
Int. J. Mol. Sci. 2011, 12, 5011-5030; doi:10.3390/ijms12085011 
 

International Journal of 
Molecular Sciences 

ISSN 1422-0067 
www.mdpi.com/journal/ijms 

Article 

Investigation of the Structure Requirement for 5-HT6 Binding 
Affinity of Arylsulfonyl Derivatives: A Computational Study 

Ming Hao, Yan Li *, Hanqing Li and Shuwei Zhang 

Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian 
116023, Liaoning, China; E-Mails: dluthm@yeah.net (M.H.); lihanqing00@gmail.com (H.L.); 
zswei@dlut.edu.cn (S.Z.) 

* Author to whom correspondence should be addressed; E-Mail: yanli@dlut.edu.cn;  
Tel.: +86-411-84986062; Fax: +86-411-84986063. 

Received: 8 July 2011; in revised form: 19 July 2011 / Accepted: 29 July 2011 /  
Published: 8 August 2011 
 

Abstract: 5-HT6 receptor has been implicated in a series of diseases including anxiety, 
depression, schizophrenia and cognitive dysfunctions. 5-HT6 ligands have been reported to 
play a significant role in the treatment for central nervous system (CNS) diseases. 
Presently, a large series of 223 5-HT6 ligands were studied using a combinational method 
by 3D-QSAR, molecular docking and molecular dynamics calculations for further 
improvement of potency. The optimal 3D models exhibit satisfying statistical results with 
r2

ncv, q2 values of 0.85 and 0.50 for CoMFA, 0.81 and 0.53 for CoMSIA, respectively. 
Their predictive powers were validated by external test set, showing r2

pred of 0.71 and 0.76. 
The contour maps also provide a visual representation of contributions of steric, 
electrostatic, hydrophobic and hydrogen bond fields as well as the prospective binding 
models. In addition, the agreement between 3D-QSAR, molecular docking and molecular 
dynamics simulation proves the rationality of the developed models. These results, we 
hope, may be helpful in designing novel and potential 5-HT6 ligands. 
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1. Introduction 

Nowadays, several central nervous system (CNS) diseases such as cognitive dysfunctions, anxiety 
and depression are widespread and sometimes even fatal, which leads to both medical and social 
challenges. Some chemical agents, such as Ro 04-6790, SB-271046, MS-245 and so on currently have 
been used in Phase I and II clinical trials for cognitive impairment [1–3]. However, there are still some 
factors like the side effects that prohibit the widespread use of these medicinal therapies. The 
discovery of serotonin receptor 5-HT6 brings new approaches to deal with this kind of mood diseases. 
Being expressed in the brain regions as known to be associated with learning and memory [4], the  
5-HT6 receptor plays a role in both the cognitive processes and mood control, as well as in depression 
and anxiety [5–7]. As a matter of fact, the 5-HT6 receptor has emerged as a very interesting molecular 
target that interacts with both antidepressant and anxiolytic drugs [8]. 

The rat 5-HT6 receptor was first identified in 1993 and thereafter, human 5-HT6 gene was  
cloned and characterized by Kohen et al. in 1996 [9]. Consisting of 440 amino acids, human 5-HT6 has 
seven hydrophobic regions sufficient to span the membrane, which places the receptor in the  
G-protein-coupled, with seven putative transmembrane domains, receptor superfamily.  

5-HT6 receptor is mainly found in the central nervous system and ultrastructural studies suggest that 
they mediate the postsynaptic, rather than the presynaptic actions [9–11]. To clarify the role of 5-HT6 
receptor in the central nervous system, currently, more and more potent 5-HT6 ligands were 
synthesized such as MS-245 [12], 4′-amino derivative of MS-245 [13], a series of ligands synthesized 
at Wyeth Research, most of which comprised of heterocyclic core with a basic amine and an 
arylsulfonyl moiety [14–21] and others [2,22–24]. Several studies indicate that 5-HT6 ligands may be 
cognition enhancers; however, not all studies have come up with the similar result [25]. Therefore, the 
development of additional potent and selective 5-HT6 ligands will provide additional tools for 
delineating the role of the 5-HT6 receptor. 

