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Abstract
Type 1 diabetes mellitus imposes a significant burden of complications and mortality, despite important advances in treat-
ment: subjects affected by this disease have also a worse quality of life-related to disease management. To overcome these 
challenges, different new approaches have been proposed, such as new insulin formulations or innovative devices. The intro-
duction of insulin pumps allows a more physiological insulin administration with a reduction of HbA1c level and hypogly-
cemic risk. New continuous glucose monitoring systems with better accuracy have allowed, not only better glucose control, 
but also the improvement of the quality of life. Integration of these devices with control algorithms brought to the creation of 
the first artificial pancreas, able to independently gain metabolic control without the risk of hypo- and hyperglycemic crisis. 
This approach has revolutionized the management of diabetes both in terms of quality of life and glucose control. However, 
complete independence from exogenous insulin will be obtained only by biological approaches that foresee the replacement 
of functional beta cells obtained from stem cells: this will be a major challenge but the biggest hope for the subjects with type 
1 diabetes. In this review, we will outline the current scenario of innovative diabetes management both from a technological 
and biological point of view, and we will also forecast some cutting-edge approaches to reduce the challenges that hamper 
the definitive cure of diabetes.
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1  Introduction

Type 1 diabetes (T1D) is an autoimmune disease character-
ized by the disruption of pancreatic beta cells: this leads to 
a progressive reduction of insulin secretion and subsequent 
hyperglycemia, along with lipid and protein metabolism 
derangements. The DCCT-EDIC study showed that hypergly-
cemia, in type 1 diabetes, is associated with micro-and macro-
vascular complications and increased mortality[1–3]. To sur-
vive, subjects with type 1 diabetes must rely on exogenously 
injected insulin in subcutaneous tissue: this ensures adequate 
basal and prandial insulin concentrations to recreate physi-
ological insulin profiles to avoid ketoacidosis and hypergly-
cemia-related complications [4]. The most relevant limiting 

factor for achieving good glycemic levels is hypoglycemia, 
defined as glycemic values lower than 70 mg/dl (3.9 mmol/L), 
determined by a discrepancy between insulin administration 
and carbohydrate (CHO) intake [5–8]. Hypoglycemia impacts 
the quality of life and leads to acute complications like sei-
zures and coma, and, potentially, to a heart attack. The fear 
of hypoglycemia leads the patients to accept higher glyce-
mic values, making more difficult the achievement of a good 
metabolic control [9–11]. To inject suitable insulin doses T1D 
subjects (T1Ds) must: 1. monitor their glucose values several 
times/day (self-monitoring of blood glucose, SMBG), 2. know 
the exact amount of CHO in their diet, 3. calculate the correct 
ratio between CHO taken and insulin to administer (I: CHO 
ratio), 4. estimate the impact of physical activity, illness, and 
stressful episodes. All these commitments lead T1Ds to face 
numerous daily decisions with an important deterioration of 
quality of life (QoL) [12–14]. Regrettably, the subcutaneous 
administration of insulin is non-physiological since the portal-
to-periphery ratio of hormone concentrations is reversed lead-
ing to a relative peripheral overinsulinization and frequently 
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unmatched insulin levels for the prevalent glucose concen-
trations. To overcome this problem, new insulin with more 
physiological pharmacodynamic have been introduced in the 
market; basal insulin analogs with longer duration (degludec, 
glargine U300), demonstrated their efficacy in maintaining 
metabolic control without hypoglycemia, especially during 
the night. [15–19]. On the other hand, new ultra-rapid prandial 
insulin analogs lead to better postprandial glycemic control 
reducing hyperglycemia in the early post-prandial phase. In 
a recent meta-analysis, faster aspart demonstrated efficacy in 
T1Ds in terms of reduction of HbA1c without increasing the 
overall hypoglycemic episodes. [20, 21]. Furthermore, insu-
lin pumps (continuous subcutaneous insulin infusion, CSII) 
could ensure a more physiological approach [22]. Beyond 
insulin, other drugs have been proposed for the management 
of type 1 diabetes, in association with insulin [23]. In par-
ticular, sodium–glucose co-transporter-2 (SGLT2) inhibitors 
can reduce the HbA1c along with weight loss and reduction 
of daily insulin dose [24], especially in overweight subjects: 
this paved the way to the approval for dapagliflozin use in 
overweight (body mass index > 27 kg/m2) T1Ds in association 
with insulin in several countries. However, it is important to 
underline the potential risk of ketoacidosis associated with the 
use of these drugs, especially when the insulin dose is exces-
sively down-titrated [25, 26]. In addition to SGLT2 inhibitors, 
other drugs approved in type 2 diabetes have been evaluated 
for T1Ds. Metformin demonstrated a reduction in BMI and 
insulin requirements, with no clear effects on HbA1c [27]. 
Glucagon-like peptide 1 receptor agonists (GLP-1RA), used 
for the treatment of T2D and obesity, demonstrated potential 
efficacy in clinical trials also in T1Ds when adjunct to insu-
lin; a recent meta-analysis confirmed that GLP-1RA improve 
glycemic control, reduce severe hypoglycemia, body weight, 
and insulin requirements [28].

