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    Introduction 
 Upon binding of their cognate ligand, TNF receptor superfamily 

(TNFRSF) members transmit signals via their cytoplasmic do-

mains. Several TNF receptors bear death domains (DD) that al-

low them to directly promote apoptotic cell death. Activation of the 

TNFRSF receptors, such Fas or TNF-related apoptosis-inducing 

ligand (TRAIL) – R2 ( Tartaglia et al., 1993 ), allows the binding 

of FADD in a DD – DD interaction, which initiates apoptotic sig-

naling by the recruitment and activation of caspase 8 or 10 by 

oligomerization. TNF-R1 – induced activation of caspase 8 or 10 

is less direct, involving recruitment of the DD-containing adaptor 

TRADD, followed by the formation of an internalized secondary 

complex which can bind FADD and caspase 8 to initiate the 

apoptotic program ( Micheau and Tschopp, 2003 ). 

 Despite its name, most tumor cells do not die when exposed 

to TNF �  but must also be treated with inhibitors of translation or 

transcription, such as actinomycin D or cycloheximide. These 

agents are thought to sensitize cells to TNF �  by preventing produc-

tion of survival proteins induced via NF- � B. Many of the TNFRSF 

members, including FN14, contain a consensus Tnf receptor-asso-

ciated factor (TRAF) binding motif ( Park et al., 1999 ;  Ye et al., 

1999 ) that recruits TRAFs to activate transcription factors includ-

ing NF- � B and AP1 ( Lee et al., 1997 ;  Yeh et al., 1997 ). 

 TRAF1 and TRAF2 were initially identifi ed in protein 

complexes that bound to the cytoplasmic domain of TNF-R2 

( Rothe et al., 1994 ), together with cellular inhibitor of apoptosis 1 

(cIAP1) and 2 ( Rothe et al., 1995 ). However, another cellular 

IAP homologue, XIAP ( Duckett et al., 1996 ;  Listen et al., 1996 ; 

 Uren et al., 1996 ), became the focus of attention because it 

was shown to directly inhibit activated downstream caspases 

 S
ynthetic inhibitor of apoptosis (IAP) antagonists in-

duce degradation of IAP proteins such as cellular 

IAP1 (cIAP1), activate nuclear factor  � B (NF- � B) 

signaling, and sensitize cells to tumor necrosis factor  �  

(TNF � ). The physiological relevance of these discoveries 

to cIAP1 function remains undetermined. We show that 

upon ligand binding, the TNF superfamily receptor FN14 

recruits a cIAP1 – Tnf receptor-associated factor 2 (TRAF2) 

complex. Unlike IAP antagonists that cause rapid protea-

somal degradation of cIAP1, signaling by FN14 promotes 

the lysosomal degradation of cIAP1 – TRAF2 in a cIAP1-

dependent manner. TNF-like weak inducer of apoptosis 

(TWEAK)/FN14 signaling nevertheless promotes the same 

noncanonical NF- � B signaling elicited by IAP antagonists 

and, in sensitive cells, the same autocrine TNF � -induced 

death occurs. TWEAK-induced loss of the cIAP1 – TRAF2 

complex sensitizes immortalized and minimally passaged 

tumor cells to TNF � -induced death, whereas primary cells 

remain resistant. Conversely, cIAP1 – TRAF2 complex over-

expression limits FN14 signaling and protects tumor cells 

from TWEAK-induced TNF �  sensitization. Lysosomal deg-

radation of cIAP1 – TRAF2 by TWEAK/FN14 therefore 

critically alters the balance of life/death signals emanat-

ing from TNF-R1 in immortalized cells.

 TWEAK-FN14 signaling induces lysosomal 
degradation of a cIAP1 – TRAF2 complex 
to sensitize tumor cells to TNF �  
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resistance to TWEAK/TNF � -induced cell death. These results 

provide mechanistic insights into how the cIAP1 – TRAF2 com-

plex functions in tumor cells to inhibit apoptosis and how this 

complex can be physiologically regulated. 

 Results 
 FN14 is expressed by most tumor 
cell lines 
 To understand how endogenous cIAPs regulate TNFRSF signal-

ing, we used TNFSF ligands to screen for cell lines containing 

detectable levels of endogenous TNFSF receptors. To facilitate 

the screen, we generated TNFSF ligands as recombinant proteins 

tagged with the Fc portion of human IgG (Fig. S1A, available at 

http://www.jcb.org/cgi/content/full/jcb.200801010/DC1;  Bossen 

et al., 2006 ). These molecules are cross-linked via the Fc portion 

that promotes higher order aggregation of the corresponding re-

ceptors, closely mimicking engagement by membrane-bound li-

gands ( Holler et al., 2003 ). The Fc portion also facilitates reliable 

detection of these proteins by Western blot (Fig. S1 B) and allows 

for their simple purifi cation with protein A (Fig. S1 B, right) 

and for immunoprecipitation of interacting protein complexes 

(see  Fig. 1 D ). 

 We tested the purifi ed Fc ligands for specifi c binding to 

their cognate receptor using FlpIn stable cell lines inducibly ex-

pressing different TNFSF receptors and only observed binding 

when the ligand was added to cells in which expression of the 

corresponding cognate receptor was induced, i.e., CD27/CD70 

and FN14/TWEAK (Fig. S1 C). Satisfi ed with the specifi city of 

the ligands, we used them to screen a panel of tumor cell lines 

(including those from kidney, brain, colon, melanoma, breast, 

and ovarian cancers). Only one of the ligands, TWEAK, bound 

to a high proportion of the tumor cell lines examined ( Fig. 1 A , 

Fig. S1 D, and not depicted), suggesting that in culture, many 

tumor cells constitutively express the TWEAK receptor FN14. 

 Some studies have suggested that TWEAK binds other re-

ceptors in addition to FN14 ( Polek et al., 2003 ;  Bover et al., 

2007 ). To confi rm that the signal caused by binding of TWEAK 

correlated with expression of FN14, we used a commercial anti-

body against FN14. The specifi city of this FN14 antibody was 

demonstrated by fl ow cytometry using cells inducible for FN14 

expression ( Fig. 1 B ). Importantly, cell lines that bound TWEAK 

also stained strongly with the antibody to FN14 ( Fig. 1 C ). 

These results demonstrate that a large number of transformed 

cell lines of both human and mouse origin constitutively ex-

press the TWEAK receptor FN14. 

 TWEAK binding to FN14 recruits TRAF2 
and cIAP1 
 Because yeast two-hybrid screens suggested a potential inter-

action between TRAF2 and FN14 ( Brown et al., 2003 ), we tested 

whether TRAF2 could interact with FN14 in vivo. Recombi-

nant Fc-TWEAK successfully immunoprecipitated endogenous 

TRAF2 and cIAP1 in D645 glioma cells, whereas in the absence 

of TWEAK, no TRAF2 or cIAP1 was detected ( Fig. 1 D ). 

 To test whether cIAP1 binding to FN14 was indirectly 

mediated through TRAF2, we transiently transfected cIAP1  � C6 

( Deveraux et al., 1997 ) and the N-terminally processed form of 

the initiator caspase, caspase 9 ( Srinivasula et al., 2001 ), whereas 

neither cIAP1 nor cIAP2 can inhibit caspase activity at concen-

trations that are reached in vivo ( Tenev et al., 2005 ;  Eckelman 

and Salvesen, 2006 ) 

 Although the function of cIAP1 has remained unclear for 

some time, recent studies have identifi ed genetic abnormalities 

in cIAP1 from patients with multiple myeloma that correlate 

with reduced cIAP1 protein levels and enhanced noncanonical 

NF- � B activity ( Annunziata et al., 2007 ;  Keats et al., 2007 ). 

