sequences remained as puta-
tive novel transfrags. The assessment of the coding poten-
tial of these putative novel transfrags resulted in 2064 pre-
dicted ncRNAs. Additionally, the predictive power of the
trained model was tested on the training datasets of H. sapi-
ens, A. thaliana and the ascomycota. The results showed that
the model has an average accuracy of 0.7347 over all tested
training sets, indicating that the generated model is not suit-
able to predict ncRNAs efficiently. In cases like this, when
the trained classifier fails to convince, Pinc also outputs the
results of CPC2 as a backup. In this case, CPC2 predicted
2573 putative novel ncRNAs.

If the user wishes to shorten the list of candidate ncR-
NAs to be further studied, several options exist. For ex-
ample, a subsequent differential expression analysis that re-
lates to physiological conditions that were compared can be
performed. This facilitates deciding which novel transfrags
most likely relate to a condition of interest and will be tar-
gets for further investigation. Another option is the addi-
tion of further restrictions, like transfrag length or number
of exons, which would rather exclude lncRNAs. This will
also reduce the number of interesting candidate transcripts.

DATA AVAILABILITY

Pinc will be accessible as a Nextflow pipeline on GitHub if
the necessary programs are already installed (https://github.
com/brummetheus/pinc) or as a Docker image to be able to
run it independently on the user’s preferred operating sys-
tem.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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