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Abstract

Background: Transgenic mouse tumor models have the advantage of facilitating controlled in vivo oncogenic

perturbations in a common genetic background. This provides an idealized context for generating transcriptome-
based diagnostic models while minimizing the inherent noisiness of high-throughput technologies. However, the
question remains whether models developed in such a setting are suitable prototypes for useful human
diagnostics. We show that latent factor modeling of the peripheral blood transcriptome in a mouse model of
breast cancer provides the basis for using computational methods to link a mouse model to a prototype human
diagnostic based on a common underlying biological response to the presence of a tumor.

Methods: We used gene expression data from mouse peripheral blood cell (PBC) samples to identify significantly
differentially expressed genes using supervised classification and sparse ANOVA. We employed these transcriptome
data as the starting point for developing a breast tumor predictor from human peripheral blood mononuclear cells

(PBMCs) by using a factor modeling approach.

validation sets highlight its stability.

cancer, but also in other types of cancer.

Results: The predictor distinguished breast cancer patients from healthy individuals in a cohort of patients
independent from that used to build the factors and train the model with 89% sensitivity, 100% specificity and an
area under the curve (AUC) of 0.97 using Youden’s J-statistic to objectively select the model’s classification
threshold. Both permutation testing of the model and evaluating the model strategy by swapping the training and

Conclusions: We describe a human breast tumor predictor based on the gene expression of mouse PBCs. This
strategy overcomes many of the limitations of earlier studies by using the model system to reduce noise and
identify transcripts associated with the presence of a breast tumor over other potentially confounding factors. Our
results serve as a proof-of-concept for using an animal model to develop a blood-based diagnostic, and it
establishes an experimental framework for identifying predictors of solid tumors, not only in the context of breast

Background

The concept of using peripheral blood cells (PBCs) as
the source of information to predict the presence of
cancer relies on the natural role of these cells in
responding to physiologic and pathologic changes
coupled with the potential of genome-scale transcrip-
tome data to identify patterns of expression that reflect
a given phenotype. Using this approach, researchers
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have described gene expression signatures that distin-
guish cancer patients from healthy individuals in a num-
ber of different types of cancer [1-7]. Twine et al. [6]
generated a peripheral blood gene expression signature
that could distinguish renal cell carcinoma patients from
healthy volunteers. Likewise, Osman et al. [3] reported a
whole-blood gene expression signature that could distin-
guish bladder cancer patients from controls. Similar stu-
dies have also been conducted in the contexts of
colorectal cancer [2], melanoma [7], non-small cell lung
cancer [5] and even breast cancer [1,4]. A few of these
studies have also suggested that blood transcriptome
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profiling could be used to not only distinguish cancer
patients from normal, healthy volunteers, but also differ-
entiate among tumor types [3,6]. Taken together, these
studies highlight the potential of peripheral blood signa-
tures as cancer biomarkers.

Our previous work has made use of expression data to
develop predictors of tumor outcome, activation of var-
ious cell signaling pathways, and response to targeted
therapies. In each instance, the ability to accurately
define the extremes of particular phenotypes (short ver-
sus long survival, pathway off versus pathway on) has
been useful in the development of informative expres-
sion signatures. These extreme cases represent an
opportunity to generate gene expression data, which can
be used to train a prediction model. This prediction
model can then be applied to a wide spectrum of phe-
notypes [8-10]. Using a similar strategy in the context of
signatures from peripheral blood cells, we hypothesized
that a mouse model of breast cancer might offer the
best opportunity to maximize the distinction between
animals with and without a tumor. As such, we have
made use of a transgenic mouse model of breast cancer,
which gives rise to spontaneous mammary tumors with
approximately 100% penetrance in multiparous mice.
Our approach was to develop latent factor models in
the mouse PBC transcriptome that distinguish controls
from mice with advanced mammary tumors, identify
orthologous transcripts on human microarrays and use
this information as the starting point for a predictive
model of human breast tumors.

This strategy overcomes many of the limitations of
earlier studies by using the model system to reduce
noise and identify transcripts associated with the pre-
sence of a mammary tumor over other potentially con-
founding factors. Our results serve as a proof-of-concept
in using an animal model to develop a blood-based
diagnostic and establish an experimental framework for
identifying possible breast cancer signatures (factor
models).

Breast cancer is the most common cancer for women
across the world. According to Kamanger et al. [11],
breast cancer is responsible for an estimated 1,300,000
new cases and 465,000 deaths each year. The most com-
mon breast cancer screening modality is mammography,
which aims to identify breast tumors before they
become symptomatic. Breast tumors identified during
mammographic screening tend to be smaller and are
less likely to have spread to distant sites within the
body. This has important implications for a patient’s
prognosis. Relative survival rates for women in the Uni-
ted States diagnosed with localized cancer are over 98%,
but for women whose cancer has metastasized, it is as
low as 23% [12], emphasizing the importance of detect-
ing tumors at an early stage so that treatment can be
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initiated. Despite the success of mammography in redu-
cing breast cancer mortality, there are several scenarios
that illustrate the need for new and innovative methods
of breast cancer detection. The growth rate of breast
tumors varies significantly from patient to patient [13],
meaning that even a biannual mammography screening
program will miss some fast-growing cancers [14,15].
Additionally, mammographic sensitivity is lower in
young women and women with dense breasts [16-18].
Sensitivity is also lower in women who are at higher
risk of developing breast cancer because of a genetic
predisposition or family history [19,20].

