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Most ascomycetous yeasts have 2 homocitrate synthases (HCSs). Among the fungal lysine biosynthesis-related genes, only the
HCS gene was duplicated in the course of evolution. It was recently reported that HCS of Saccharomyces cerevisiae has an
additional function in nuclear activities involving chromatin regulation related to DNA damage repair, which is not related to
lysine biosynthesis. Thus, it is possible that the bifunctionality is associated with HCS gene duplication. Phylogenetic analysis
showed that duplication has occurred multiple times during evolution of the ascomycetous yeasts. It is likely that the HCS gene
duplication in S. cerevisiae occurred in the course of Saccharomyces evolution. Although the nucleosome position profiles of the
two S. cerevisiae HCS genes were similar in the coding regions, they were different in the promoter regions, suggesting that they
are subject to different regulatory controls. S. cerevisiae has maintained HCS activity for lysine biosynthesis and has obtained

bifunctionality.

1. Introduction

Organisms synthesize lysine from 2-oxoglutarate through a-
aminoadipate or from aspartic acid through diaminopime-
late [1]. Animals cannot synthesize lysine. Fungi synthesize
lysine through a-aminoadipate [2—4]. The other eukaryotes
synthesize lysine through diaminopimelate. Archaea and
bacteria were also believed to synthesize lysine through diam-
inopimelate until it was reported that the extremely ther-
mophilic bacterium Thermus thermophilus synthesizes lysine
through a-aminoadipate [5-8].

During lysine biosynthesis in the budding yeast Saccha-
romyces cerevisiae, a-aminoadipate is synthesized from 2-ox-
oglutarate and acetyl-CoA by the enzymes Lys20 or Lys21
(homocitrate synthase [HCS]), Lys4 (homoaconitase), Lys12
(homoisocitrate dehydrogenase), and a-aminoadipate ami-
notransferase [9]. Lysine is synthesized from a-aminoadipate
by the enzymes Lys2 (aminoadipate reductase), Lys5 (phos-
phopantetheinyl transferase which posttranslationally mod-
ifies Lys2), Lys9 (saccharopine dehydrogenase, glutamate
forming), and Lysl (saccharopine dehydrogenase, lysine
forming) [1, 4].

It has been unclear why S. cerevisiae has 2 HCSs (Lys20
and Lys21). For example, homocitrate is mainly synthesized
through Lys21 during growth on ethanol, while under fer-
mentative metabolism, Lys20 and Lys21 play redundant roles
[11]. It was recently reported that Lys20 of S. cerevisiae func-
tions in nuclear activities involving chromatin regulation
that are distinct from its previously established role in lysine
synthesis [12]. Lys20 of S. cerevisiae is linked to the DNA
damage repair process via the histone acetyltransferase Esal
and the H2A.Z histone variant [12]. Thus, it is possible that
this bifunctionality is associated with HCS gene duplication.

2. Materials and Methods

2.1. Phylogenetic Analyses. 1 selected 71 HCSs (31 from
Saccharomycotina species, 30 from Pezizomycotina species,
2 from Taphrinomycotina species, and 8 from Basidiomycota
species) based on BLASTP results in the fungal genome
database at NCBI (http://www.ncbi.nlm.nih.gov/projects/
genome/guide/fungi/). Multiple alignments were generated
with CLUSTAL W. A maximum likelihood tree was recon-
structed using MEGA version 5 [10]. The WAG model was
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FiGure 1: Phylogenetic relationships among 71 fungal homocitrate synthases. The phylogenetic tree was constructed based on multiple
alignment with complete deletion of gap sites using the maximum likelihood method of MEGA software [10] with 100 bootstrap analyses.
The WAG model was used as the amino acid substitution model. A total of 103 amino acid sites were considered. The y-distributed rate was
considered, and the number of discrete gamma categories was 3. The gamma was 0.81; the discrete rates were 0.14, 0.65, and 2.2.
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F1GURE 2: Mapping of nucleosomes around Saccharomyces cerevisiae
LYS20 and LYS21. In this study, I used nucleosome position data
from S. cerevisiae BY4741 [13]. Based on each nucleosomal DNA
fragment sequence, nucleosomal mapping numbers were estimated
for each nucleotide position [14]. Arrows indicate the coding re-
gion.

used as the amino acid substitution model. The nearest
neighbor interchange was used as the maximum likelihood
heuristic method. The y-distributed rate was considered, and
the number of discrete gamma categories was 3.