Consistent with this work, it has recently been demonstrated 

that genetic deletion of cIAP1 in immortalized mouse embry-

onic fi broblasts (MEFs) causes constitutive noncanonical NF- � B 

activity and sensitization to TNF � -induced apoptosis ( Vince 

et al., 2007 ), and loss of cIAP1 sensitizes cells to TNF �  ( Gaither 

et al., 2007 ). Strikingly, synthetic IAP antagonists, or smac mi-

metics, which deplete both cIAP1 and 2 protein levels, also ac-

tivate NF- � B signaling and enhance TNF �  death signaling ( Li 

et al., 2004 ;  Gaither et al., 2007 ;  Varfolomeev et al., 2007 ;  Vince 

et al., 2007 ). Therefore, although the intended target of Smac 

mimetics was XIAP, it appears that their ability to effectively 

inhibit cIAP1 and or cIAP2 plays a central role in tumor cell 

killing and that cIAP1 is a central player in regulating the sur-

vival and death signals initiated from TNF-R1 in tumor cells. 

 cIAP1 and 2 were identifi ed via their indirect binding 

to TNF-R2, but they are also present in the TNF-R1 complex 

( Micheau and Tschopp, 2003 ;  Vince et al., 2007 ) and have the 

potential to regulate the signaling from  � 17 TNF superfamily 

receptors that contain TRAF2 consensus binding sites. Despite 

this, it is still unknown which receptors cIAP1 does bind and 

how it might be physiologically regulated to control signaling 

from these receptors. 

 TNF-like weak inducer of apoptosis (TWEAK) is a mem-

ber of the TNF superfamily (TNFSF12) that engages a receptor 

termed FN14 (TNFRSF12A). FN14 has been shown to bind 

TRAF2 (and TRAFs 1, 3, and 5) in a yeast two-hybrid screen 

( Brown et al., 2003 ) and can initiate both canonical and non-

canonical NF- � B activation ( Saitoh et al., 2003 ). It is unknown 

how FN14 activates NF- � B, but physiological TWEAK/FN14 

signaling can inhibit cellular differentiation, promote angio-

genesis, cytokine production, and cellular proliferation, and has 

been suggested to play a role in the wound response because of 

its induction in wounded tissues and organs ( Vince and Silke, 

2006 ;  Winkles et al., 2007 ). TWEAK also induces apoptosis in 

HT29 and KATO-III cells pretreated with IFN �  and has growth-

suppressive effects on several cell types ( Felli et al., 2005 ; 

 Maecker et al., 2005 ). 

 In this paper, we show that binding of TWEAK to endoge-

nous FN14 recruits a complex containing both cIAP1 and TRAF2. 

This complex is subsequently recruited to a lysosomal compart-

ment where it is degraded. Consistent with lysosomal degrada-

tion, TWEAK-induced TRAF2 degradation is prevented by 

several different inhibitors of lysosomal function but, interest-

ingly, still requires cIAP1 function. The loss of cIAP1 or TRAF2, 

but not cIAP2 or XIAP, preferentially sensitizes immortalized 

cells, but not primary cells, to killing by TNF � . In contrast, over-

expression of both cIAP1 and TRAF2 correlates with tumor cell 
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widely accepted model for cIAP1 function, based largely on 

overexpression data, states that cIAP1 ubiquitylates TRAF2 

causing its proteasomal degradation ( Li et al., 2002 ). A fol-

lowup study using primary B cells also showed that TRAF2 

degradation after stimulation with agonistic TNF-R2 antibodies 

did not occur in cIAP1 knockout cells ( Zhao et al., 2007 ), lending 

credence to this model. We therefore tested whether TWEAK in-

duced TRAF2 degradation. OVCAR4, SKOV3, Kym1 ( Fig. 2 A ), 

and transformed MEF cells ( Fig. 2 C  and not depicted) were 

treated with TWEAK for 0 – 6 h and cellular levels of endog-

enous cIAP1 and TRAF2 analyzed by Western blot ( Fig. 2, A 

and C ). After 1 – 6 h of TWEAK addition, cellular levels of both 

TRAF2 and cIAP1 were reduced in all cell lines examined. 

 TWEAK/FN14 promotes cathepsin 
dependent lysosomal degradation of the 
cIAP1 – TRAF2 complex 
 Although we observed substantial degradation of TRAF2 and 

cIAP1 after TWEAK treatment, we were surprised that the 

degradation of TRAF2 and cIAP1 could not be blocked by 

preincubating cells with proteasome inhibitors such as MG132 

(Fig. S2 A, available at http://www.jcb.org/cgi/content/full/jcb

.200801010/DC1) or PS341 ( Fig. 2 B ) before TWEAK stimu-

lation, despite the fact that these inhibitors effi ciently blocked 

proteasome function, as indicated by enhanced levels of total 

cellular ubiquitylated proteins ( Fig. 2 B ). 

(a stable mutant of cIAP1 lacking the last six residues) and cIAP1 

 � BIR1 constructs into D645 glioma cells and immunoprecipitated 

endogenous FN14 with Fc-TWEAK. Consistent with previous 

observations ( Samuel et al., 2006 ;  Varfolomeev et al., 2006 ), 

cIAP1 constructs that lacked a BIR1 domain were unable to bind 

endogenous TRAF2, whereas mutations to other regions of cIAP1 

did not affect the TRAF2 interaction (Fig. S1 E and not depicted). 

As for endogenous cIAP1 ( Fig. 1 D ), transfected cIAP1  � C6 could 

be immunoprecipitated by Fc-TWEAK ( Fig. 1 E ), whereas  � BIR1 

cIAP1 could not be detected under the same conditions, even 

though endogenous TRAF2 was immunoprecipitated ( Fig. 1 E ). 

Similarly, when vesicular stomatitis virus (VSV) – tagged FN14 

was induced and immunoprecipitated with anti-VSV in the pres-

ence of TWEAK, cIAP1  � C6 could be detected, whereas neither 

 � BIR1 cIAP1 nor  � BIR1 cIAP1  � C6 associated with FN14 

(Fig. S1 F). These results strongly suggest that endogenous cIAP1 

binds indirectly to FN14 through its association with TRAF2. 

 Signaling from FN14 induces the 
degradation of both TRAF2 and cIAP1 
 The role of TRAF2 and cIAP1 in TNFSF signaling is still un-

clear. Several studies suggest that TRAF2 is the ubiquitin E3 li-

gase that ubiquitylates RIP ( Lee et al., 2004 ), thereby promoting 

activation of canonical NF- � B ( Chen et al., 2006 ). Other studies 

suggest cIAP1 is the ubiquitin E3 ligase for RIP ( Park et al., 

2004 ) and for TRAF2 itself ( Li et al., 2002 ). Indeed, the most 

 Figure 1.    TWEAK specifi cally binds to endog-
enous FN14 in many tumor cell lines and cIAP1 
binds to FN14 via its TRAF2 binding domain.  
(A) Cells were harvested and incubated with 
Fc-CD70 or Fc-TWEAK, Tricolor-labeled anti-
Fc, and analyzed by fl ow cytometry. (B) FN14 
antibody specifi cally detects FN14. Stable 
FlpIn T-REx 293 cells inducible for FN14 were 
induced with or without doxycycline overnight, 
stained with anti-FN14, and analyzed as in A. 
Controls were stained with secondary anti-
body alone. (C) Cell lines that bind TWEAK 
also stain with antibodies to FN14. Cells were 
harvested and stained with the FN14 antibody 
as in B. (D) D645 cells were harvested and then 
treated for 15 min at 37 ° C with or without 2  μ g 
Fc-TWEAK. Cells were lysed and Fc-TWEAK 
protein complexes precipitated with protein 
A beads and analyzed by Western blot. 
*, carryover signal from cIAP1 blot. (E) Binding 
of cIAP1 to FN14 is mediated by its associa-
tion with TRAF2. D645 glioma cells were trans-
fected with the indicated FLAG-cIAP1 constructs, 
harvested, and then treated with Fc-TWEAK 
for 20 min at 37 ° C. Cells were lysed and 
Fc-TWEAK complexes precipitated and analyzed 
as in D. Molecular mass is indicated in kD on 
the left of the autoradiograph.   
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reduced TWEAK-mediated degradation of TRAF2 and a modest 