Methods

Mouse housing and maintenance

Animal use and husbandry was in accordance with insti-
tutional and federal guidelines. Eran Andrechek gener-
ated the transgenic mice [21] through standard methods
based on the model described by Leder et al. [22].
Female MMTV/c-MYC transgenic mice expressed the c-
MYC proto-oncogene or a more stable point mutation
variant (T58A) of the gene under the control of the hor-
mone-responsive MMTV long terminal repeat (LTR) in
an FVB/NJ background (Jackson Laboratories, Bar Har-
bor, ME). The hormones released during pregnancy and
lactation have been shown to enhance expression of the
oncogene. Thus, the mice were maintained in a continu-
ous breeding program. Mice were monitored twice
weekly for tumor development by palpation and tumors
were measured twice weekly. Once the tumors reached
3 ¢cm?® the animals were sacrificed and tissue was
obtained to confirm the tumors by histological analysis.
As a control, female mice of the same age and back-
ground strain were maintained in the same facility and
under the same breeding conditions as their transgenic
counterparts.

Mouse blood collection, leukocyte isolation and RNA
extraction

Blood (50-250 pL, based on weight of the mouse) was
collected from MMTV/c-MYC female mice and controls
at regular intervals (approximately once per month) and
again prior to euthanization (average age 431 days).
Samples were collected using the submandibular (cheek-
pouch) method. Briefly, the vein that drains the face and
cheek area was punctured by a lancet (GoldenRod ani-
mal lancet, MEDIpoint, Inc., Mineola, NY) and blood
was captured in BD Microtainer™ tubes with potas-
sium-EDTA anticoagulant (Becton Dickinson, Franklin
Lakes, NJ). Tubes were immediately inverted 10-12
times and placed on ice. Following erythrocyte lysis,
total RNA was isolated from the leukocyte pellet using
the QIAamp RNA Blood Mini Kit (Qiagen, Valencia,
CA). Alternatively, the leukocyte pellet was immediately
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lysed, homogenized and stored at -80°C. RNA was iso-
lated at a later date using the protocol described above
or the adapted protocol associated with the QIAamp
RNA Blood Mini Kit for use in the QIAcube (Qiagen,
Valencia, CA). The quantity of RNA was assessed by
absorbance at 260 nm by the NanoDrop ND-1000
(Thermo Fisher Scientific, Wilmington, DE). RNA qual-
ity was assessed by Agilent 2100 Bioanalyzer RNA 6000
PicoChip (Agilent, Palo Alto, CA). Purified total RNA
(200 ng) was amplified using NuGEN Ovation™ RNA
Amplification System (NuGEN Technologies, Inc., San
Carlos, CA). Amplified RNA was labeled and hybridized
onto Affymetrix M420 2.0 GeneChip oligonucleotide
arrays (Affymetrix, Santa Clara, CA) according to the
manufacturer’s instructions.

Complete blood count and differential

Whole blood was collected from mice immediately fol-
lowing euthanization. The samples were collected from
the hepatic portal vein using a 3 mL syringe and a 19-
gauge needle. The sample was immediately transferred
to a collection tube containing K;EDTA, inverted 10-12
times and placed on ice. Samples (130 pL minimum)
were delivered to the Duke University Medical Center
Veterinary Diagnostic Laboratory and were analyzed
within 8 hours of collection using a Cell-Dyn 3700
Hematology Analyzer. Manual differentials were per-
formed as necessary.

Quantitative RT-PCR

RNA was isolated from mouse PBCs as previously
described. We analyzed PBC RNA from each of the 5
transgenic lines and wildtype FVB/N females in tripli-
cate. We also analyzed mammary tumor RNA from a
transgenic mouse and mammary gland RNA from a
wildtype lactating female. We used the following primer
pair to amplify the c-MYC transgene: 5-CTGTCCATT-
CAAGCAGACGA-3" and 5-GTATGGGTACCCTG-
CACCAG-3'. Total MYC (transgenic and endogenous)
was amplified using the following primer pair: 5-GCCA-
TAATTTAACTGCCTCAAA-3" and 5-CCTATTTA-
CATGGGAAAATTGGA-3. All reported values
represent the threshold change as compared to the
housekeeping gene beta-actin and are relative to MYC
expression in the wildtype lactating mammary gland.

Comparison of MYC transcript levels from microarray
analysis

We identified probes from the M430 2.0 Affymetrix
GeneChip related to the myelocytomatosis oncogene
(avian v-myc myelocytomatosis viral oncogene homolog)
by using the NetAffx Query [23] tool. We then com-
pared the average signal intensity of these probes across
all 4 groups of mice based on MAS5 normalized data: 1)
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FVB virgin controls; 2) FVB age-matched controls; 3)
MMTV/c-MYC pre-tumor and 4) MMTV/c-MYC post-
tumor.

Patient samples

Peripheral blood mononuclear cell (PBMC) samples
were collected from women with a suspect initial mam-
mogram prior to undergoing a diagnostic biopsy proce-
dure to determine whether the detected abnormality
was benign or malignant. In total, we collected blood
from 57 women with a diagnosis of breast cancer and
37 with a benign diagnosis. We also collected blood
from 31 women with normal initial mammograms as
negative controls and 15 breast cancer patients following
surgery. All breast cancer patient samples were collected
at the Duke University Medical Center under an institu-
tional review board-approved protocol (Duke
eIRB#12025) after obtaining informed consent and were
provided by Dr. Jeffrey Marks. PBMC samples from
patients with various gastrointestinal cancers (n = 15)
were collected and stored at Duke University Medical
Center under institutional review board-approved proto-
cols (Duke eIRB#12010 and 12025) and were provided
by Dr. Jeffrey Marks. Peripheral blood leukocyte samples
from patients with brain tumors (n = 7) were provided
by Dr. John Sampson and were collected by leukapher-
esis under Duke eIRB#00003877 and #00009403.