At present, computational applications, such as the quantitative structure-activity relationship 
(QSAR), pharmacophore [26,27] and molecular dynamics (MD) [28,29], have been widely used in 
modern drug design aiding the exploration of drug-receptor interaction. These models are able to  
either reveal the mechanism of drug-receptor interactions or/and predict the biological activity of 
compounds by their structural properties, usually being of great help for the design of novel potent 
molecules. For the development of new potent 5-HT6 receptor ligands, it’s meaningful to explore  
the impacts of various substituents on the biological activity of the chemicals. Up to now, to our best 
knowledge, only several computational studies were performed concerning with the 5-HT6  
receptor-ligand interactions. In 2004, a three-dimensional quantitative structure activity relationship  
(3D-QSAR) study which contained 33 antagonists with Ki values ranging from 1.3 to 1700 nM was 
reported by Doddareddy M.R et al. [30]. Following that, a three-dimensional pharmacophore model 
for 5-HT6 receptor antagonists was built based on forty-five structurally diverse 5-HT6 receptor 
antagonists by Campillo, etc. [31]. In that paper, several import pharmacophore features have been 
identified to interact with the modeled 5-HT6 receptor. Besides, two 2D-QSAR models recently were 
also successfully developed based on relative small number of 5-HT6 receptor ligands [32,33]. 

Thus in the present work, based on a more diverse set of 223 5-HT6 ligands, various of in-silico 
models in combination use of 3D-QSAR, molecular docking and molecular dynamics were carried out 
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to find the stereo-electronic parameters with principal aim to render assistance to the development of 
new 5-HT6 receptor ligands. 

2. Results and Discussion 

To measure the predictive capability of a QSAR model, several statistical parameters including 
especially the cross-validated correlation coefficient (q2), non-cross-validated correlation coefficient 
(r2

ncv), and standard error of estimate (SEE), F-statistic values, predicted correlation coefficient for the 
test set of compounds (r2

pred) as well as the optimum number of components (OPN) were taken into 
consideration.  

2.1. 3D-QSAR Statistical Results 

Among the QSAR investigations, two factors are crucial that they almost determine the quality of 
the model established. One is the molecular descriptors that are used to extract the structural 
information, which serve as a bridge correlating the structures of the molecules being studied with 
their biological activities, either in the form of numerical or digital representations. In the present work, 
two 3D descriptors for CoMFA (i.e., the steric and electrostatic fields) and five 3D descriptors for 
CoMSIA (i.e., the steric, electrostatic, hydrophobic, hydrogen bond (H-bond) donor and acceptor 
fields) were applied as the independent variables in the building models. However, though with all 
possible 31 combinations of these field descriptors applied on the dataset, no CoMFA or CoMSIA 
models with satisfying statistical results could be obtained (data not shown). Thus, the help of 
appropriate 2D descriptors is a necessity to the successful modeling of the dataset. During this process, 
two 2D parameters which are most relevant to the binding affinity of the 5-HT6 ligands, i.e., CIC2 and 
BEHv2, were employed in the model development. Their relevance to the activity was determined by 
the following process: (1) Originally, 685 two-dimensional parameters were calculated for each 
molecule by Dragon (DRAGON Professional version 5.4), a commercial soft package which has been 
applied in many successful QSAR analyses. The variables describe the structural features of the 
molecules from various angles including the constitutional and topological aspects, walk and path 
counts, connectivity and edge adjacency indices, Burden eigenvalues, topological charge and 
eigenvalue-based indices, functional group counts, atom-centred fragments and molecular properties, etc.; 
(2) The correlation of these parameters with the 5-HT6 binding affinity was then explored by the 
multiple linear regression analysis (MLR), ending up in a model with several variables as the most 
relevant ones to the biological activity, where the first two crucial ones (CIC2 and BEHv2) were 
selected to aid in the building of 3D-QSAR models. 

The second factor impacting greatly on the model quality is the appropriate superimposition of all 
molecules prior to the PLS analysis. Since up to now the X-ray crystal structure of 5-HT6 receptor is 
still unavailable, homology modeling for the protein was still required presently. Thus in this work, 
both the ligand- and receptor-based alignment rules were applied, with purpose to compare and 
implement the results of them for exploring the receptor-ligand interaction mechanism as real as 
possible. As a result, several optimal CoMFA and CoMSIA models with proper predictive 
performance based on the same training (184 molecules) and test set (39 molecules) were obtained, 
with their statistical results shown in Table 1. Clearly, both the two 2D descriptors of CIC2, which is 
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an information index describing the complementary information content (neighborhood symmetry of  
2-order) and BEHv2, the highest eigenvalue n. 2 of Burden matrix weighted by atomic van der Waals 
volumes Burden eigenvalues, display their little, but critical contribution to the models. 

Table 1. Summary of ligand-based and receptor-based 3D-QSAR models a. 