protecton of cIAP1 when serum was removed from the medium 

before addition of the inhibitor ( Fig. 2 D ). We therefore tested 

whether TWEAK-mediated TRAF2 and cIAP1 depletion was de-

pendent upon lysosomal function. Consistent with this hypothe-

sis, inhibitors of lysosomal function, such as chloroquine and 

ammonium chloride, prevented TWEAK-mediated TRAF2 deg-

radation, whereas ammonium chloride also substantially blocked 

TWEAK-mediated cIAP1 degradation, although not to the same 

extent as it blocked TRAF2 depletion ( Fig. 2, D and F ). 

 To further test a role for lysosomal proteases, we used 

specifi c protease inhibitors. The serine protease inhibitor AEBSF 

failed to block TWEAK-mediated cIAP1 – TRAF2 degradation, 

whereas TLCK, which can inhibit both serine and cysteine pro-

teases, partially blocked TWEAK-mediated TRAF2 loss ( Fig. 2 E ). 

The cathepsin B inhibitor CA-074Me ( Fig. 2, E and F ) also 

provided protection against loss of both cIAP1 and TRAF2, im-

plying that lysosomal cathepsins may be important for the degra-

dation of this complex. Importantly, neither CA-074Me nor the 

inhibitors of lysosomal function perturbed the proteasomal degra-

dation pathway because they did not prevent the loss of cIAP1 

induced by IAP antagonist (compound A) treatment ( Fig. 2 F ), 

which we have previously shown is proteasomal dependent 

( Vince et al., 2007 ). 

 Although endogenous TRAF2 and cIAP1 was diffi cult 

to detect by confocal microscopy, analysis of D645 cells tran-

siently transfected with FLAG-TRAF2 revealed that in un-

stimulated cells, TRAF2 was exclusively cytosolic and did 

not overlap with the acidotropic lysosome marker lysotracker 

 TNF-R2 – induced TRAF2 degradation has been reported to 

occur by the E3 ubiquitin ligase activity of cIAP1 targeting it for 

proteasomal degradation ( Li et al., 2002 ). To examine the require-

ment of cIAP1 for TWEAK-induced TRAF2 loss, and vice versa, 

we used gene knockout transformed MEF cell lines and stimu-

lated endogenous FN14 with TWEAK. Although TWEAK stim-

ulation resulted in decreased levels of cIAP1 in wild-type MEFs, 

it was not degraded in TRAF2 � / �  knockout MEFs ( Fig. 2 C , 

left). TRAF2-mediated binding of cIAP1 to FN14 is therefore re-

quired for TWEAK-induced degradation of cIAP1. Consistent 

with previous studies, cIAP1 was required for the degradation of 

TRAF2 because TWEAK-stimulated TRAF2 depletion did not 

occur in cIAP1 � / �  MEFs ( Fig. 2 C , left). 

 To examine the requirement for cIAP1 in TRAF2 degra-

dation in greater detail, we performed further experiments where 

we lysed cells in Triton X-100 and examined the detergent solu-

ble and insoluble membrane fractions. Remarkably, TRAF2 

disappeared from the Triton X-100 – soluble fraction in cIAP1 

knockout cells as it did from wild-type cells ( Fig. 2 C , right; and 

Fig. S2 B). These two results suggest that TRAF2 translocation 

to an insoluble compartment occurs in the absence of cIAP1 but 

its degradation requires the activity of cIAP1. This notion is 

consistent with previous reports demonstrating that TRAF2 

 relocalizes to a detergent-insoluble fraction and becomes degraded 

after signaling from other TNFSF receptors ( Habelhah et al., 

2004 ;  Wu et al., 2005 ). 

 Because TWEAK did not induce proteasomal degradation 

of the cIAP1 – TRAF2 complex, we tested other protease inhibi-

tors. Cells preincubated with a protease inhibitor cocktail showed 

 Figure 2.    FN14 signaling decreases cellular cIAP1 and TRAF2 levels by lysosomal degradation.  (A) OVCAR4, SKOV3, or Kym1 cells were treated with 
100 ng/ml Fc-TWEAK at 37 ° C for the indicated time, lysed, and analyzed by Western blot. (B) Proteasome inhibition does not block TWEAK-mediated 
cIAP1 or TRAF2 degradation. D645 cells were pretreated with or without 1  μ M PS341 for 2 h and then incubated with 100 ng/ml Fc-TWEAK for 4 h. The cells 
were lysed and analyzed by Western blot. (C) TRAF2 accumulates in the insoluble fraction in cIAP1 knockout MEF cells after TWEAK stimulation. The indi-
cated MEF cell lines were treated with or without TWEAK for 6 h, and whole cell lysates (left) or Triton X-100 supernatant (SN) or pellet (P) fractions were 
analyzed by Western blot (right). (D) D645 cells were pretreated with a protease inhibitor cocktail (PI), 200  μ M chloroquine (Chlq), or 100 mM NH 4 Cl, 
with or without serum, and then stimulated with 100 ng/ml Fc-TWEAK for 4 h. Cells were lysed in 1% SDS and total cell lysate was analyzed by Western 
blot. (E) D645 cells were pretreated with 1  μ M PS341, 20  μ M CA-074Me, 40  μ M AEBSF, or 100  μ M TLCK for 2 h and then stimulated with 100 ng/ml 
Fc-TWEAK for 4 h. Cell lysates were analyzed as in D. (F) D645 cells were pretreated for 2 h with 200  μ M chloroquine, 100 mM NH 4 Cl, or 20  μ M 
CA-074Me before stimulation with Fc-TWEAK (T) or the IAP antagonist compound A (A) for a further 6 h. Cell lysates were analyzed as in D. Molecular 
mass is indicated in kD on the left of the autoradiograph.   
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may be a direct result of the depletion of cIAP1 and TRAF2 and 

noncanonical in nature, despite the fact that degradation of cIAP1 

after TWEAK signaling is never complete. 

 To measure TWEAK-induced NF- � B activation, we created 

stable cell lines containing an NF- � B reporter, where expression 

of EGFP is driven by a promoter containing four NF- � B binding 

elements. As expected, NIH 3T3 cells bearing the NF- � B reporter 

showed strong NF- � B induction when stimulated with TNF �  

( Fig. 3 A ). TWEAK also induced a signifi cant NF- � B response, 

although this was slower and not as large as the TNF �  response 

( Fig. 3 A ). TWEAK-induced NF- � B was not dependent upon 

 autocrine-produced TNF �  because induction of NF- � B could 

not be blocked by anti-TNF �  (unpublished data). To investigate 

whether NF- � B was noncanonical, we examined processing of the 

NF- � B2 subunit from the p100 form to the activated, processed 

p52 form. In both OVCAR4 and KYM1 cell lines, processing 

of p100 to p52 became visible after 1 h of TWEAK stimulation 

( Fig. 3, B and C ) and correlated well with the TWEAK-induced 

loss of cIAP1 – TRAF2 ( Fig. 2 A ). Also consistent with non-

canonical activation of NF- � B, we observed that TWEAK treat-

ment caused a remarkable stabilization of NIK ( Fig. 3, C and E ), 

(Fig. S2, C and D). However upon stimulation with TWEAK ligand 

for 3 – 6 h, TRAF2 showed a signifi cant redistribution to punc-

tate vesicles (Fig. S2, C and E). TRAF2-containing vesicles 

were juxtaposed with lysotracker-stained compartments and 

 often directly overlapped (Fig. S2 E), suggesting that TRAF2 

degradation occurs in the lysosome or in compartments that are 

in close association. It is probable that the Triton X-100 – insoluble 

fraction contains MVB/lysosomal membranes because the in-

hibitors NH 4 Cl and CA-074Me signifi cantly blocked degrada-

tion of TRAF2 and cIAP1 in the Triton X-100 – insoluble fraction 

(unpublished data). 