Human blood collection, PBMC isolation and RNA
extraction

Blood samples (8 mL) were drawn into BD Vacutainer™
CPT™ C(ell Preparation tubes with sodium citrate (Bec-
ton Dickinson, Franklin Lakes, NJ) by routine venipunc-
ture, inverted 8-10 times to mix, labeled with a patient
identification number and transported to the laboratory
at room temperature for processing within 2 hours.
Tubes were mixed again immediately prior to proces-
sing. Tubes were centrifuged for 30 minutes at 2,500
rpms in a centrifuge with a swinging bucket rotor. The
plasma layer was removed, and then the remaining buffy
coat was poured into a 15 mL conical tube. Next, 5 mL
of chilled phosphate buffered saline (PBS) with 2% fetal
bovine serum (FBS) was added to the CPT tube, which
was capped and inverted to mix. The contents were
poured into the same 15 mL conical tube, which was
then centrifuged for 10 minutes at 1200 rpms at room
temperature. The supernatant was then aspirated and
the pellet was resuspended in 1 mL of freezing media
(RPMI with 20% DMSO and 20% FBS). The cells were
then transferred to a cryovial (Nunc, Roskilde, Den-
mark) and placed in a freezer box at -80°C. After 24
hours samples were transferred to liquid nitrogen sto-
rage. Total RNA from peripheral blood mononuclear
cells was isolated using the Ambion Ribopure™-Blood
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kit (Ambion, Austin, TX). The quantity of RNA was
assessed by absorbance at 260 nm by the NanoDrop
ND-1000 (Thermo Fisher Scientific, Wilmington, DE).
RNA quality was assessed by Agilent 2100 Bioanalyzer
RNA 6000 NanoChip (Agilent, Palo Alto, CA). Purified
total RNA (2.5 pg) was labeled and hybridized onto
Affymetrix U133 Plus 2.0 GeneChip oligonucleotide
arrays (Affymetrix, Santa Clara, CA) according to the
manufacturer’s IVT 1-cycle processing protocol.

Generation of a mouse mammary tumor predictor

The entire mouse gene expression dataset was standar-
dized employing principal components of the Affymetrix
control probe sets [24]. Then, we randomly divided the
samples into roughly equal-sized training (n = 46) and
validation cohorts (n = 47). Next, we then performed a
sparse ANOVA on the training data set (45,101 Affyme-
trix probes) to identify 4,276 genes that were signifi-
cantly differentially expressed between the control and
tumor-bearing mice (based on a posterior probability of
20.99). We used Bayesian factor regression modeling
(BFRM) [25] to identify 49 factors, or linear combina-
tions of genes, in our training dataset. BERM allowed us
to discover underlying structure and make class predic-
tions within a high-dimensional data set by using sparse
statistical models. To model dependencies among many
genes, sparse factor loading matrices are used to gener-
ate latent factor models (in other words, we make the
sparsity assumption that few genes among the tens of
thousands assayed will reflect the underlying biology).
Operationally, this is accomplished by randomly seeding
sparse regressions that define candidate modules with
genes. Modules must meet a posterior probability
threshold for inclusion, while candidate genes must also
meet a posterior probability threshold for inclusion in a
module. We utilized the shotgun stochastic search (SSS)
[26] method to identify small subsets of the factors that
predicted tumor status within the training set, which
included samples from 14 control mice and 32 trans-
genic tumor-bearing mice. SSS is a neighborhood-based
procedure that searches a model space by (1) using the
current model to define a neighborhood of proposed
models, (2) evaluating each proposal model within this
neighborhood in parallel, (3) choosing a new model
from these choices. It is useful in situations where there
is uncertainty about predictors in the model by penaliz-
ing model dimension. Using our training set, we gener-
ated 5000 possible predictive models and used model
averaging (based on median posterior marginal probabil-
ity) of the top 200 predictive models. Model averaging
has been shown to perform better than algorithms that
use the single best model for prediction because it gives
a truer estimation of uncertainty [27]. Then the result-
ing fitted regression models were used to predict tumor
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status in a separate validation set of mouse PBC samples
from 14 control mice and 33 transgenic tumor-bearing
mice. For fully versioned and annotated source code and
data objects, please see the QUADRA repositories
“mouse-data-prep” and “mouse-classification-model” at
[28]. The data discussed in this publication have been
deposited in NCBI's Gene Expression Omnibus and are
accessible through GEO Series accession number
GSE27567 [29].

Development of a human breast tumor predictor

In order to generate a human breast tumor predictor,
we utilized the list of significantly differentially
expressed genes identified previously from the mouse
gene expression data. This list of 4,276 Affymetrix
Mouse Genome 430 2.0 probe identifiers was translated
into 2,595 orthologous human probes (Affymetrix
HU133 Plus 2) and used to filter our human dataset,
which was normalized employing principal components
of the Affymetrix control probe sets. We divided our
samples into completely independent training and vali-
dation sets. The training set consisted of 30 PBMC sam-
ples (10 breast cancer patients, 10 patients with benign
breast abnormalities and 10 healthy individuals). To
minimize potential batch effects, these samples were
hybridized in 4 batches that each included samples from
all three phenotypic categories: healthy individuals,
patients with benign breast abnormalities and patients
with breast tumor. We used BFRM to identify 26 fac-
tors, or linear combinations of genes, in the training
dataset. The 26 factors represent common patterns of
expression within the set of 2,595 genes. We utilized the
SSS method to identify small subsets of the factors that
were predictive of breast tumor status within the train-
ing set. Using our training set, we generated 5000 possi-
ble predictive models and used model averaging (based
on median posterior marginal probability) of the top
200 predictive models. Then the resulting fitted regres-
sion models were used to predict breast tumor status in
a separate validation set of PBMC samples. A schematic
of our experimental design can be found in Figure 1.