PLS Statistics Ligand-based model Receptor-based model 
 CoMFA CoMSIA CoMFA CoMSIA 
q2 0.50 0.53 0.45 0.47 

OPN 7 7 5 5 
r2

ncv 0.85 0.81 0.78 0.75 
SEE 0.27 0.30 0.33 0.35 

F 127.90 104.23 123.45 104.26 
r2

pred 0.71 0.76 0.59 0.62 
Contribution     

Steric 0.42 0.18 0.42 0.16 
Electrostatic 0.46 0.33 0.42 0.26 
Hydrophobic - 0.24  0.25 

H-bond acceptor - 0.12  0.16 
CIC2 0.07 0.07 0.11 0.12 

BEHv2 0.05 0.06 0.05 0.05 
a, q2: Cross-validated correlation coefficient after the leave-one-out procedure; r2

ncv: Non-cross-validated 
correlation coefficient; SEE: standard error of estimate; F: F statistical value; r2

pred: Predicted 
correlation coefficient for the test set of compounds; OPN: optimal number of principal 
components; CIC2: neighborhood symmetry of 2-order; BEHv2: the highest eigenvalue n. 2 of 
Burden matrix weighted by atomic van der Waals volumes Burden eigenvalues. 

For the ligand-based study, the optimal CoMFA model employing both the steric and electrostatic 
field descriptors obtains a LOO cross-validated q2 of 0.50, a correlation coefficient r2

ncv of 0.85, a  
SEE value of 0.27 and an F value of 127.90 using 7 components, indicating a good internal predictivity 
of the model. When being validated by the independent test set which is not applied in the building of 
the model, an r2

pred = 0.71 is achieved, proving its reliable external predictivity. As to the field 
contribution, the steric and electrostatic field descriptors account for 0.42 and 0.46, respectively, to the 
CoMFA model. 

During the ligand-based CoMSIA analysis, a model with better statistical results (q2 = 0.53,  
r2

ncv = 0.81, SEE = 0.30, F = 104.23) than the CoMFA was built, with four field (of steric, 
electrostatic, hydrophobic and hydrogen bond acceptor) descriptors employed along with CIC2 and 
BEHv2. Particularly, the r2

pred for the 39 test set compounds is as high as 0.76, which is very close to 
the r2

ncv of the 184 training set ligands, proving the better external predictive capability. In term of the 
relative contribution, the electrostatic field makes the greatest (0.33) to the CoMSIA model,  
followed by hydrophobic field (0.24), then the steric and hydrogen bond acceptor fields give  
0.18 and 0.12, respectively.  

For the receptor-based 3D-QSAR studies, two optimal models with a little worse but still acceptable 
statistical results were obtained taking into account of the large number and big structural diversity of 
the molecules, where the CoMFA model exhibits q2 = 0.45, r2

ncv = 0.78, r2
pred = 0.59, and the CoMSIA 
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one q2 = 0.47, r2
ncv = 0.75, r2

pred = 0.62, respectively. Several phenomena similar to the ligand-based 
models are observed in the two receptor-based ones, which are: (1) Both the two 2D descriptors of 
CIC2 and BEHv2 are involved in the model development, and their contribution are, though not much, 
crucial to the models, as demonstrated by their sum as 0.12 and 0.13 in the ligand-based, and 0.16 and 
0.17 in the receptor-based CoMFA and CoMSIA models, respectively; (2) Steric and electrostatic 
interactions display more important and almost the same contributions to the CoMFA models, which 
are 0.42, 0.46 in the ligand-based, and 0.42, 0.42 in the receptor-based ones, respectively. As for the 
CoMSIA models, their roles are also shown by the 0.18, 0.33 in ligand-based and 0.16, 0.26 in the 
receptor-based ones, respectively; (3) The contribution of two other field descriptors, i.e., the 
hydrophobic and H-bond acceptor, also come into attention that they account for 0.24, 0.12 in  
ligand-based and 0.25, 0.16 in receptor-based CoMSIA models, respectively. When compared with 
each other, all CoMSIA models exhibit better performance than their corresponding CoMFA ones, 
which may be probably due to the incorporation of the two additional field descriptors. This, from 
anther aspect, may indicate the importance of hydrophobic and H-bond interactions for the 5-HT6 
receptor and ligands. 

As shown in Table 1, since the ligand-based model gives the optimal results, we just limit our 
further research to this model. Figure 1 illustrates the correlation plots of the experimental versus the 
predicted pKi values of the training (black dot) and test (red asterisk) sets for both the ligand-based  
3D-QSAR models. Clearly, good correlationships are observed since the predicted values are almost as 
accurate as the experimental activities for the whole dataset. Table S1 (Supporting Information) lists 
the predicted results of the whole data set. 

Figure 1. The correlation plots of the predicted versus the actual pKi values using the 
training set (black dot) and the test set (red asterisk) based on the (A) CoMFA and  
(B) CoMSIA of ligand-based model. 