The monitoring of glucose levels ​​has also been improved 
with the introduction in the market of smaller, more accu-
rate, glucose monitoring systems that allow patients with 
T1Ds to visualize every 1 to 5 min their glucose values [29]. 
Despite these innovations, people with type 1 diabetes still 
have a reduced life expectancy [30], with an increased risk 
of both macro-and microvascular complications and a worse 
quality of life compared to the non-diabetic population [31]. 
To optimize diabetes control, three main fields have been 
investigated: pharmacological, technological, and biologi-
cal approaches. From a pharmacological standpoint, new 
insulin formulations have undoubtedly allowed higher effi-
cacy, safety, and flexibility in the management of diabetes. 
The technological approach has allowed more sophisticated 
insulin pumps, sensors, glucometers, capable of simplifying, 
and improving diabetes management. Technology has also 
helped the management of diabetes thanks to easier data 
recording and safer data sharing between clinicians, patients, 
and caregivers. The biological approach aims to completely 

replace the production of insulin: in the last decades, either 
pancreas or beta-cell transplantation has dramatically 
improved as well as immunosuppression so that beta-cell 
replacement can now be considered an option to cure T1Ds. 
Regrettably, this type of approach is limited by the lack of 
organs and by the exposure of subjects to the consequence of 
immunosuppressive therapy, so that researchers are actively 
seeking to create new beta cell source from stem cells, to 
guarantee insulin production without the immunosuppres-
sive therapy. This review describes innovative technological 
and biological approaches for diabetes management, high-
lighting future strategies that could be developed to reduce 
the burden related to diabetes and maybe to find a cure.

2 � Technology innovation

In recent years technology has revolutionized the manage-
ment of diabetes: the technological approach is based on 
the use of insulin pumps and sensors for continuous glucose 
monitoring, and on the possibility to integrate these 2 sys-
tems to create a device capable of autonomously modifying 
the administration of insulin according to the values ​​detected 
by the sensor, thus creating the so-called artificial pancreas 
or closed-loop system.

3 � State of the art

3.1 � Insulin pump

Since their introduction in the 70 s, these devices have 
undergone important improvement, both in terms of port-
ability and functionality. Insulin pumps allow the continuous 
administration of rapid insulin analogs, infused at different 
pre-programmable basal rates that mimick the secretion of 
physiological hormone response. Furthermore, the admin-
istration of meal insulin boluses can also be protracted to 
allow a better insulinization in response to meals enriched 
in protein and fat that have a significantly slower absorp-
tion. CSII leads to an improvement in glycemic control and 
reduction of hypoglycemia. Several studies demonstrated a 
statistically significant reduction of both HBA1c and hypo-
glycemic events in patients on CSII (Table 1) [32–38]. In a 
meta-analysis of the available randomized controlled stud-
ies (RCT), Pickup and colleagues showed that CSII reduces 
HBA1c by 0.21% as compared to multiple daily injection 
(MDI) therapy [33]. Similarly, in 2010 Monami and col-
leagues reported a reduction of HbA1c of 0.3% [34]. All 
meta-analysis compared CSII efficacy vs glargine or NPH 
insulin basal but relatively fewer data are available on CSII 
efficacy vs. MDI performed with new basal analogs. How-
ever, a more recent meta-analysis demonstrated superior 
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efficacy of CSII in reducing HbA1c also in trials in which 
a rapid-acting analog was used; the advantage of CSII vs. 
MDI was smaller than that observed in trials using regular 
human insulin [35]. Data on hypoglycemic events are less 
clear: a similar hypoglycemic risk between CSII and MDI 
has been reported. Notably, it must be also acknowledged 
that there are insufficient data about efficacy in children [36]. 
CSII requires greater management skills and commitment 
than MDI therapy but, at the same time, allows greater flex-
ibility in controlling the daily activities, and this leads to 
an improvement of the patients’ quality of life. Several tri-
als demonstrated a better acceptance of this approach with 
a parallel reduction of the burden related to diabetes [39, 
40]. The risks associated with ketoacidosis secondary to the 
occlusion of the infusion set were reported to be minimal 
[41].