To evaluate the reproducibility of the predictive
model, we performed permutation testing and a swap
experiment. The permutation test used the same fac-
tors generated from our human PBMC training set.
However, we randomly permuted (x100) which sam-
ples were assigned to the training and validation sets.
The “swap experiment” is based on the recommenda-
tions of the MicroArray Quality Control (MAQC)-II
study [30] and consisted of swapping the training and
validation sets, generating new factors from the origi-
nal validation set and then validating these new factors
in the original training set. Next, we assessed the bio-
logical relevance of the factors to the phenotype in
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Figure 1 Experimental Design. To generate a human breast tumor predictor we took the following steps: (1) randomly divided samples into
training and validation cohorts, then analyzed gene expression in PBC samples collected from tumor-bearing transgenic mice versus tumor-free
controls that are matched for age and parity; (2) applied a sparse ANOVA to the training set to identify 4,276 mouse Affymetrix probes with at
least 0.99 posterior probability (these probes were used to independently generate a set of 49 factors that were used to develop a predictive
model based on the mouse gene expression data); (3) translated these into 2,595 orthologous human probes; (4) applied BFRM to this subset of
2,595 probes to yield 26 factors from a training set of 30 human PBMC samples; (5) used SSS to build 5000 possible predictive models from the
training set, then projected these into a separate validation set of samples.

question (presence of a breast tumor) by performing
two negative controls. First, we used the original fac-
tors, but scrambled the phenotypic labels (Normal and
Malignant) iteratively, evaluated the predictive models
and looked at the distributions of the test characteris-
tics. We performed 200 iterations. Second, we gener-
ated a set of mock factors from a publicly available
insulin/muscle-biopsy dataset (GSE7146) and projected
them into the original training and validation sets. We
then compared this predictive model to the human
breast tumor predictor generated from the mouse
ortholog data. As a validation of our overall approach,
we also tested the utility of generating a breast tumor
predictor from the human PBMC gene expression data
using the same parameters applied to the mouse gene
expression data. For fully versioned and annotated
source code and data objects, please see the corre-
sponding QUADRA repositories [28]. The data dis-
cussed in this publication have been deposited in

NCBI's Gene Expression Omnibus and are accessible
through GEO Series accession number GSE27567 [29].

Functional Annotation

To explore the underlying biology of a breast tumor
predictor based on peripheral blood gene expression, we
analyzed the genes included in the predictor using pub-
licly available annotation tools. To simplify our analysis,
we included all 115 unique Affymetrix probes (3 probes
were represented in 2 factors each) that comprise the 3
top-performing factors in the predictive model (factors
3, 12 and 14). We used the Affymetrix NetAffx Batch
Query tool to translate the 115 HU133 Plus 2.0 Array
probe identifiers into 115 gene symbols and descrip-
tions. We used GATHER [31,32] to input the lists of 83
upregulated and 32 downregulated probe identifiers and
generate annotations for gene ontology categories,
KEGG pathways, protein binding partners and transcrip-
tion factor binding sites.
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Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA, version 2.0.5) was
used as previously described [33,34]. Briefly, we used the
gene set annotation feature of GSEA [35] to identify
those gene sets that overlap with the upregulated and
downregulated genes in the breast tumor predictor.
These gene sets offer insights into the functional anno-
tation of our experimentally derived factors and have
the potential to reveal the underlying biology of each
factor. We used the list of Affymetrix probe identifiers
as the input into the browser’s query field. After select-
ing the appropriate identifier platform (Affymetrix
HU133 Plus 2.0), we chose to compute the top 10 over-
laps with the each of the following categories of gene
sets: C1, which represents 326 positional gene sets; C2,
which is a collection of 1,892 curated gene sets; C3,
which contains 836 gene sets with a shared, putative
cis-regulatory element that is conserved across species;
C4, which contains 881 computational gene sets that are
defined by mining large collections of cancer-oriented
microarray data and C5, which contains 1,454 gene sets
annotated by a common GO term. In our efforts to
annotate the biological function of each factor, we
focused on those gene sets that incorporated a large
proportion of the genes within the predictor and had
the most statistically significant overlap.

QUADRA

QUADRA encompasses both an open source distributed
version control system ‘Git’ (Version 1.7.2.2 [36]), an
adaptation of the open source Ruby on Rails web hosting
platform ‘Gitorious’ [37] as well as ‘good operating prin-
ciples’ in genomic computation. The basic principles of
QUADRA encompass the following: (1) all data manipu-
lations start with raw data (as obtained from a core facil-
ity or GEO), and all manipulations/interactions with the
data are performed and versioned within a scientific
computing environment, in this case MATLAB (Version
7.9.0.529, R2009b, Mathworks, Natick, MA), (2) the
entire analytic flow is recorded and versioned in source
code; therefore, all aspects of factor and model genera-
tion are performed programmatically and can be read as
MATLAB source code, (3) once an analysis is finalized,
its “publish” run is recorded as an HTML file so that the
scientific community can reconcile the actual analysis
with what is reported and the source code; and (4) all
source code and data are available to the public [28].

Results

Development of a peripheral blood predictor of mouse
mammary tumors

The overall modeling strategy we employed involves using
the mouse model to first identify those genes that are
most relevant to the PBC response to a mammary tumor
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and then using these genes as the basis for developing a
human breast tumor predictor. This strategy is outlined in
Figure 1. This approach was based on our initial findings
that these transcripts were sufficient to develop a robust
and accurate predictor of mouse mammary tumors. To
generate a predictive model based on peripheral blood
gene expression in the mouse, we first randomly divided
samples into roughly equal training and validation cohorts.
We strictly adhered to maintaining the independence of
the training and validation cohorts by performing all
model-building steps in the training set. Following this
principle, we next used a sparse ANOVA method to iden-
tify 4,276 differentially expressed transcripts between
transgenic tumor-bearing mice and age-matched controls
in the training cohort and subsequently used (BFRM) to
generate a collection of 49 factors in the these samples
[25]. These factors were used as variables in SSS [26], to
generate a predictive model, which was based solely on
the training data and then validated in our independent
validation cohort. The predictive model performed with
100% sensitivity and specificity in the training set. More
importantly, it performed equally well in the validation set,
distinguishing samples based on tumor status with 100%
sensitivity and specificity (Figure 2).