 

2.2. Contour Maps 

The CoMFA and CoMSIA results are usually represented as 3D coefficient contour maps which 
show regions where variations of different field in the structural features of the molecules cause the 
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increase or decrease of the activity. In this study the most potent compound 198 is shown as an 
example molecule in all the following CoMFA and CoMSIA contour maps (Figures 2 and 3). 

The steric and electrostatic fields from the best CoMFA model are represented in Figure 2. In the 
steric field (Figure 2A), the green colored contours represents regions of favorable steric effect, while 
yellow colored contours represent regions of unfavorable steric effect, respectively.  

As shown in Figure 2A, there exists a large green contour at the distal of the piperazine ring linked 
to the 5-position on the indazole, indicating the presence of a bulky group in this position will increase 
the binding affinity of the class of compounds. The observation can be supported by the experimental 
results. For example, a comparison among 4-piperidinylamino indazoles (compounds 179, 185, 189, 
193 shown in Supporting Information, Table S2) comes to a conclusion that the large substituent at  
5-position on the indazole keeps optimal, since in this position the piperazine ring fall into the  
green-colored zone. In addition one can notice that both 3-piperidinylamino indazoles (compounds 180, 
186, 190 and 194 shown in Table S2) and 4-piperidinylmethylamino indazoles (compounds 181, 187, 
191 and 195 shown in Table S2) series also provide the same trend that substituents at 5-postion 
illustrate much bigger (actually, the biggest) potency, as compared to other positions. It can also be 
found by inspecting the steric contour map that the 4-substituents only show slightly less potency than 
5-position. This is consistent with the steric contour map where the 4-position substituent is directing 
to another green-colored map close to the terminal part of the naphthyl substituent (Figure 2A). On the 
contrary, the 6- and 7-positions are significantly less potent in affinity than 5-position. This is because 
that substituent at 6- or 7-postion is connected to the yellow-colored area which is disfavored in a bulk 
substituent. For 3-sulfonylindazoles (compounds 199–213) classes, we come to the same conclusion 
that derivatives substituted at 5-position are optimal among ligands 199, 201 and 206. Also it is the 
same case for compounds 200, 205 and 210. 

Figure 2. CoMFA StDev*Coeff contour plots for 5-HT6 receptor ligands in combination 
with compound 198. (A) Steric (green/yellow) contour map. Green contours indicate 
regions where bulky groups increase activity (favored level 80%); yellow contours indicate 
regions where bulky groups decrease activity (disfavored level 20%); (B) Electrostatic 
contour map (blue/red). Blue contours indicate regions where positive charges increase 
activity (favored level 80%); red contours indicate regions where negative charges increase 
activity (disfavored level 20%). 

A B
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Figure 3. Ligand-based CoMSIA StDev*Coeff contour plots combined with compound 132. 
(A) Steric (green/yellow) contour map. Green contours indicate regions where bulky 
groups increase activity (favored level 80%); yellow contours indicate regions where bulky 
groups decrease activity (disfavored level 20%); (B) Electrostatic contour map (blue/red). 
Blue contours indicate regions where positive charges increase activity (favored level 
80%); red contours indicate regions where negative charges increase activity (disfavored 
level 20%); (C) Hydrophobic contour map (yellow/white). Yellow contours indicate 
regions where hydrophobic substituents enhance activity (favored level 80%); white 
contours indicate regions where hydrophobic substituents decrease activity (disfavored 
level 20%); (D) CoMSIA contour maps illustrating hydrogen-bond acceptor features 
(magenta/red). The magenta contour indicates regions where H-bond acceptor groups 
increase activity (favored level 80%); red contour indicates the disfavored region for  
H-bond acceptor groups (disfavored level 20%). 

A B

C D

 

Two green-colored polyhedra also appear around the naphthyl group, showing that large 
substituents are likely to enhance the affinity of the ligand. The fact that compound 185 presents larger 
potency, while its counterpart 214 to substitute the naphthyl group with a relatively small benzene ring 
shows less activity is just the case. A band of green maps are observed on the lower right of the 
indazole ring indicating that the substructure fragments with steric bulk in this area increase the 
activity. This is also consistent with the experimental results that compound 108 with 1-Naph shows 
high activity (pKi = 8.51) due to its large –Naph group that falls into the green map. While its 
counterparts 99–107 (arylsulfonyl derivatives at the 4-position shown in Table S2) with relatively 
small substituents give the less potency. 
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Several yellow-colored maps around the sulfonyl group at the 3-position of indazole suggest that 
substructure with large groups tend to reduce the activity. The probable reason is that large substitents 
linked to this position will collide with the surrounding amino acid residues, yielding a negative role in 
affinity activity. 