2.2. Nucleosome Position Comparison. Nucleosome position-
ing was used to compare gene promoter regions. I used nu-
cleosome position data from S. cerevisiae BY4741 [13]. The
nucleosome position profiles were compared between the
promoter (1000 bases upstream of the translational start
site) and coding regions (between the translational start and
end site) of the HCS genes, according to a previously de-
scribed method [14]. Similarity between the two nucleosome
position profiles was estimated using the Spearman’s rank
correlation coefficient.

3. Results and Discussion

The HCS phylogenetic tree (Figure 1) indicates that the HCS
gene has been duplicated multiple times in the course of
ascomycete evolution. The 31 HCSs of the Saccharomycotina
species (ascomycetous yeasts) are encoded in 17 organisms.
In contrast, the 30 HCSs of the Pezizomycotina species (fila-
mentous ascomycetes) are encoded in 28 organisms. Thus,
14 of the 17 Saccharomycotina species and 2 of the 28 Peziz-
omycotina species have 2 HCSs (Figure 1).

Gene duplication is not found in LYSI, LYS2, LYS5,
LYS9, and their homologues [15]. In addition, no duplication
was found in LYS4, LYS12, and their homologues (data not

shown). Therefore, among the fungal lysine biosynthesis-
related genes, only the HCS gene has been duplicated. Phylo-
genetic analysis of HCSs in ascomycetous yeasts showed that
the S. cerevisiae HCSs (Lys20 and Lys21) are most closely
related to each other (Figure 1), suggesting that HCS gene
duplication occurred during evolution of the genus Saccha-
romyces. On the other hand, all Saccharomycotina species
except Ashbya gossypii, Vanderwaltozyma polyspora, and Yar-
rowia lipolytica have duplicated HCS genes (Figure 1). Thus,
HCS gene duplication may be related to genome duplication
events in Saccharomycotina [16-18].

In addition to the phylogenetic analysis based on HCS
amino acid sequences, I compared the nucleosome posi-
tioning of LYS20 and LYS21. Interestingly, nucleosomes were
mapped to the HCS gene promoters more often than to the
coding regions (Figure 2). Nucleosome position profiles in
the coding regions were highly correlated (Spearman’s rank
correlation coefficient = 0.833) between LYS20 and LYS21.
On the other hand, those in the gene promoter regions were
poorly correlated (Spearman’s rank correlation coefficient
= 0.396). This result suggests that these 2 HCS genes have
different regulatory systems.

On the other hand, LYS20 expression is most similar to
LYS21 expression, and LYS21 is most similar to LYS20 ex-
pression, based on the SPELL version 2.0.2 [19]. In addi-
tion, recent comparative analyses of orthologous genes in
evolutionarily close yeasts indicated that divergence of nucle-
osome positioning is not correlated with divergence of gene
expression [20, 21].

Although HCS (Lys20 and Lys21) is located in the
nucleus of S. cerevisiae [22], HCS is located in the cytoplasm
of Penicillium chrysogenum [23, 24]. P. chrysogenum has a
single HCS gene (Figure 1). The phylogenetic tree (Figure 1)
showed that gene duplication is not found in Basidiomycota
and Taphrinomycotina. In addition, gene duplication has
occurred rarely in Pezizomycotina, suggesting that a com-
mon ancestor of the Dikarya lacked the nuclear function of
chromatin regulation. Considering that duplication of the
HCS gene occurred in a limited number of ascomycetes, it
may not be an essential event in the evolution of Dikarya.
I hypothesize that after divergence of the phyla Ascomycota
and Basidiomycota, S. cerevisiae obtained HCS bifunctional-

1ty.
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