Last but not least, CSII-based treatment is associated 
with a reduction of mortality and complications [42], as 
reported by the Swedish register that evaluated more than 
18,000 T1Ds treated with CSII or MDI [43]. Reduction of 
mortality, especially related to cardiovascular events, could 
be related to lower hypoglycemic events and more stable 
glucose values.

Another approach for insulin infusion is represented 
by continuous intraperitoneal insulin infusion (CIPII). 
CIPII provides an alternative insulin administration, 
through an implantable pump, allowing a more physi-
ological delivery since insulin is absorbed through the 
portal system, thus mimicking the physiological condi-
tion [44]. The need for surgery and the costs limit this 
option for T1Ds who fail to achieve satisfactory glycemic 
control with other treatments. Several studies demon-
strated CIPII efficacy when compared to CSII in term of 
HbA1c and severe hypoglycemia reduction and treatment 
satisfaction [45, 46]

3.2 � Continuous glucose monitoring (CGM)

Continuous glucose monitoring (CGM) represents an 
awesome improvement in the possibilities of monitoring 
the glucose levels: these devices continuously detect the 
glucose concentrations in subcutaneous tissue thanks to 
small sensors that can be replaced every 7–14 days. CGM 
systems can be divided into real-time (rt-CGM) and inter-
mittently scanned (is-CGM) devices. Rt-CGM provides 
real-time glucose values, ​allowing the patient to view, not 
only the glucose levels but also the future trends prediction 
and past trends on both the receiver or on a smartphone 
app which provides appropriate alerts for both high and 
low glucose readings: with rt-CGM the patient is aware 
when a given glycemic threshold is exceeded or when it 
is about to be exceeded [47–49]. These devices demon-
strated superiority in their efficacy over SMBG in terms RC
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of HbA1c reduction, glucose variability, and hypoglyce-
mia reduction in subjects treated either with CSII or MDI 
[50–61], as shown in Table 2. Unfortunately, their use 
may be intermittent for weekly sensor replacement [62]. 
Over the last years, their accuracy has been improved, and 
some of them have been approved for non-adjunctive use, 
allowing patients with T1D to adopt decisions regarding 
their insulin therapy without the need for capillary glu-
cose control [63]. Some devices need calibration vs. capil-
lary glucose to ensure adequate accuracy, but now devices 
factory-calibrated are available [64]. An implantable sub-
cutaneous sensor of 180 days duration has been recently 
introduced: this approach avoids the need for weekly sensor 
replacement with similar efficacy in terms of metabolic 
control [65, 66]. Is-CGM or flash glucose monitoring sys-
tem (FGM), on the other hand, does not provide alarms and 
allows the patient to view glycemic values and trends when 
the patient scans the sensor through the reader or mobile 
phone. Is-CGM has proven its effectiveness in improving 
glycemic control and reducing hypoglycemic risk [67–69]. 
Recently, a new version of is-CGM provided optional alerts 
for high and/or low glucose levels, thus advising T1Ds to 
perform a scan to evaluate the actual glucose level. All 
these devices lead to an improvement in QoL when com-
pared to SMBG [52, 70, 71], due to the possibility to visu-
alize data continuously without the need for finger sticks.

Both Rt-CGM and is-CGM provide predictions of the 
glucose levels based on previous glucose readings: these 
data could be used by T1Ds to adjust insulin correction or 
prandial boluses and CHO intake. This represents additional 
support in the management of T1DM, in particular at meal-
time, when multiple parameters such as insulin: carbohy-
drate ratio, glucose target, and correction factor should be 
taken into account. Several recommendations have been pub-
lished regarding trend arrow management: as an example, a 
percentage or fixed values could be added or subtracted to a 
prandial insulin bolus based on the rate of glucose changes 
[72, 73]. Recently, more personalized approaches have been 
introduced based on insulin sensitivity factors and different 
baseline glucose levels. [74, 75]