The CoMFA electrostatic contour map with the representative compound 198 is shown in  
Figure 2B. Blue contours mean that positive charged substituents are helpful for activity while red 
contours indicate that negative charges are conducive. As shown in Figure 2B, blue contour maps are 
observed surrounding the piperazine ring and –NH of indazole group, suggesting that a charge 
withdrawing group fixed to these positions will enhance the biological activity. In addition, red 
contour maps exist around the sulfonyl group, thus in this position electro-rich groups are beneficial 
for increasing the activity. This may be a reason that all compounds of the dataset contain such 
electronegative groups. 

The CoMSIA steric and electrostatic contour maps (Figure 3A,B) are similar to above CoMFA 
model and is thus not discussed here additionally. Figure 3C shows the CoMSIA hydrophobic field 
contour map, where yellow contours indicate hydrophobic favorable regions, while white contours 
illustrate regions where hydrophobic substructures are likely to decrease the activity. One can see that 
a white contour is embedding the piperazine ring of compound 198, which indicates that in this zone 
the hydrophobic group is disfavored to affinity activity. Also there exist some white maps near the  
–NH group of the indazole. Thus an introduction of hydrophilic substituent may be beneficial to the 
potency. Besides, some yellow-colored polyhedra are observed clamping the indazole ring, indicating 
that hydrophobic groups such as the benzene ring play a positive role in the activity increase. In the 
studied compounds, most ligands contain such indazole or other heterocyclic cores as a template. It 
seems that it is such hydrophobic groups clamped in the middle of hydrophobic favored contours that 
may hold the ligand in the necessary active orientation. 

Figure 3D depicts the H-bond acceptor contour map of the CoMSIA model. Magenta contours 
encompass areas where an H-bond acceptor will lead to improved biological activity, while an 
acceptor located near the red regions will result in the loss of biological activity. In this dataset, it can 
be easily found that a large magenta-colored map is surrounding the –SO2 group, which indicates that 
the presence of H-bond acceptor groups in this region will enhance the affinity. Many compounds of 
this class show high activity is just due to the –SO2 group they possess linked to the indazole at the  
3-position as H-bond acceptors. There also exist red-colored maps near the –NH group on the indazole 
indicating H-bond acceptors in the zone are not beneficial to increase the activity. Thus this 
information obtained from the CoMFA and CoMSIA contour maps are helpful for us to understand the 
hypothetical interaction features of the 5-HT6 ligands. 

2.3. Homology Modeling Results 

Figure 4 shows the structural superposition of the 5-HT6 receptor homology model to the X-ray 
crystal structure of the template molecule (PDB ID: 2RH1). This is a high resolution crystal structure 
of human β2-adrenergic G protein-coupled receptor which has been successfully applied to homology 
modeling study for both CB1 and CB2 receptors [34]. Seemingly, the sequence identity between  
5-HT6 receptor model and template 2RH1 is not so high (29% obtained from the automated mode 
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report from [35]). However, previous reports have illustrated the key active site are focus on the 
transmembrane domains [36–38]. Thus, we computed the sequence identity in the important 
transmembrane domains (TM1-TM7), which is about 54% (87/162), arriving at the normal criterion 
that a sequence identity higher than 30% could be used to predict the protein structure [39]. As shown 
in Figure 4A, the seven transmembrane domains are marked in red frame. As seen in Figure 4B, 
compound 198 is docked into the pocket of the 5-HT6 receptor, and the template protein 2RH1 chain A 
(red ribbon) are well superposed with the 5-HT6 receptor model structure (yellow ribbon) obtained 
from the homology modeling, especially, around the binding pocket area. All these results certify that 
the 5-HT6 protein model we developed is reasonable. 

Figure 4. Homology modeling results. (A) Sequence alignment of 2RH1 (Chain A) and the 
5-HT6 receptor model, where the important transmembrane domains (TM1-TM7) are 
marked in red frame; (B) Superposition of the template protein 2RH1 chain A (red ribbon) 
and the 5-HT6 receptor model structure (yellow ribbon) from homology modeling. 
Compound 198 with bottle-green stick is binding into the pocket. 

Binding pocket
A B

 

2.4. Docking Results 

Docking studies were carried out on the dataset to find the optimal conformation of the ligand in the 
binding pocket of the 5-HT6 protein in Figure 5. Herein, compound 198 was selected as an example to 
demonstrate the docking model. The hydrogen bonds between the ligand and the receptor are shown as 
the yellow dash lines, and some significant residues near compound 198 with 4 Å are labeled in red. 
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Figure 5. The binding result of compound 198 with 5-HT6. The ligand are colored in 
bottle-green and key amino acid residues in red labels around compound 198 within 4 Å. 
H-bonds are shown in yellow dash lines. 