 TWEAK activates noncanonical NF- � B 
by depleting cIAP1 and TRAF2 
 TWEAK/FN14 signaling has previously been shown to activate 

both canonical and noncanonical NF- � B ( Saitoh et al., 2003 ). 

 Because TRAF2 knockout B cells and either immortalized cIAP1 

or TRAF2 knockout MEFs show constitutive activation of non-

canonical NF- � B (Fig. S3, available at http://www.jcb.org/cgi/

content/full/jcb.200801010/DC1;  Grech et al., 2004 ;  Vince et al., 

2007 ), we hypothesized that TWEAK-mediated NF- � B signaling 

 Figure 3.    TWEAK-induced cIAP1 – TRAF2 loss 
activates noncanonical NF- � B.  (A) An NIH 3T3 
cell clone stably transformed with a lentiviral 
NF- � B reporter vector was stimulated with 
Fc-TNF or Fc-TWEAK for the indicated times. 
(B) Kym1 or OVCAR4 cells were stimulated 
with 100 ng/ml Fc-TWEAK for the indicated 
times and analyzed by Western blot for p100 
processing to p52. (C) Kym1 or OVCAR4 cells 
were treated with or without Fc-TWEAK for 6 h 
and lysates were analyzed by Western blot. 
(D) FN14-inducible FlpIn 293 cells infected 
with the lentiviral NF- � B reporter were tran-
siently transfected with the indicated constructs 
for 24 h. FN14 was induced overnight, the 
cells were treated with 100 ng/ml Fc-TWEAK 
for a further 24 h, and NF- � B activity was 
measured by fl ow cytometry. Histograms are 
representative of three independent experi-
ments. (E) NH 4 Cl blocks TWEAK-induced non-
canonical NF- � B. Cells were pretreated with 
NH 4 Cl, CA-074Me, or MG132 for 2 h and 
then treated with 100 ng/ml TWEAK for the 
indicated times, lysed, and analyzed by West-
ern blot. (F) Wild-type and knockout MEFs 
were treated with TWEAK for the indicated 
times, and lysates were analyzed as in E. Mo-
lecular mass is indicated in kD on the left of 
the autoradiograph.   
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cell types that are killed by TWEAK treatment alone ( Fig. 4, A 

and B ; and  Fig 5 A ) with a concomitant increase of TNF �  re-

leased into the media supernatant ( Fig. 4 C ). In contrast, cell 

lines that are not killed by TWEAK treatment alone did not pro-

duce TNF �  when TWEAK was added (unpublished data), sug-

gesting that induction of TNF �  is necessary for TWEAK to 

cause apoptosis. 

 To test whether activation of NF- � B by TWEAK/FN14 

was required for the enhanced TNF �  production observed in 

TWEAK-sensitive cell lines, we created stable inducible non-

degradable I � B SR  (I � B superrepressor) SKOV3 and OVCAR4 

cell lines. Induction of I � B SR  inhibited TWEAK-induced NF- � B 

activity (Fig. S3 A) and signifi cantly reduced the TWEAK-

dependent increase in levels of cellular and secreted TNF �  in 

both SKOV3 and OVCAR4 cells ( Fig. 4, D and E ). 

 Inhibition of TNF �  signaling or caspase 8 
blocks TWEAK/FN14 cell death 
 Previous work with synthetic IAP antagonists ( Gaither et al., 

2007 ;  Varfolomeev et al., 2007 ;  Vince et al., 2007 ) and the data 

presented here with TWEAK demonstrate that either treatment 

results in an increase in TNF � , which is driven by NF- � B. 

 Remarkably, tumor cell lines that are killed by treatment with a 

which correlated with processing of p100 to p52, but observed no 

change in NF- � B1 p105 processing ( Fig. 3, C and E ). 

 If TWEAK-induced loss of the cIAP1 – TRAF2 complex is 

required to activate the noncanonical pathway, then genetic loss 

of either cIAP1 or TRAF2 might also result in constitutive acti-

vation of this pathway. Consistent with this model and our pre-

vious observations ( Vince et al., 2007 ), MEFs deleted for either 

cIAP1 or TRAF2 showed elevated p52 levels and an increase in 

p52 localization to a nucleus-containing fraction (Fig. S3 A). 

In contrast, p50 localization was unaffected by loss of these 

genes and was predominantly present in the unprocessed p105 

form in the cytoplasm (Fig. S3 A). 

 If depletion of the cIAP1 – TRAF2 complex is suffi cient to 

activate NF- � B, then overexpression of these two proteins should 

inhibit TWEAK/FN14-induced NF- � B activity. To test this hy-

pothesis, we used FN14-inducible NF- � B EGFP reporter cells in 

which maximal NF- � B activity was detected in cells that were si-

multaneously induced for FN14 expression and stimulated with 

TWEAK ligand and tested the effect of transiently transfecting 

cIAP1, TRAF2, or both ( Fig. 3 D ) in this system. Individual ex-

pression of either TRAF2 or cIAP1 failed to block TWEAK/

FN14-induced NF- � B activation ( Fig. 3 D ). However, the over-

expression of both proteins together signifi cantly reduced the 

amount of NF- � B activation ( Fig. 3 D ). Importantly, this was de-

pendent on cIAP1 binding to TRAF2, because coexpression of 

TRAF2 with the  � BIR1 cIAP1 mutant that is unable to bind 

TRAF2 (Fig. S1 E), was unable to inhibit FN14/TWEAK- induced 

activation of NF- � B ( Fig. 3 D ). NIK stabilization and p100 pro-

cessing to p52 could be blocked by pretreatment of cells with 

NH 4 Cl but not by pretreatment with CA-074Me ( Fig. 3 E ). This 

suggests that relocalization to the lysosomal compartment is suf-

fi cient to trigger stabilization of NIK and subsequent processing 

of p100 rather than degradation in the lysosome per se. 

 Because TWEAK has been reported to activate the canon-

ical pathway, we also examined the effects of TWEAK and 

cIAP1 or TRAF2 loss on canonical signaling markers. Consis-

tent with previous observations ( Saitoh et al., 2003 ), we ob-

served TWEAK-induced rapid phosphorylation of I � B and p65. 

Loss of either cIAP1 or TRAF2 resulted in almost identical re-

sponses, with higher basal phosphorylation of I � B and p65 and 

a signifi cantly delayed TWEAK-induced increase ( Fig. 3 F ). 

This highlights that the cIAP1 – TRAF2 complex plays an im-

portant role in both NF- � B pathways induced by TWEAK. 

 TWEAK induces cell death through 
NF- � B – dependent induction of TNF �  
 Tumor cell lines sensitive to synthetic IAP antagonists are killed 

through NF- � B – dependent autocrine production of TNF �  ( Vince 

et al., 2007 ). Moreover, it has been described that TWEAK can 

kill Kym1 cells in a TNF � -dependent manner ( Schneider et al., 

1999 ), although how TWEAK stimulated TNF �  in Kym1 cells 

remains unknown. We therefore asked whether TWEAK acted 

in a similar manner to synthetic IAP antagonists by causing an 

increase in the abundance of TNF �  driven through the activa-

tion of NF- � B. 