Probing the biological basis of a mouse mammary tumor
predictor

For these studies, we used the MMTV/c-MYC transgenic
mouse model. Although the MMTV (mouse mammary
tumor virus) promoter is known to control ¢-MYC
expression in a mammary-specific manner, we examined
¢-MYC expression in the blood cells of transgenic mice
in order to confirm that the peripheral blood signature
we observed was not the result of aberrant ¢-MYC
expression. We used quantitative RT-PCR to confirm
that the transgenic mice used in these experiments have
little to no expression of the c-MYC mRNA transcript in
the peripheral blood cells relative to the high levels
observed in the mammary tumors from the transgenic
mice. In a second approach, we compared the levels of
MYC expression among the different groups of mice
based on the signal intensity of the Affymetrix probe sets.
Our results (Additional File 1) suggest that the peripheral
blood signature we observe is not a result of c-MYC
expression in the peripheral blood cells. In addition, we
show that the transgenic and wildtype mice used as the
basis for the breast tumor predictor have similar leuko-
cyte profiles, indicating that the observed gene expression
changes are not due to a difference in the proportions of
the various leukocyte subpopulations (Additional File 2).

Human Patient characteristics
The training set contained samples from women diag-
nosed with invasive breast cancer or benign breast



LaBreche et al. BMC Medical Genomics 2011, 4:61
http://www.biomedcentral.com/1755-8794/4/61

A B
Training Validation
1r 1r
= °
K Lo o Y
09 et 09t ool f.
° °
0.8F ° 0.8r e
L]
[ ]
0.7t 07t
; 06 ; 06}
B 05F | 05
s S
a 04 & 04}
03} 03}
02k 02
2 @
(]
LET 01 R
[ )
[ ]
0 ‘ & L L 4 0 . e
0 20 40 60 0 20 40 60
Samples Samples

Figure 2 Generation and validation of the mouse mammary
tumor signature. \We generated a mouse mammary tumor
predictor based on gene expression of PBCs from a training set of
tumor-bearing transgenic mice (n = 32) and nontransgenic tumor-
free mice (n = 14). (A) This signature is capable of distinguishing the
two classes accurately within the traning data set as shown in the
model fit diagram. Blue = healthy tumor-free control mice; red =
MMTV/c-MYC tumor-bearing mice. (B) Furthermore, this signature
was applied to an independent set of PBC samples from transgenic
tumor mice (n = 33) and nontransgenic controls (n = 14) to predict
the tumor status of each sample. It demonstrated 100% sensitivity
and 100% specificity in predicting tumor status, using the optimal
threshold of 0.8118 as calculated using Youden’s J-statistic.

abnormalities, as well as samples from women with no
evidence of breast cancer. The entire training set
(including Benign, Normal and Malignant samples) was
used to generate factors. The predictive model was built
based on a comparison of the Normal and Malignant
samples. The validation set contained samples from
women with normal, benign or malignant diagnoses, as
well as samples from patients with a variety of gastroin-
testinal cancers or brain cancer. The clinical and demo-
graphic characteristics of the training and validation
patient cohorts are broken down into phenotypic sub-
groups (Normal and Malignant) and reported in Table
1. These two cohorts did not show any statistically sig-
nificant differences in terms of age, race, gender, diagno-
sis, BI-RADS score, hormone receptor status or lymph
node status. The training cohort consisted of 10 samples
from healthy, control individuals (average age of 56
years; range 44-75) and 10 samples from breast cancer
patients (average age of 61 years; range 43-85); the vali-
dation cohort consisted of 21 samples from healthy,
control individuals (average age of 58 years; range 46-
80) and 47 samples from breast cancer patients (average
age of 59 years; range 32-85). A comparison of patient
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characteristics based on phenotypic group can be found
in Additional File 3. Notably, we ensured that the
patient samples in the training cohort were all processed
together to minimize technical batch effects.

Development of a peripheral blood predictor of human
breast tumors

Based on the performance of the mouse mammary
tumor predictor, we sought to use these studies as the
foundation for developing a predictor of human breast
tumors. To develop this predictor, we started with the
list of differentially expressed genes derived from the
mouse model and translated them into their human
gene orthologs. We used this gene list to filter our
human gene expression data. Next, we used the same
modeling pipeline employed for the mouse model to
generate sparse factors and train a predictive model
using shotgun stochastic search. In building the models,
we again randomly divided the dataset into independent
training and validation cohorts, as previously described,
and ensured that factors and the predictive model built
from them were generated from the training set alone
and completely insulated from the validation set.

The performance of the derived predictive model in
distinguishing controls from cancer patients is shown in
Figure 3 (A-C). The predictor showed robust capacity to
distinguish between the two groups in the training set.
Moreover, we were able to predict tumor status in the
validation set with 89% sensitivity and 100% specificity
(as calculated using Youden’s J-statistic to obtain a
threshold of 0.3760). The diagnostic characteristics of
this predictive model were tested by a receiver-operator
characteristic (ROC) curve, which demonstrated an area
under the curve (AUC) of 0.9696. We obtained similar
results from the swap experiment in which we swapped
the training and validation sets and completely regener-
ated the factors and the predictive model (again main-
taining strict independence of the switched training and
validation sets), indicating the validity of the modeling
approach based on the orthologs identified in mouse
(Figure 3 D-F). The results of the mock factor analysis
(Figure 3 G-I) confirm that a model based on a set of
unrelated, biologically orthogonal factors is not sufficient
to build a predictive model of breast tumor status. The
mock factors, which were generated from an insulin/
muscle-biopsy gene expression dataset (GSE 7146), were
unable to distinguish between samples based on breast
tumor status in the independent validation set. In addi-
tion to the swap experiment and mock factor analysis,
we also performed permutation testing to evaluate the
reproducibility of the predictive model. We used the
same factors generated in the original training set, but
randomly assigned samples to either the training or vali-
dation sets (100 permutations). The distribution of test
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Table 1 Patient characteristics by training and validation data set.
Normal (n = 31)
Category Training (n = 10) Validation (n = 21) p-value
Age (y) 0.5400%
Mean 55.80 5781
Median 55.00 55.00
Max 75.00 80.00
Min 44.00 46.00
Gender N/A
Female 20 68
Male 0 0
Race 02216t
White 9 14
Other 1 7
BI-RADS Score 0.2540%
0 0 2
1 9 13
2 1 6
3 0 0
4 0 0
5 0 0
6 0 0
Incomplete/Unavailable 0 0
Malignant (n = 57)
Category Training (n = 10) Validation (n = 47) p-value
Age (y) 0.6444*
Mean 614 58.68
Median 56 61
Max 85 85
Min 43 32
Gender N/A
Female 10 47
Male 0 0
Race 1.00001
White 9 14
Other 1 7
BI-RADS Score 0.8695%
0 0 2
1 0 2
2 1 2
3 0 0
4 3 16
5 4 12
6 0 2
Incomplete/Unavailable 2 11
HER2 0.2253%
Positive 3 5
Negative 4 18
Unknown 3 24
ER 0.1036%
0-2 3 15
3-8 4 6
Unknown 3 26
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Table 1 Patient characteristics by training and validation data set. (Continued)
PR 0.2844%
0-2 4 12
3-8 3 8
Unknown 3 27
Positive Lymph Nodes 0.0685+
No LN Sampling 1 23
0 5 18
1 1 4
2 1 1
3 0 1
9 1 0