Tyr310

Trp281

Cys110

Phe285

Phe284

Ser193

Asn288 Gln291

Ala192
Val189

Thr306

Asp106
Val107

Arg181

Leu182
Leu183

His167 Ala184

Phe302

1.9

3.4

 

It can be noticed that in this figure, several hydrophobic residues (such as Cys110, Tyr310, Trp281, 
Thr306, Val107 and Phe284) are able to form a large hydrophobic pocket, accommodating a large 
substituent in order to increase the activity. This is consistent with our previous steric-favored contour 
map at these regions shown in Figures 2A and 3A. The previous reports also illustrated that the amino 
acid residues such as Trp281 and Phe284 played a central role in ligand binding [36,38]. Another 
hydrophobic cavity can be found between Ser193, Ala192, Phe284, Phe285, Asn288, Phe302 and 
Leu182, which acts like a clamp so as to make the indazole fixed. This conclusion can be supported by 
above hydrophobic-favored white contour map in Figure 3C. Also, it can be noticed that the 
hydrophobic residues (Phe284, Phe285) in TM6 can interact with benzene ring well on the indazole. 
This is consistent with the previous investigation [38]. On the right of indazole, one open hydrophobic 
pocket is formed among Leu183, Ala184, Val189 and Gln291, which are able to interact with the 
naphthyl ring well. In addition, two important H-bond interactions are formed, where one is between 
the distal –NH of the piperazine ring and the carbonyl group of Asp106 with a length of 1.9 Å. This 
amino acid residue has been identified as conserved aspartate (Asp106 on TM3) by site-directed 
mutagenesis studies with rat 5-HT6 receptors [37]. This is a high degree of homology between rat and 
human 5-HT6 receptors. Several modeling investigations also implicated a role for Asp106 for 
interaction with the ligands [36,38]. Another hydrogen bond can be found between the –SO2 group and 
the charged His167 residue with H-bond length of 3.4 Å. Furthermore, these observations in this work 
are in agreement with the previous results [24,31]. Thus, above consistence of the contour maps and 
docking results further support the rationality of our observations. But for further validation of these 
conclusions, MD simulation was carried out continuously. 
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2.5. MD Simulations 

In order to examine the stability of the docking solution, presently, MD simulations lasting 5 ns was 
performed to the docked complex structure of 5-HT6 with the most potent 198, obtaining a dynamic 
picture of the conformational changes that occur in an aqueous solution, with main emphasis to 
explore the conformational change that takes place in the compound 198 and 5-HT6 receptor. After  
1.5 ns, the RMSD of the complex tends to be stable (at about 0.55 Å) and retains this value throughout 
the simulation (Figure 6A), indicating stabilization of the complex. A superimposition of the average 
structure of 5 ns and the initial docked structure is shown in Figure 6B, where the bottle-green ribbon 
represents the initial structure for the docked complex, the light-blue ribbon represents the average 
structure of MD simulations, with compound 198 represented as carbon-chain in bottle-green for the 
initial complex and carbon-chain in light-blue for the average complex, respectively. It is noted that 
there is no significant difference between the average structure extracted from MD simulations and the 
docked model of the complex, proving the rationality and validity of the docking model.  

Figure 6. MD results. (A) RMSD of the docked complex versus MD simulation time in the 
MD-simulated structure; (B) Superimposition of backbone atoms in the average structure 
of MD simulations (light-blue) and the initial docking structure (bottle-green) for 
compound 198-5-HT6 complex. Herein, Compound 198 is represented as carbon-chain in 
bottle-green for the docking complex and light-blue for the average complex, respectively. 

A

B
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3. Material and Experimental Methods 

3.1. Dataset and Biological Activity 

A dataset of 223 5-HT6 receptor ligands with Ki experimental values were collected from the 
continued efforts of Wyeth Research [14–21]. The corresponding pKi (−logKi) values which were 
converted from the binding affinity Ki values, were used as the dependent variables in the 3D-QSAR 
analyses. The whole dataset was divided into a training set (184 molecules) for the generation of the 
QSAR models and a test se (39 molecules) for the final external validation of the systems. The 
selection principle of the test set was to assure that both their pKi values and structural diversity are 
randomly but representative of the range of the whole set. Table S2 (Supporting Information) lists all 
the structures and biological values (pKi) of the dataset, where the representative skeletons and pKi 
values are depicted in Table 2. 

Table 2. Representative structures and binding affinity values pKi (M) of the dataset. 