 We observed that the levels of TNF �  in the cell lysate of 

TWEAK-treated cell lines increased signifi cantly in all three 

 Figure 4.    TWEAK-mediated NF- � B activation induces TNF �    in TWEAK-
sensitive lines . Kym1 (A) or SKOV3 and OVCAR4 (B) cells were treated 
with Fc-TWEAK for 8 or 24 h, respectively and the amount of TNF �  in 
cell lysates was measured by ELISA. (C) Supernatant from TWEAK-treated 
SKOV3 and OVCAR4 cells was collected and fi ltered and TNF �  was 
measured by ELISA. (D and E) SKOV3 and OVCAR4 cell lines contain-
ing inducible I � B SR  were induced or not before Fc-TWEAK treatment for 
24 h. The levels of TNF �  in the cell lysate (D) or cell supernatant (E) was 
 measured by ELISA. Error bars represent SEM from three to fi ve indepen-
dent experiments.   
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genes ( Wang et al., 2006 ). Remarkably, however, Geldanamy-

cin was able to block TWEAK-induced NF- � B (Fig. S4, C and D) 

and TWEAK-induced cell death of Kym1 and OVCAR4 cells 

(Fig. S4 E). Moreover, although Geldanamycin-treated Kym1 

cells showed reduced survival in long-term clonogenic growth 

assays, cells treated with TWEAK and Geldanamycin still 

showed clonogenic protection when compared with TWEAK 

treatment alone (Fig. S4 A). 

 TWEAK/FN14 signaling sensitizes cells 
to exogenously supplied TNF �  
 Although TWEAK kills OVCAR4 and SKOV3 cells through 

induction of autocrine TNF � , it is known that, like most other 

cell types, these cells are resistant to TNF �  treatment alone 

( Fig. 6 A ). It has been recently shown that removal of cIAP1 by 

either synthetic IAP antagonists or in gene knockout MEFs sen-

sitizes these cells to TNF �  killing ( Li et al., 2004 ;  Gaither et al., 

2007 ;  Vince et al., 2007 ). Therefore, we hypothesized that 

TWEAK not only induces TNF �  but also sensitizes cells to 

TNF � -induced cell death through degradation of the cIAP1 –

 TRAF2 complex in a similar manner to synthetic IAP antago-

nists, which sensitize tumor cells to TNF �  killing by depleting 

cIAP1, albeit in a mechanistically distinct fashion. 

 To test this hypothesis, exogenous TNF �  was applied to 

TWEAK-sensitive (OVCAR4) and -resistant (D645 and MEF) 

cell lines alone or in combination with TWEAK for 24 h. 

synthetic IAP antagonist alone, such as OVCAR4, SKOV3, and 

Kym1 cells, ( Vince et al., 2007 ) are also killed by TWEAK. 

 TWEAK killing of sensitive cell lines was prevented by 

TNF � -blocking antibodies but not by TRAIL- or Fas ligand –

 neutralizing antibodies in both short-term ( Fig. 5 A ), and long-

term clonogenic survival assays (Fig. S4 A, available at http://

www.jcb.org/cgi/content/full/jcb.200801010/DC1), which is con-

sistent with a conserved mechanism of cell death between syn-

thetic IAP antagonist compounds and TWEAK. In addition, 

expression of the extracellular domain of TNF-R2 fused to a 

GPI-anchor (dnTNFR2), which is able to sequester and hence 

neutralize TNF �  ( Vince et al., 2007 ), signifi cantly inhibited cell 

death caused by TWEAK ( Fig. 5 B ). In contrast, neither dnCD27 

nor dnTRAIL-R2 had any protective effect ( Fig. 5 B ). 

 Caspase 8 activity was necessary for TWEAK to induce 

apoptosis because Kym1 and SKOV3 cell lines inducibly ex-

pressing the caspase 8 inhibitor crmA were signifi cantly resistant 

to TWEAK killing in both short-term ( Fig. 5 C ) and long-term 

clonogenic survival assays with Kym1 cells (Fig. S4 B). 

 To provide a nongenetic test that TWEAK-driven NF- � B 

was suffi cient to kill cells, we used Geldanamycin because 

it completely blocked TWEAK-induced NF- � B (Fig. S4 C). 

As has been shown before ( Wang et al., 2006 ), inhibiting the 

IKK1/2 complex with Geldanamycin is suffi cient to sensitize 

OVCAR4 and wild-type MEFs to TNF �  (Fig. S4 E), presum-

ably by blocking NF- � B – induced transcription of prosurvival 

 Figure 5.    TWEAK-induced cell death is me-
diated by TNF � .  (A) TWEAK-induced death 
is blocked by neutralizing TNF �  antibodies. 
Kym1, SKOV3, and OVCAR4 cells were in-
cubated with Fc-TWEAK or Fc-CD27 (control) 
for 24 (Kym1) or 48 (SKOV3 and OVCAR4) h 
in the absence or presence of 10  μ g/ml of 
neutralizing antibodies against TNF � , FasL, 
or TRAIL. Cell death was measured by prop-
idium iodide staining and fl ow cytometry. 
(B) Dominant-negative (dn) TNF receptor blocks 
TWEAK-induced cell death. Cells containing in-
ducible dominant-negative GPI-anchored TNF-R2, 
CD27, or TRAILR2 receptors were induced for 
24 h before Fc-TWEAK treatment. Cell death 
was measured as in A. (C) TWEAK-induced death 
is blocked by crmA. CrmA-inducible Kym1 or 
SKOV3 cells were induced for 24 h before 
Fc-TWEAK or Fc-TNF �  treatment for 24 (Kym1) 
or 48 (SKOV3) h. Cell death was measured as 
in A. All errors bars represent SEM of at least 
three independent experiments.   
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TNF �  did not alter caspase 8 cleavage ( Fig. 6 C ). In contrast, 

upon cotreatment of TWEAK with TNF � , processing of caspase 8 

into the p43/p41 forms and the active p18 subunit was observed 

within 3 h ( Fig. 6 C ) and correlated with the loss of cIAP1 –

 TRAF2 and the rapid death of these cells ( Fig. 6 A ). To allow a 

direct comparison with our synthetic IAP antagonist, we also in-

cubated D645 cells with compound A alone or compound A and 

TNF � . Treatment with compound A alone resulted in the rapid 

loss of cIAP1 but did not affect either TRAF2 or caspase 8 levels 

( Fig. 6 C ). Signifi cantly, cIAP1 loss alone was suffi cient to sen-

sitize D645 cells to TNF to a similar level as that of TWEAK-

 induced depletion of the cIAP1 – TRAF2 complex ( Fig. 6 C ). 

 Further evidence supporting the observation that TWEAK/

TNF �  kill in a death receptor – dependent pathway was obtained 

using FADD � / �  MEFs, as these were completely resistant to 

 Consistent with an additional sensitizing role for TWEAK, 

OVCAR4 cells were killed by TWEAK/TNF �  treatment far more 

effi ciently and rapidly than with TWEAK alone. Even more sig-

nifi cantly, D645 and MEF cells (among many other cell types; 

not depicted) were resistant to treatment with TWEAK or TNF �  

alone but were extremely sensitive to combined TWEAK/TNF �  

treatment ( Fig. 6, A and B ). Even a subset (2/12) of primary hu-

man tumor lines was signifi cantly sensitized to TNF �  by TWEAK 

treatment ( Fig. 6 B ). 