The availability of these devices has changed the metric 
to assess glucose control: the possibility to visualize daily 
glucose profiles have shifted the gold standard parameter 
for metabolic control HBA1c to parameters such as time 
in target range (TIR), time spent between 70 and 180 mg/
dl, which have updated the goals to be achieved by the 
patients [76]. Other parameters complementary to TIR are 
time spent with glucose values below 70 mg/dl, time below 
range (TBR), and time spent above 180 mg/dl, time above 
range (TAR). These parameters have some limits, related 
to the lack of an established standard for glucose meas-
urement with CGM: as suggested by several authors, TIR 
should be regarded as a complement to HbA1c [77]. Indeed 

HbA1c values have been considered over the last decades 
the parameter that better correlates with clinical outcomes, 
even though additional evidence of a correlation between 
TIR and diabetes complications are emerging, both for micro 
and macrovascular complications [78–80].

3.3 � Blood glucose meters (BGM)

Although the use of CGM is increasing, some T1Ds con-
tinue to use BGM to check their glucose values: it might 
be related to either the lack of CGM accuracy, or their cost 
and unacceptability [81, 82]. Several studies demonstrated 
the efficacy of BGM in reducing both HBA1c and the hypo-
glycemic events when tests are performed correctly, usually 
from six to ten times a day, even if the visualization of the 
glucose levels are intermittent [83]. BGM technology have 
been improved over the last years [84]. Accuracy of devices 
is crucial not only to correctly manage the disease but also 
to calibrate CGM; accuracy of BGM could be compared 
to the reference values of venous blood glucose [85]. New 
BGM could be connected to a smartphone app leading to a 
better patient’s engagement and to the possibility of shar-
ing directly data with phisicians or caregivers [86]. Several 
devices also have other features, such an alarm to remind the 
subject to check her/his blood sugar, or a bolus calculator 
integrated into the BGM that simplifies the calculation of 
prandial bolus amount based on the subjects’ parameter [87].

3.4 � Sensor augmented pump and first automatic 
systems

Given the superiority of the CSII over MDI and CGM over 
SMBG, the gold standard for the treatment of type 1 diabetes 
should be the combination of CSII with CGM, called Sensor 
Augmented Pump (SAP) Therapy. This combination is supe-
rior when compared to CSII + SMBG in terms of improving 
glycemic control and reducing hypoglycemia [51]. Nonethe-
less, subjects on SAP therapy in apparently good metabolic 
control spend several hours in both hypo and hyperglyce-
mia, indicating that more precise approaches are required 
to obtain glycemic values ​​comparable to those observed in 
subjects without diabetes [88]. For this reason, systems with 
automated modification in insulin administration based on 
the values ​​detected by the sensor have been assessed. The 
first automated approach was dedicated to control hypogly-
cemia: the Low Glucose Suspend system (LGS) interrupts 
insulin infusion for a maximum of 2 h when a predeter-
mined low glucose level is reached: this approach can reduce 
severe hypoglycemia, even if compared to SAP without 
LGS [89], especially in T1D at high risk of hypoglycemia 
or with reduced hypoglycemia awareness [90]. The second 
approach, a further step towards better management of dia-
betes, was achieved through the introduction of Predictive 
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Low Glucose suspend (PLGS), capable of suspending the 
basal administration of insulin when hypoglycemia was 
predicted by the sensor with a further reduction of hypo-
glycemic risk [91–93]. In this context, real-life studies have 
shown the efficacy of this algorithm in improving metabolic 
control [94–96].

3.5 � Artificial pancreas

The artificial pancreas (AP) or closed-loop control (CLC) 
system is a technology that allows the control of blood glu-
cose concentrations in a completely automated manner. This 
device is comprised of an insulin pump, a CGM, and a con-
trol algorithm (CA) that automatically modifies insulin infu-
sion according to prevailing glucose concentrations. Insulin 
infusion is therefore modified every few minutes based on 
new glucose values received by CGM: CLC increases insulin 
infusion when glucose values are increasing and decreases 
or suspends insulin infusion in case of significant reduc-
tion of glucose levels to minimize the risk of hypoglycemia 
(Fig. 1). Different models have been developed with different 
insulin pumps and different CGM and especially different 
CA, the “brain” of the system [97, 98]. In the last decade, 
several studies have assessed AP performances, initially in 
the inpatient setting [99, 100] to evaluate its safety and effi-
cacy, then in patients’ real-life conditions to demonstrate 
their feasibility [101, 102]. All these trials established the 
superiority of AP compared to CSII or SAP, in terms of time 
spent in target, hypoglycemia reduction, HbA1c improve-
ments, and acceptability by T1D subjects. Performances of 

AP were evaluated also in children and adolescents [103] 
and in pregnant women with T1D [104–106].