* Mann-Whitney test
T Fisher's exact test
# Chi-square test
N/A: Not Applicable

characteristics from this analysis are shown in Addi-
tional File 4 and indicate that we are able to generate a
robust predictive model regardless of which samples
were assigned to the training and validation sets. Addi-
tional File 5 shows the results (overlaid with the results
in Additional File 4 for comparison) of a negative con-
trol experiment in which we scrambled the phenotypic
labels of the samples but used the same factors gener-
ated from the original training set to generate a poten-
tial predictive model. The distributions of test
characteristics from these analyses show that the factors
generated from the original training set are dependent
on phenotype (presence of a tumor). Finally, to evaluate
the possibility of generating a predictor derived purely
from human peripheral blood mononuclear cell (PBMC)
samples, we performed a sparse ANOVA (using identi-
cal parameters as those used with the mouse data) on a
training cohort of patients with malignancy versus
healthy volunteers with no malignant or benign breast
lesions. This yielded a small subset of 81 genes. Employ-
ing BFRM as previously described to identify potentially
predictive factors, we identified a single factor, which
performed no better than the mouse-derived factors.

Functional annotation of the genes comprising the breast
tumor predictor

The predictor described in this study reflects changes in
the transcriptional program of the peripheral blood cells
in response to the presence of a breast tumor. However,
the mechanism(s) underlying this response are unknown
and could be due to either a direct interaction between
tumor and immune cells or indirect communication via
signaling molecules. In order to better understand the
biological underpinnings of this PBC response, we
focused on the 3 top-performing factors based on their
median posterior marginal probabilities, which were sig-
nificantly above the level of background noise (Figure

4). These factors, designated Factor 3, Factor 12 and
Factor 14, exhibit coordinated expression across the
samples in the training set. In addition, the relationship
of the genes in the factors is largely conserved in the
validation set (Additional File 6). These factors are
described in terms of their constituent Affymetrix probe
identifiers in the Additional Data Files section (origi-
nal_gene_factor_summary.txt). However, in order to
simplify the presentation of these data, we have com-
bined the gene lists of the three top factors in the pre-
dictor (3, 12 and 14) for a total of 115 unique probe
identifiers (Additional File 7). Next, we analyzed this
combined gene list based on the subsets of genes that
were either upregulated (83 probe identifiers) or down-
regulated (32 probe identifiers) in the PBMCs of breast
cancer patients compared to healthy controls using the
various functions on GATHER (Gene Annotation Tool
to Help Explain Relationships; [32]) and the GSEA
(Gene Set Enrichment Analysis) Molecular Signatures
Database [33,34]. The results of these analyses are
included in the Additional Data Files section.

Using the GO (Gene Ontology) function of GATHER,
we identified the following gene ontology categories that
were significantly enriched in the upregulated subset of
genes (p-value < 0.003): I-kappaB kinase/nuclear factor
(NF)-kappaB cascade (GO:0007249); protein kinase cas-
cade (GO:0007243); intracellular signaling cascade
(GO:0007242); positive regulation of I-kappaB kinase/
NE-kappaB cascade (GO:0043123); regulation of I-kap-
paB kinase/NF-kappaB cascade (GO:0043122); pentose-
phosphate shunt (GO:0006098); NADPH regeneration
(GO:0006740); positive regulation of signal transduction
(GO:0009967); NADPH metabolism (GO:0006739). We
also identified similar gene ontology categories by calcu-
lating the overlap between the upregulated subset of
genes within the predictor and GSEA gene ontology
gene sets. Furthermore, the KEGG (Kyoto Encyclopedia
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sets. (I) The sensitivity was 83% and specificity was 48% (AUC = 0.63).
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Figure 3 Gene expression signature predicts human breast cancer. We generated a human breast cancer predictor from human PBMC
samples by using a mouse model of breast cancer to first identify the most informative probes to use in a subsequent factor modeling
approach. (A) We generated the predictive model from a training set of healthy cancer-free individuals (n = 10) and patients with invasive breast
cancer (n = 10). Blue = normal; red = malignant. An assessment of the model fit shows that this predictor has a robust capacity to discriminate
among samples based on breast tumor status with 100% sensitivity and specificity. (B) We then used this predictive model to evaluate an
independent set of samples (n = 162) for the capacity to distinguish controls from patients with a diagnosis of malignant breast cancer. This
represents an external validation using samples not used in either the factor generation or the model building process. (C) We were able to
predict breast cancer status with a sensitivity of 89% and specificity of 100% (AUC = 0.97) as shown in the ROC curve. The optimal threshold
was calculated as 0.3760 based on Youden's J-statistic. (D) We then tested the validity of our modeling strategy by swapping the training and
validation sets. New factors were generated based on the original validation set and new models were generated. The model fit diagram shows
the ability to generate a robust model from the original validation set. (E) This new model was validated in the original training set. (F) It
demonstrated a sensitivity of 100% and a specificity of 90% (AUC = 0.98). As a negative control, we generated mock factors from a publicly
available dataset that was biologically unrelated to breast tumor status. We then projected these factors into the training (G) and validation (H)
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Figure 4 Inclusion probabilities of factors in the predictive
model. We generated a collection of 26 factors from the human
PBMC training set using the methods described previously and used
SSS to put these together in various combinations to form
predictive models (5000 iterations), which were validated in an
independent sample set. We calculated the top performing factors
based on their inclusion probability (median posterior marginal
probability) in the top 200 models. These 26 factors are plotted
along the x-axis and the median posterior marginal probabilities are
plotted on the y-axis. The top 3 factors with inclusion probabilities
significantly above the background noise are 3, 12 and 14.