 TWEAK sensitization to TNF �  killing was examined fur-

ther by Western blot on the TWEAK (and TNF � )-resistant D645 

glioma cell line. As in TWEAK-sensitive cell lines, TWEAK 

treatment reduced cIAP1 and TRAF2 levels, whereas TNF �  

treatment alone had no effect ( Fig. 6 C ). Consistent with the lack 

of cell death ( Fig. 6 A ), the individual treatments of TWEAK or 

 Figure 6.    TWEAK-induced cIAP1 – TRAF2 loss sensitizes transformed cells to TNF �  - induced death.  (A) The indicated cell lines were treated with 100 ng/ml 
Fc-TWEAK and/or 100 ng/ml Fc-TNF �  for 24 h, followed by propidium iodide staining and fl ow cytometry to measure cell death. (B) TWEAK sensitizes 
primary human tumor lines D2234 and D2247 to TNF � . Cells from the indicated primary or established glioma cell lines were incubated in vitro with media 
and 100 ng/ml TNF � , 100 ng/ml TWEAK, or both for 72 h. Survival was assayed with CellTitre Glo and depicted by  “ bubble ”  graphs. The areas of the 
circles and accompanying numbers denote net survival after each treatment, relative to untreated cells (set at 100%). (C) D645 cells were treated with the 
indicated combinations of Fc-TWEAK, 100 ng/ml Fc-TNF � , or 500 nM compound A for the indicated times and analyzed by Western blot. (D) TWEAK sensitiza-
tion to TNF �  killing requires FADD and is independent of Bax/Bak. The indicated cell lines were treated with 100 ng/ml Fc-TWEAK and/or 100 ng/ml 
Fc-TNF � . (E) Loss of cIAP1 or TRAF2 sensitizes immortalized MEFs to TNF � -induced death. MEFs were treated for 24 h with 100 ng/ml Fc-TWEAK and/or 
100 ng/ml Fc-TNF � . Wild-type MEFs were also treated with 500 nM compound A with or without 100 ng/ml TNF � . Cell death was measured as in A. 
All errors bars represent SEM of at least three independent experiments. Molecular mass is indicated in kD on the left of the autoradiograph.   
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death observed when cells were cotreated for the same time pe-

riod (Fig. S5 B). This suggests that the prosurvival signals elic-

ited by TNF � , such as NF- � B – induced gene transcription, are 

not suffi cient to counteract TWEAK/TNF �  killing. 

 TWEAK/TNF �  treatment distinguishes 
between normal and transformed cells 
 Genetic knockout cIAP1 mice display no obvious phenotypic 

defects in apoptotic signaling ( Conze et al., 2005 ; unpublished 

data), raising the possibility that primary cells may be less sen-

sitive to TWEAK/TNF � -induced death. Consistent with this 

possibility, primary MEFs showed only a twofold increase in death 

after TWEAK/TNF �  stimulation, whereas a 14-fold increase 

was observed in SV40 large T immortalized MEFs ( Fig. 7 A ). 

TWEAK-induced loss of cIAP1 – TRAF2 was observed in both 

primary MEFs and transformed MEFs ( Fig. 7 B ), as was activa-

tion of noncanonical NF- � B ( Fig. 7 B ). Although similar levels 

of FN14 were initially present in both MEF lines, these increased 

dramatically after TWEAK stimulation ( Fig. 7 B ), implying that 

FN14 expression is regulated by TWEAK. 

 Because TWEAK-mediated loss of the cIAP1 – TRAF2 

complex is suffi cient to sensitize tumor cells to TNF � -induced 

death, we tested whether a liver progenitor tumor cell line, PIL2, 

which expresses high levels of the cIAP1 – TRAF2 complex 

TWEAK/TNF � -induced death ( Fig. 6 D ). In contrast, TWEAK/

TNF �  killing was independent of the Bax/Bak-dependent apop-

totic pathway, as Bax/Bak double knockout MEFs showed a sim-

ilar TWEAK/TNF �  sensitivity to wild-type MEFs ( Fig. 6 D ). 

 As expected, cIAP1 � / �  ( Vince et al., 2007 ), TRAF2 � / � , 

and TRAF2/TRAF5 � / �  double knockout or compound A –

 treated MEFs were all extremely sensitive to killing by TNF �  

alone ( Fig. 6 E ;  Tada et al., 2001 ), supporting the hypothesis 

that TWEAK-induced loss of the cIAP1 – TRAF2 complex is suffi -

cient to sensitize MEFs to TNF �  killing. Surprisingly, cIAP2 � / �  

MEFs were not sensitive to TNF � -mediated cell death ( Fig. 6 E ), 

making it unlikely that cIAP2 has a role in TWEAK-mediated 

sensitization to TNF � . 

 Pretreating wild-type MEFs with TWEAK for 8 h before 

addition of TNF �  caused a reduction in the total canonical re-

sponse. However simultaneous treatment with TWEAK/TNF �  

resulted in an augmented canonical response (Fig. S5 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200801010/DC1), 

making it unlikely that a reduction in prosurvival NF-kB signal 

from TNF �  is the reason for TWEAK-induced sensitization to 

TNF �  when the two cytokines are added simultaneously. Consis-

tent with this data, pretreating wild-type MEFs with either TNF �  

or TWEAK alone for 24 h before cotreatment with TWEAK/

TNF �  or compound A/TNF �  did not change the amount of cell 

 Figure 7.    TWEAK/TNF �    treatment distin-
guishes between normal and transformed 
cells, and TWEAK/TNF �  killing is suppressed 
by elevated cIAP1 – TRAF2 levels.  (A) Primary 
MEFs are resistant to TWEAK/TNF � -induced 
death. Three primary MEF cell lines derived 
from three separate embryos were treated with 
100 ng/ml Fc-TWEAK and/or 100 ng/ml Fc-
TNF �  for 24 h, and the amount of cell death 
was measured by propidium iodide stain-
ing and fl ow cytometry. Error bars are SEM 
of three to five independent experiments. 
(B) TWEAK increases FN14 expression and in-
duces cIAP1 – TRAF2 degradation in primary 
and transformed MEFs. Primary MEFs or SV40T 
transformed MEFs were treated with 100 ng/ml 
Fc-TWEAK for the indicated times, and DISC 
lysates were analyzed by Western blot. (C) PIL2 
cells or PIL4 cells were treated with 100 ng/ml 
Fc-TWEAK and/or 100 ng/ml Fc-TNF �  for 
24 h and cell death was analyzed as in A. 
Error bars are SEM of three independent ex-
periments. (D) Fluorescence microscopy of prop-
idium iodide – stained cells shown in C. Bars, 
20  μ m. (E) Enhanced cIAP1 and TRAF2 levels 
in PIL2 cells are resistant to TWEAK-induced 
degradation. PIL2 and PIL4 cells were treated 
with 100 ng/ml Fc-TWEAK for the indicated 
times and lysates were analyzed by Western 
blot. Molecular mass is indicated in kD on the 
left of the autoradiograph.   
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nifi cantly more sensitive to killing by TWEAK/TNF �  than their 

nontransformed progenitors, but tumor cells that express high 

levels of cIAP1 – TRAF2 are comparatively resistant to TWEAK/

TNF �  killing ( Fig. 8 ). 

 Our data demonstrate that tumor cell sensitivity to TWEAK 

correlates with their sensitivity to synthetic IAP antagonists and 

that the mechanism of tumor cell killing between this class of 

chemical compounds and naturally occurring ligand is remark-

ably similar. Synthetic IAP antagonists target cIAP1 and cIAP2 

for complete proteasomal degradation ( Gaither et al., 2007 ; 

  Varfolomeev et al., 2007 ;  Vince et al., 2007 ), whereas TWEAK 

targets a proportion of the cIAP1 – TRAF2 complex (presum-

ably the proportion that can be recruited to FN14) for degrada-

tion in a lysosomal cathepsin-dependent manner. The end result 

is, however, the same, with activation of NF- � B. In sensitive 

tumor cell lines, activated NF- � B drives TNF �  production that, 

in the absence of the cIAP1 – TRAF2 complex, kills them. Like-

wise, both TWEAK and synthetic IAP antagonists sensitize 

tumor cells to exogenously added TNF �  by depleting the cIAP1 – 

TRAF2 complex. 