No. Structure pKi  No. Structure pKi 

1 

 

7.70 99 

 

7.39

2 

 

7.64 100 *

 

7.27

3 

 

8.70 121 

 

7.70

27 

 

8.31 132 

 

9.52

55 

 

6.71 149 
N N

S
O

O

 

7.31

56 * 

 

7.48 179 

 

8.55

74 

 

6.30 198 

 

9.62

* Compounds belonged to the test set. 
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3.2. Molecular Alignment 

All molecular calculations were performed using the SYBYL6.9 molecular modeling software 
package (Tripos Associates, St. Louis, MO). The geometry optimizations of all compounds were 
carried out by using the TRIPOS force field with the Gasteiger Hückel charges, and repeated 
minimization was performed using Powell conjugated gradient algorithm until the root-mean-square 
deviation (RMSD) of 0.001 kcal/mol was achieved. Molecular alignment of compounds is a crucial 
step for the successful development of 3D-QSAR models [40]. In this process, the most potent 
compound 198 was chosen as a template to fit the remaining training and test set of compounds. 
Thereafter, all compounds finally minimized with the lowest energy in the dataset were aligned to a 
common substructure by substructure-based alignment method using the “align database” command in 
SYBYL. Figure 7A depicts the common substructure for the alignment which is marked in bold. 
Figure 7B,C show the resulting ligand-based and receptor-based alignment model, respectively. 

Figure 7. Alignment of all molecules in the dataset. (A) Compound 198 is used as the 
template. The common substructure (shown in bold) for the alignment of all molecules;  
(B) Ligand-based; and (C) receptor-based alignment of all the compounds. 

A

B C

 

3.3. CoMFA and CoMSIA Field Calculation 

A 3D cubic lattice with grid spacing of 2.0 Å in x, y and z directions was finally generated to 
encompass the aligned molecules to derive the CoMFA and CoMSIA descriptor fields. In CoMFA,  
a sp3 carbon probe atom which has a charge of +1.0 (default probe atom in SYBYL) and energy  
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cut-off values of 30 kcal/mol, was placed at each lattice point to compute the descriptors of steric and 
electrostatic fields. The CoMFA steric and electrostatic fields generated were automatically scaled 
using the CoMFA-STD method in SYBYL. In CoMSIA, the similarity indices calculated at regularly 
spaced grid intervals for the pre-aligned molecules, were derived with the same lattice box 
implemented in SYBYL as that used for the CoMFA calculations. In addition to steric and electrostatic 
fields, hydrophobic, and hydrogen-bond donor and acceptor descriptors were calculated with the same 
lattice box of a regularly placed grid of 2.0 Å, employing a probe atom with radius 1.0 Å, charge +1.0, 
and hydrophobicity +1.0 CoMSIA similarity indices (AF) for a molecule j with atom i at a grid point q 
were calculated by Equation (1): 

2

, ,( ) αω ω −= −∑ iqrq
F k probe k ikA j e  (1)

where k represents the steric, electrostatic, hydrophobic, or hydrogen-bond donor or acceptor 
descriptor. ωprobe,k is the probe atom with radius 1.0 Å, charge +1.0, hydrophobicity +1.0, H-bond 
donating +1.0, H-bond accepting +1.0; ωik is the actual value of the physicochemical property k of 
atom i; riq is the mutual distance between the probe atom at grid point q and atom i of the test 
molecule. The attenuation factor α was set to 0.3. 

3.4. 3D-QSAR Model Calculation and Validation 

For deducing the 3D-QSAR models, the CoMFA and CoMSIA descriptors served as the 
independent variables and pKi values as the dependent variables in the PLS regression analysis. PLS is 
an extension of multiple regression analysis in which the original variables are replaced by a small set 
of their linear combinations [41]. As a statistical approach, PLS generalizes and combines those 
features obtained from the principal component analysis and multiple regressions. It is particularly 
useful for prediction of a set of dependent variables from a large set of independent variables, 
especially when the matrix of predictors has more variables than observations. 

To evaluate the reliability of the models generated from the PLS analysis, cross-validation analysis 
was accomplished with the leave-one-out (LOO) methodology where one compound was moved away 
from the dataset and its activity was predicted by the model derived from the rest of the dataset. The 
predictive value of the models was evaluated first by LOO cross-validation process, and the number of 
components resulting in the highest cross-validated q2 and lowest standard error of estimates (SEE) 
was then determined as the optimum number of principal components (OPN) in the final PLS analyses. 
To evaluate the predictive power of the CoMFA and CoMSIA models, the predictive r2

pred based on 
the test set molecules was calculated using equation (2): 