of Genes and Genomes) analysis revealed that this sub-
set of upregulated genes contained a significant number
of genes involved in the canonical MAPK (mitogen-acti-
vated protein kinase) signaling pathway, which plays a
role in NF-kappaB pathway signaling. In addition to the
MAPK pathway, KEGG analysis also implicated the pen-
tose phosphate pathway and the Jak-STAT (Janus kinase
and signal transducer and activator of transcription) sig-
naling pathway. The pentose phosphate pathway is
involved in NADPH production and metabolism. This
finding coincides with the initial GATHER GO analysis,
which identified NADPH regeneration and metabolism
categories as being significantly enriched within the
upregulated genes in the predictor. The Jak-STAT sig-
naling pathway is activated in response to interferon,
interleukins and cytokines and results in the transcrip-
tion of genes responsive to a particular STAT. In fact,
the Protein Binding function of GATHER identified a
significant enrichment of STAT3 binding partners
within the upregulated set of genes and GSEA analysis
reported significant overlap between the upregulated
genes and gene sets related to IL-6 (interleukin 6),
which is an activator of STAT3.

Using the TRANSFAC®™ function of GATHER, we
identified several transcription factor binding sites that
were significantly enriched in the downregulated subset
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of genes (p-value < 0.003). In particular, 3 of these tran-
scription factors had putative binding sites in almost all
of the downregulated genes in the predictor: 1) V
$CETS1P54_01: c-Ets-1 (p54); 2) VSKROX_Q6; and 3)
V$E2F_Q6: E2F. This subset of downregulated genes
also contained 5 genes that overlapped with the periph-
eral blood signature of bladder cancer described by
Osman et al. [3] (p-value = 0.000228).

We also compared the predictive models generated
from the original experiment and the swap experiment
based on factor annotation. The top factors in the pre-
dictive model from the swap experiment consisted of
457 unique Affymetrix probe sets (Additional File 8 and
Additional File 9). Of these, 24 overlapped with the ori-
ginal model (115 probes). These 24 overlapping probe
sets, or genes, are implicated in positive regulation of
the I[-kappaB kinase/NF-kappaB cascade, which
strengthens the identification of this particular pathway
in the original predictive model.

Discussion

Previous work demonstrates the potential for measuring
gene expression within peripheral blood as a means of
assessing ongoing disease states. This includes the devel-
opment of genomic analyses used to categorize and treat
stroke [38,39], elucidation of mechanisms of autoim-
mune syndromes such as lupus [40] and rheumatoid
arthritis [41] and, more recently, as a measure of viral
infection, with the goal of early detection and better
management of disease [42]. Several studies have
extended the concept to cancer [1-7]. Our approach to
developing a predictor of human breast cancer makes
use of a transgenic mouse model system to first identify
those genes most relevant to the presence of a tumor.
As an experimental system, the mouse offers several
advantages over human studies. It provides a homoge-
neous genetic background and the ability to control a
number of variables, including environmental exposures
and the presence of co-morbid conditions. Using this
approach, we were able to identify a robust predictor
that was capable of predicting tumor status in an inde-
pendent validation set of mouse peripheral blood sam-
ples. We also used the transcriptome data generated
through these mouse experiments as the starting point
for building a predictor of human breast tumors. This
predictor proved to be capable of distinguishing breast
cancer patients from healthy individuals based on tran-
scriptome patterns in the peripheral blood cells with a
sensitivity of 89% and specificity of 100% in an indepen-
dent validation cohort. Our results support the findings
of Aarge et al. [1] by identifying a pattern of gene
expression that can distinguish breast cancer patients
from healthy individuals with similar sensitivity and spe-
cificity. However, our predictor performs better in terms
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of sensitivity and specificity and does not overlap with
their reported signature (with the exception of a single
probe identifier, 221476_s_at, which corresponds to
ribosomal protein L15).

Most importantly, our work represents a conceptual
advancement in that we were able to link a mouse
model of breast cancer with human breast cancer by
applying a factor modeling approach to peripheral blood
gene expression data. This suggests that the biological
clarity of the mouse model system improves our ability
to identify a common underlying biological response to
the formation of the tumor. It also provides an experi-
mental framework that can be used to pose new ques-
tions that cannot be easily addressed in human studies.