 TRAF2-mediated loss by CD40 stimulation requires an 

intact ubiquitylation pathway ( Brown et al., 2001, 2002 ). Previ-

ous work has implicated cIAP1 in the ubiquitylation and protea-

somal degradation of TRAF2 by TNF-R2 ( Li et al., 2002 ;  Conze 

et al., 2005 ;  Zhao et al., 2007 ), and cIAP2 can ubiquitylate and 

degrade TRAF1 ( Lee et al., 2004 ). In this context, it was com-

pletely unexpected that inhibition of the proteasome did not pre-

vent TWEAK/FN14-mediated loss of cIAP1 – TRAF2, although 

TRAF2 depletion required cIAP1 function. However, TWEAK/

FN14-induced cIAP1 – TRAF2 degradation was prevented by 

( Fig. 7 E ), was resistant to TWEAK/TNF �  killing relative to a 

liver progenitor cell line, PIL4, with lower levels ( Fig. 7 E ). 

Treatment of these cells with TWEAK/TNF �  killed  > 90% of 

PIL4 cells, whereas only 35% of PIL2 (cIAP1 high) cells were 

killed ( Fig. 7, C and D ). Western blot analysis showed that PIL2 

and PIL4 cells expressed equal levels of FN14 ( Fig. 7 E ). Sig-

nifi cantly, TWEAK-induced degradation of cIAP1 – TRAF2, 

and increased FN14 levels, were attenuated in the PIL2 cells, 

implying that enhanced expression of cIAP1 – TRAF2 inhibits 

FN14 signaling and counters TWEAK-induced sensitivity to 

TNF � -induced death. 

 Discussion 
 Recent work using synthetic IAP antagonists has shown that 

cIAPs play a pivotal role in regulating NF- � B signaling from 

TNF-R1 ( Gaither et al., 2007 ;  Varfolomeev et al., 2007 ;  Vince 

et al., 2007 ). However, the binding of cIAP1 to TNF receptors 

other than TNF-R1 or TNF-R2, or the physiological regulation 

of cIAP1 by TNF receptor signaling, remains poorly character-

ized. In this paper, we show that when ligated with TWEAK, 

endogenous FN14 recruits a cIAP1 – TRAF2 complex that is 

subsequently degraded by a cathepsin-mediated lysosomal 

pathway. TWEAK/FN14 signaling results in both canonical and 

noncanonical NF- � B activity. Noncanonical NF- � B activity is 

most probably the result of relocalization of the cIAP1 – TRAF2 

complex to lysosomes and subsequent degradation. In cell lines 

that can be killed by TWEAK, NF- � B induces production of 

TNF �  and simultaneously sensitizes tumor cells to TNF-R1 –

  induced death. Transformation of MEFs renders these cells sig-

 Figure 8.    Model for TWEAK killing.  TWEAK 
binding to FN14 induces the recruitment of a 
cIAP1 – TRAF2 complex. This complex is then 
targeted for lysosomal degradation by the 
MVB pathway. The loss of cIAP1 or TRAF2 in-
duces the stabilization of NIK and subsequent 
activation of noncanonical NF- � B. The ca-
nonical NF- � B pathway is also activated in re-
sponse to TWEAK. Activation of NF- � B drives 
autocrine TNF �  production in TWEAK-sensitive 
cell lines. The loss of cellular cIAP1 and TRAF2 
by FN14 signaling prevents their recruitment 
to TNF-R1 upon autocrine TNF �  binding, and 
this promotes the formation of a death-inducing 
complex and apoptotic signaling.   
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radation and the cells were more resistant to TWEAK/TNF � -

induced death. These results are also consistent with our fi ndings 

that the overexpression of cIAP1 and TRAF2 is suffi cient to 

block FN14-induced NF- � B activity. 

 The fact that the cIAP1-cIAP2 locus is amplifi ed in some 

human tumors and a mouse model of liver cancer ( Zender 

et al., 2006 ) and that high levels of expression of cIAP1 have 

been observed in several cancers argues that increased cIAP1 

can contribute to oncogenesis. Our results suggest that one 

possible mechanism by which it does this is by regulating the 

balance between life and death signaling from TNFSF recep-

tors. Our fi ndings provide further support for using IAP antag-

onists as tumor therapy and extend options by highlighting 

the fact that TWEAK is a physiological regulator of TNFSF sig-

naling that targets the cIAP1 – TRAF2 complex rather than the 

IAPs alone. 

 Materials and methods 
 Cell lines, transient transfections, antibodies, and protease inhibitor 
 SW480, K562, MCF7, BJAB, G401, ColoF, and NIH 3T3 cell lines were 
a gift from L. O ’ Reilly (The Walter and Eliza Hall Institute, Melbourne, 
Australia;  O ’ Reilly et al., 2000, 2002 ), RM, WW, and A2058 were a 
gift from P. Hersey (Calvary Mater Newcastle Hospital, Newcastle, Aus-
tralia;  Zhang et al., 1999 ), and HT29, SKOV3, OVCAR4, and MD-
AMB231 were purchased from American Type Culture Collection. Kym1 
cells were a gift from M. Grell (Institute of Cell Biology and Immunology, 
Stuttgart, Germany;  Grell et al., 1999 ). D2234 and D2247 early pas-
sage lines were derived from specimens obtained from patients who had 
undergone tumor resection at Duke University Hospital (Durham, NC; 
 Ashley et al., 2008 ). Transient transfections (typically using 1  μ g of plas-
mid DNA per 10-cm plate of cells) were performed with effectene as de-
scribed by the manufacturer (QIAGEN). Antibodies used in this study for 
fl ow cytometry were anti-FN14 (Abcam), Goat anti – mouse RPE (Milli-
pore), and Goat anti – human RPE (SouthernBiotech). Antibodies used for 
Western blots were Goat anti – human IgG HRP (Jackson ImmunoResearch 
Laboratories), anti-cIAP1 (in house), anti-TRAF2 (Santa Cruz Biotechnol-
ogy, Inc.), anti-FN14 (Cell Signaling Technology), anti-NIK (Cell Signal-
ing Technology), anti – phospho – NF- � B (Ser536) p65 (Cell Signaling 
Technology), anti-I � B, (Cell Signaling Technology), anti – phospho-I � B 
(Ser32/36; Cell Signaling Technology), anti – NF- � B p65 (Santa Cruz), anti –
 NF- � B2 (Cell Signaling Technology), anti – NF- � B p50 (Santa Cruz), 
anti –  � -actin (Sigma-Aldrich), anti-ubiquitin (Cell Signaling Technology), 
anti-TRAF3 (BD Biosciences), anti – FLAG M2 (Sigma-Aldrich), anti – IgG 
 biotin (Jackson ImmunoResearch Laboratories), and anti-VSV (MBL Inter-
national). Protease inhibitor cocktail fi nal concentrations were the following: 
AEBSF, 1.3 mM; aprotinin 1.1  μ M; bestatin, 66  μ M; E-64, 20  μ M; leupeptin, 
27  μ M; and pepstatin A, 13  μ M. 

 Cell culture and lentivirus production 
 All cell lines were maintained in DME supplemented with 10% FCS, 2 mM  
L- glutamine, and penicillin/streptomycin and grown at 37 ° C in 10% CO 2 . 
PIL2, PIL4, and BMOL liver progenitor cells were maintained in Williams 
Media E supplemented with 2 mM  L- glutamine, penicillin/streptomycin, 
20 ng/ml mouse EGF, 30 ng/ml human IGF II, and 0.25 U/ml human in-
sulin and grown at 37 ° C in 5% CO 2 . 