These trials lead to the introduction of the first commer-
cially available CLC system, MiniMed 670G (Medtronic 
MiniMed, Inc., Northridge, CA, USA): this device is called a 
Hybrid closed-loop (HCL) because subjects have to announce 
meal intake to avoid postprandial hyperglycemia [107, 108]. 
In a pivotal registration trial this device showed, in both 
adults and adolescents, its efficacy [109] with a reduction in 
HBA1c values (from 7.7% ± 0.8% to 7.1% ± 0.6% (P < 0.001) 
in adolescents, and from 7.3% ± 0.9% to 6.8% ± 0.6% 
(P < 0.001) in adults, and with a parallel increase of TIR (from 
60.4% ± 10.9% to 67.2% ± 8.2% (P < 0.001) in adolescents and 
from 68.8% ± 11.9% to 73.8% ± 8.4% (P < 0.001) in adults. 
Similar results were confirmed also in the pediatric population 
from 7 to 13 years [110], which often has a more challenging 
glycemic control. The efficacy of the system is proportional 
to the time when CLC is active (auto mode) [111]. Recently, 
a randomized controlled trial [112] confirmed the efficacy of 
Minimed 670G during 26 weeks, with a reduction of HbA1c 
and an increase of the time spent in target when compared to 
standard therapy. In this trial, it has been demonstrated also 
an improvement of diabetes-specific quality of life, evaluated 
through validated questionnaires. Currently, Minimed 670G 
is approved for T1Ds older than 7 years old. Since it has been 
commercialized in 2017 in the US, real-world data have been 
published [113], confirming the efficacy of the device. Nev-
ertheless, in 1 year follow up observational study of T1Ds 
who started 670G use, a reduction of Auto Mode over time 
was observed; 46% of users stopped auto mode after 1 year 

Fig. 1   Artificial pancreas components, its limitations, and future 
perspectives: The algorithm modifies automatic insulin infusion 
throughout the insulin pump based on glucose values registered by 
CGM to optimize glucose control increasing time spent in a target 
(70–180  mg/dl). Challenges are related to insulin absorption that 

should be accelerated, CGM accuracy, and the need for calibration. 
To reduce the burden related to diabetes a full closed-loop control 
that minimizes the subject’s intervention could completely automatize 
insulin therapy. FLCL: full closed-loop control, CGM: continuous 
glucose monitoring
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and only 32% of subjects have used auto mode for at least 
70% of the time [114]. These data suggest that beyond the 
efficacy of the device, other details have to be considered: 
suspension of auto mode was related to alarms reported by 
devices and the need for sensor calibration. Other reasons are 
related to the unique glucose target available (120 mg/dl), not 
acceptable by subjects with tighter glycemic control, such as 
during pregnancy. Factory calibrated CGM could solve the 
glitches related to calibration but improvements in AP models 
are necessary to increase their time of use. For this reason, 
an enhanced version of 670G, called 780G, obtained the CE 
mark in June; this new version could dispense automated cor-
rection boluses, have different optional glucose targets, and 
other features to increase the utilization of Auto Mode [115, 
116].

Other devices have been evaluated and authorized for 
commercial use such as Tandem Control IQ, which proved 
its efficacy with a sensor that needs no calibrations, by 
increasing time in the target (from 61 ± 17% at baseline to 
71 ± 12% at the end of 6 months study period), by reducing 
HBA1c values (-0.33% in CLC group) and hypoglycemic 
events [117]. This AP model was also assessed in the pedi-
atric population [118] during a winter camp and showed its 
efficacy also in this specific population and during physi-
cal activity (percent time within range was 66.4 ± 16.4 vs 
53.9 ± 24.8% with P-value 0.01). Since this system is avail-
able in the US from the beginning of 2020, the first real-life 
data have been published, confirming results obtained in 
clinical trials with improvements also in psychosocial out-
comes [119].