While the studies we report here do appear promising,
we recognize that these represent first steps towards the
goal of developing a blood-based predictor of human
breast cancer. Further validation in a large, independent
cohort is needed, as is validation in diverse populations.
In addition, more research is needed to identify other
potentially relevant factors that might not be repre-
sented in our particular study. We are also interested in
exploring the specificity of this predictive model in
terms of its ability to distinguish breast cancer from
other types of tumors, as well as its specificity in distin-
guishing a breast tumor from other common conditions,
such as infection. More importantly, we believe the
approach described here offers a strategy to address
important questions in the development of blood-based
cancer diagnostics that are not easily addressed in
human studies alone. The use of the mouse model sys-
tem allows us to develop predictive models that often
cannot be derived directly from heterogeneous clinical
sample data and could potentially facilitate exploration
of the presence of a tumor-associated complex biomar-
ker in mice prior to evidence of a tumor. This approach
could prove to be valuable in other contexts as well. A
key example can be seen with ovarian cancer where the
vast majority of patients are diagnosed with stage IV
disease. Given that patients diagnosed with such
advanced disease face a poor prognosis, the develop-
ment of methods for detection at an early stage of the
disease process would have a substantial impact on
outcome.

Conclusions

We have described a predictor of the presence of
human breast tumors based on peripheral blood gene
expression data. This predictor was generated using a
well-defined transgenic mouse mammary tumor model
as the starting point for identifying gene expression
changes associated with the presence of a tumor. The
predictor accurately distinguishes between samples
based on the presence of breast tumors, which is
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significant within the field in two ways: first, the predic-
tor demonstrates higher sensitivity and specificity than
previously reported breast cancer signatures; second, it
serves as a proof-of-concept for using mouse models of
human cancer in the identification of potential clinical
biomarkers. We believe that the approaches described
here represent an experimental framework for better
understanding the complexity of the peripheral blood
cell response to solid tumors.

Additional material

Additional File 1: Expression levels of Myc transcript in peripheral
blood. The levels of Myc mRNA transcript in the peripheral blood were
measured by quantitative RT-PCR in MMTV/c-myc mice of each of the
five transgenic lines derived by Eran Andrechek. As a negative control,
we analyzed expression levels in the peripheral blood and mammary
gland of a wildtype lactating mouse. As a positive control, we analyzed
expression levels in the tumor tissue from a transgenic mouse.
Expression was normalized according to expression of the housekeeping
gene beta-actin and set relative to the wildtype lactating mammary
gland. (A) Total Myc levels were measured, including both endogenous
and transgenic transcripts. (B) Levels of the Myc transgene alone were
also measured, using primers specific to the transgenic construct. (C)
Additionally, peripheral blood Myc transcript levels were calculated based
on signal intensity of the Affymetrix probesets for the myelocytomatosis
oncogene (1425923_at, 1417155_at,1425922_a_at, 1417155_at,

1425922 _a_at, 1425923 _at, and 1424942_a_at). There were no significant
differences in expression levels for any of the three probes across all
three classes of mouse. Light blue = wildtype FVB virgin mice; dark blue
= wildtype FVB age-matched controls; pink = MMTV/c-myc transgenic
mice prior to tumor palpation; red = MMTV/c-myc transgenic tumor-
bearing mice.

Additional File 2: Analysis of leukocyte subpopulations in mouse
peripheral blood. Samples were collected from mice by venipuncture
from the hepatic portal vein following euthanization in BD
Microtainer™™ tubes with potassium-EDTA anticoagulant, placed on ice
and analyzed within 8 hours. The Duke University Medical Center
Veterinary Diagnostic Laboratory analyzed samples using a CELL-DYN
3700 Hematology Analyzer. Leukocyte subpopulations were counted and
calculated as a percentage of total leukocytes in each cohort of mice:
virgin control mice (n = 4); controls matched for age and parity (n = 15);
transgenic mice with advanced tumors (n = 28); and wildtype mice with
MMTV/c-myc tumor implants that have reached approximately 1 cm in
diameter (n = 5). The Virgin Control mice, which were considered to be
immunologically naive, have a distinctly different distribution of
leukocytes subgroups. However, all other groups of mice show similar
leukocyte profiles, indicating that any gene expression differences
observed are likely a result of the presence of the tumor, rather than
differences in the proportion of a particular cell type.

Additional File 3: Characteristics of Normal vs. Malignant samples.
Table comparing the demographic and clinical variables of the Normal
and Malignant samples.

Additional File 4: Distribution of test characteristics from data set
permutation testing. We used the factors generated from the original
training set, but randomly assigned samples to either the training or
validation set (100 permutations) and plotted the distribution of the
following test characteristics: p-value (A), sensitivity (B), specificity (C) and
AUC (D).

Additional File 5: Distribution of test characteristics from
phenotype permutation testing. We used the factors generated from
the original training set, but phenotypic labels of the samples were
randomly permuted (200 iterations) and plotted the distribution of the
following test characteristics: p-value (A), sensitivity (B), specificity (C) and
AUC (D). Black = original phenotypes and red = scrambled phenotypes.
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Additional File 6: Factor coherence between the training and
validation sets. Each of the top 3 factors that compose the human
breast cancer predictor (3, 12 and 14) exhibit coordinated gene
expression across the training set (A, C and E). Furthermore, this
coordinate expression is recapitulated in the validation set (B, D and F).
Each column represents a human PBMC sample. Samples are ordered left
to right in descending order of their loading on the 1st principal
component. Each row is a gene (probe set) in descending order of
correlation. Red = high expression and yellow = low expression.

Additional File 7: Inclusion probabilities of factors in the swapped
model. We generated a collection of 50 factors from the human PBMC
training set using the methods described previously and used SSS to put
these together in various combinations to form predictive models (5000
iterations), which were validated in an independent sample set. We
calculated the top performing factors based on their inclusion probability
(posterior marginal probability) in the top 200 models. These 50 factors
are plotted along the x-axis and the median posterior marginal
probabilities are plotted on the y-axis. The top 5 factors with inclusion
probabilities significantly above the background noise are 13, 25, 26, 20
and 42.

Additional File 8: Constituent probe identifiers of the top 3 factors
of the breast cancer predictor. Table containing the Affymetrix probe
identifiers of each of the top 3 factors identified in the study.

Additional File 9: BMC_Miniwebsite Tabular documents generated
from the functional annotation of the top 3 factors.
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