 To generate lentiviral particles, 293T cells were transfected with 
packaging constructs pCMV  ð R8.2, VSVg, and the relevant lentiviral 
plasmid in the ratio of 1:0.4:0.6. After 24 – 48 h, the virus-containing super-
natants were harvested and fi ltered. 12  μ g/ml Polybrene was added and 
target cells were infected with virus supernatant for 24 – 48 h. The media 
was subsequently changed and successful infection selected for with 
2 – 5  μ g/ml puromycin (pF 5xUAS selection) or 100 – 500  μ g/ml hygro-
mycin B (GEV16 selection) or by screening for GFP fl uorescence (pTRH). 
pF 5xUAS-inducible constructs were induced with 100 nM 4-hydroxy 
tamoxifen for 16 h before harvesting lysates for Western blotting or before 
death assays. Flp In T-Rex 293 cells (Invitrogen) containing doxycycline-
inducible VSV-tagged FN14 were generated according to the manufac-
turer ’ s instructions. 

several different classes of inhibitors of lysosome proteases or 

function and could be specifi cally blocked by an inhibitor of the 

lysosome cysteine protease cathepsin B. Consistent with this 

observation, TWEAK mediated relocalization of TRAF2 to punc-

tate vesicles that often overlapped with, and were in contact 

with, lysotracker-stained vesicles. 

 Given previous reports implicating the proteasome in 

TRAF2 degradation, it remains unclear whether other TNFSF 

ligands can also stimulate cIAP1 – TRAF2 loss through lyso-

somal mechanisms. However, it has been demonstrated that 

CD30-induced TRAF2 degradation was blocked by nonprotea-

somal inhibitors ( Duckett and Thompson, 1997 ). It is likely that 

lysosomal degradation of the cIAP1 – TRAF2 complex occurs 

by the well documented multivesicular body (MVB) pathway, 

whereby endocytosed cell surface material is further internal-

ized to form endosomal MVBs, which subsequently fuse with 

lysosomes ( Fig. 8 ;  Williams and Urb é , 2007 ). The fi nding that 

cIAP1 was required for TRAF2 degradation raises the possibil-

ity that cIAP1-mediated ubiquitylation of TRAF2/FN14 targets 

the FN14 complex to the MVB pathway, as has previously been 

demonstrated for ubiquitin-dependent MVB targeting of several 

cell surface receptors. Depletion of cIAP1 – TRAF2 by TWEAK/

FN14 is the most likely cause of noncanonical NF- � B activa-

tion. Both cIAP1 and TRAF2 are required to inhibit noncanoni-

cal NF- � B activation from TNF receptors, and genetic knockout 

of either component alone results in spontaneous noncanonical 

NF- � B activity. Underlining the requirement for their concerted 

action, overexpression of either cIAP1 or TRAF2 alone does 

not affect FN14 signaling, but overexpression of both compo-

nents is able to block TWEAK-induced NF- � B. 

 The NF- � B activity observed after FN14 signaling re-

sulted in an increase in production of TNF �  in TWEAK-sensi-

tive cells but not in TWEAK-resistant cells. TWEAK-resistant 

cell lines were nevertheless sensitized to exogenously added 

TNF � , emphasizing that it is the production of autocrine TNF �  

that determines sensitivity of cells to TWEAK. This fi nding is 

consistent with previous observations that activation of TNF-R2, 

CD30, or CD40 can also induce TNF �  and enhance TNF-R1 

apoptotic signaling ( Grell et al., 1999 ). 

 We demonstrated TWEAK binding and FN14 expres-

sion on both primary and tumor cells in culture. Surprisingly, 

however, primary nontransformed MEFs were insensitive to 

TWEAK/TNF � -induced death, whereas the same MEFs trans-

formed by SV40 Large T were effi ciently killed by this treat-

ment. It is not clear why tumor cells show heightened sensitivity 

to TWEAK/TNF � -induced apoptosis, as TWEAK stimulation 

of primary MEFs still resulted in the loss of cIAP1 – TRAF2 and 

NF- � B activation. 

 Not all tumor cell lines were sensitive to TWEAK/TNF �  

treatment. In particular, PIL2 liver progenitor oval cells that ex-

press much higher levels of cIAP1 and TRAF2 than PIL4 cells 

were resistant to TWEAK/TNF � -induced death. TWEAK stim-

ulation of PIL4 cells resulted in the loss of cIAP1 – TRAF2, and 

these cells were highly sensitive to TWEAK/TNF �  killing. 

In contrast, the increased levels of cIAP1 – TRAF2 in the tumor-

igenic PIL2 cells appeared to block FN14 signaling, as the 

cIAP1 – TRAF2 complex was resistant to TWEAK-induced deg-
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and protease inhibitor cocktail) and incubated on ice for 15 min. The lysis 
buffer was adjusted to 0.6% NP-40 and immediately vortexed for 10 s, 
and the pellet (membrane) and supernatant (cytosol) fractions were sepa-
rated by centrifugation at 14,500  g  for 5 min. Equal amounts of mem-
brane (nuclear) and cytosolic fractions were analyzed by SDS-PAGE and 
Western blotting. 

 ELISA assays 
 Cells were grown on 10-cm plates, harvested, washed thoroughly with ice-
cold PBS, and lysed in 300  μ l DISC buffer for 20 min on ice. Cell lysate 
was spun for 10 min at 14000  g , and the soluble material was collected. 
Alternatively, the cell supernatant from the same plates was collected and 
fi ltered to remove cellular debris. Soluble cell lysate or the fi ltered cell su-
pernatant was used for human or mouse TNF- �  ELISA assays (R & D Sys-
tems) according to the manufacturer ’ s protocol. Protein from the cell lysate 
was quantifi ed using the BCA assay (Thermo Fisher Scientifi c). 

 Immunofl uorescence, image acquisition, and processing 
 D645 cells grown on glass coverslips were fi xed with 3.2% PFA for 
20 min, washed in PBS, and permeabilized with 0.5% Triton X-100 for 
5 min. Cells were blocked, incubated with primary antibody, washed four 
times with PBS, and then incubated with anti – rat or anti – mouse Alexa 
Fluor 488 – conjugated secondary antibody (Invitrogen) and washed four 
times again. All blocking steps and antibody incubations were performed 
with PBS containing 1% BSA for 30 min. The primary antibodies used 
were anti-FLAG (Amrad) or anti-TRAF2 (BD Biosciences). Cells were 
viewed on an inverted confocal microscope (TCS-SP2; Leica) using a 63 ×  
1.4 NA oil immersion objective at room temperature. Images were col-
lected and analyzed with SP2 imaging software (Leica) or ImageJ soft-
ware (National Institutes of Health; http://rsb.info.nih.gov/ij). All images 
were in TIF format and imported into Freehand MX (Macromedia) for the 
compilation of fi gures. 

 Online supplemental material 
 Fig. S1 shows that Fc-TWEAK binds to a large selection of adherent trans-
formed cell lines. Fig. S2 shows analysis of TWEAK-induced cIAP1 – TRAF2 
degradation. Fig. S3 shows that oss of cIAP1 or TRAF2 results in constitu-
tive activation of noncanonical NF- � B pathway and that an I � B superrepres-
sor blocks TWEAK-induced NF- � B activity. Fig. S4 shows that inhibition of 
TNF �  signaling or NF- � B activity provides clonogenic protection to TWEAK-
treated cells. Fig. S5 shows the response of wild-type and knockout MEFs 
to TWEAK and TNF �  treatment. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.200801010/DC1. 
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