2 1 /predr PRESS SD= −  (2)

where SD denotes the sum of squared deviation between the biological activities of the test set 
molecules and the mean activity of the training set molecules, PRESS represents the sum of squared 
deviations between the experimental and predicted activities of the test molecules, respectively. 
Finally, the CoMFA and CoMSIA results were graphically represented by field contour maps, where 
the coefficients were generated using the field type “Stdev*Coeff”. 
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3.5. Homology Modeling 

When the experimental 3D-structure of the protein is not available, homology modeling is a 
powerful tool with homologous proteins whose 3D structures are known. In the present study, due to 
the unavailability of human 5-HT6 3D-structures, homology modeling process was employed to predict 
the protein structure from the target amino acid sequence obtained from the National Center for 
Biotechnology Information database [42]. The homology model of 5-HT6 was built in Automated Mode 
and the amino acid sequence of 5-HT6 was submitted to SWISS-MODEL server [35]. The template 
protein (PDB code: 2RH1 chain A, obtained from the Protein Data Bank [43], a high resolution (2.4 Å) 
crystal structure of human β2-adrenergic G protein-coupled receptor [44], was employed to generate 
the 3D protein structure. 

3.6. Molecular Docking 

To throw light on the interaction and illustrate the accurate binding model for the active site of  
5-HT6 with ligands, molecular docking analysis was carried out by using the Surflex Dock 
implemented in SYBYL. The protein preparation and refinement utility in SYBYL was used to further 
develop the resulting homology protein structure. Then different conformers of all 223 ligands were 
docked into the binding site. During the docking process, critical parameters for generating the binding 
pocket, i.e., the protomol_bloat which can be used to inflate the protomol and include nearby crevices 
and the protomol_threshold which is a factor determining how much the protomol can be buried in the 
protein, were set to 0.5 and 1, respectively. 

3.7. Molecular Dynamics Simulations 

The MD simulations were performed with GROMACS software package [45] using the 
GROMOS96 force field [46]. The molecular topology file for the ligand in protein was generated by 
the program PRODRG 2.5 [47,48]. The simulation cell was a cubic periodic box with a side length of 
112.52 Å, and the minimum distance between the protein and box walls was set to larger than 10 Å. 
Herein, in order to neutralize the total charge, 17 chloridions were placed randomly in the box. The 
total number of the atoms of the simulation system was 138230 including the protein complexes and 
waters. The remaining box volume was filled using the simple point charge (SPC) water [49]. Prior to 
the simulation, an energy minimization was applied to the full system without constraints using the 
steepest descent integrator for 8854 steps, then the system was equilibrated via a 200 ps MD 
simulation at 300 K. Finally, a 5 ns simulation was performed with a time step of 2 fs. During MD 
simulation, the standard parameters and main calculation methods were set as follows: The model used 
NPT ensemble at 300 K with periodic boundary conditions, the temperature was kept constant by the 
Berendsen thermostat, the value of the isothermal compressibility was set to 4.5 × 10−5 bar−1 while the 
pressure was maintained at 1 bar using the Parrinello-Rahman scheme [50], the electrostatic 
interactions were calculated using the particle mesh Ewald method [51,52], the cut-off distances for 
the calculation of Coulomb and van der Waals interactions were 1.0 and 1.4 nm, respectively. All the 
MD simulations lasted 5 ns to ensure that the whole systems were stable. 
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4. Conclusions 

In the present article, a large dataset including 223 5-HT6 receptor ligands has been estimated for 
the purpose of developing 3D-QSAR models based on both the ligand- and receptor-based 
superimpositions. Statistically significant models have been derived with two 3D-QSAR methods of 
CoMFA and CoMSIA on the basis of the database alignment method. These two approaches produce 
equally good models expressed in terms of several rigorous evaluation criteria such as q2 and r2

pred for 
both internal and external data sets. Graphical interpretation of the optimal results, provided by the 
CoMFA and CoMSIA analyses, brings to light important structural features that could be responsible 
for the low- or high-binding activity to 5-HT6 receptor. In addition, a good consistency between the 
CoMFA and CoMSIA contour maps, molecular docking and molecular dynamics simulations proves 
the reliability and robustness of the developed models. The contour maps for the series of 5-HT6 
ligands reveal some information about the modification of these compounds. Taking the most potent 
ligand 198 as an example, the introduction of a large and H-bond donor substituent at the 5-position  
on the indazole will increase the potency. The presence of an H-bond acceptor (such as –SO2) at  
3-position of the indazole plays a positive role in enhancing the activity of the ligand. In addition, the 
especially important amino acid residue of Asp106 is essential to interact with ligands. We hope the 
developed models could provide an insight into some instructions for further synthesis of highly potent 
5-HT6 receptor ligands. 
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