Other HCL systems either received or are waiting for 
approval, and will be commercialized in the next years. 
CamAPS FX, which uses an algorithm non installed on 
an insulin pump but on a smartphone that communicates 
with the pump and sensor, received a CE mark for 1 year, 
and different trials demonstrated its efficacy also in adoles-
cents and children [120, 121]. Diabeloop algorithm is also 
installed in a smartphone, and communicate with CGM and 
patch pump, CSII system without a catheter. In a randomized 
crossover trial, an increase of 9.2% of the time spent in the 
target was observed using this AP [122], and performances 
were evaluated also in more challenging situations as meals 
and physical exercise [123]. The Omnipod Horizon system 
[124] uses a patch pump and both its safety and efficacy 
were demonstrated in both adults and pediatric T1Ds even 
also in an outpatient setting [125, 126]. CLCs equally allow 
a better QoL, by reducing the burden related to diabetes 
by demonstrating a significant reduction of the time spent 
in diabetes management [127, 128]. These results need to 
be confirmed in real life since the effectiveness of clinical 
trials in selected subjects could have impacted the results. 
Since 2013 it is active as a movement for the development of 
open-source diabetes management systems (Do-It-Yourself 

Artificial Pancreas Systems, DIY), with the scope of acceler-
ating AP development and access. This group aims to create 
an “open source” artificial pancreas, sharing algorithms with 
personalized settings, and glucose targets. These algorithms 
can communicate with several existing devices via Bluetooth 
thus enabling the conception of personalized insulin pumps 
and CGM, thus overcoming the marked systems. There are 
no clinical trials that have tested these systems, but data set 
analysis and real-world data suggested an improvement in 
HBA1c values and time spent in target and amelioration of 
QoL [129]. The lack of evidence by RCT and the absence 
of regulation poses also obvious legal problems for users.

3.6 � Further role of technology

Technology can simplify the management of diabetes: as an 
example, smart insulin pens with memory functions could 
record the insulin doses administered and transfer data via 
Bluetooth to dedicated apps [130]. Several smartphone 
apps for diabetes management have been developed, with 
the aim of help T1Ds to calculate insulin bolus, registered 
glucose data, track carbohydrate intake, or physical activ-
ity, with the possibility of sharing data on glycemic trends 
with clinicians. Also, CGM data could be managed with a 
smartphone app and shared in a cloud system, thus allow-
ing also clinicians to visualize glucose values. This leads 
to the development of telemedicine methods which are tre-
mendously useful when subjects can’t access the clinic, as 
recently occurred during Covid 19 pandemic [131, 132]. 
Similarly, data could be shared between T1Ds and caregiv-
ers, especially for example for children with T1D.

3.7 � Future prospectives

3.7.1 � Continuous glucose monitoring

Even if substantial advancements have been made in the field 
of glucose sensors in terms of accuracy and portability, they 
remain needle-based device with reduced acceptance, espe-
cially in childhood. For this reason, researchers are working 
on new projects based on non-invasive glucose monitoring 
using alternative body fluids [133]. For example, a wearable 
patch to measure glucose on sweat has been tested [134], even 
if the contamination of skin, the impact of physical activities, 
and related changes in sweat production may represent major 
problems to solve. The determination of glucose in tears has 
also be considered using a contact lens-based system [135]: 
this device appears to have an accuracy comparable to the com-
mercialized CGM system. Also, salivary glucose concentration 
correlates with those in plasma [136], but challenges related to 
the interferences with food or bacteria in the mouth limit the 
development of these devices.
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3.7.2 � Artificial pancreas

The real-life data obtained during the first-year experience 
with 670G [114] suggest that, beyond the efficacy in glu-
cose control, other features should be considered to optimize 
automatic system use. The possibility to rely on correction 
boluses and the reduction of alarms in the 780G model and 
factory calibrated devices (in the AP model that uses non-
adjunctive sensors) could improve device acceptance. Future 
prospective in AP development foresees the possibility of 
creating a full CLC (FCLC) that does not need a subject’s 
interventions. The main challenges in FCLC development 
are related to the difficulties in managing postprandial con-
trol with no meal announcement and during physical activ-
ity. In 2008 Weinzimer and colleagues [137] compared an 
FCLC and an HCL in an inpatient setting in adolescents. 
They demonstrated that, although the 2 systems performed 
similarly in the overnight period, the postprandial phase 
was better managed by HCL with meal announcement and 
prandial bolus administration 15 min before a meal with a 
postprandial peak of 226 ± 51 mg/dl vs 194 ± 47 (p-value 
0.04). Similar results were obtained in an inpatient setting 
by Forlenza et al. in both adults and adolescents who under-
went AP session with announced and unannounced meals; 
They showed that the postprandial CGM average was sig-
nificantly lower for announced than for unannounced meals 
(140.6 ± 35.0 vs. 197.8 ± 44.1  mg/dl, p < 0.001) [138]. 
Challenges in postprandial peak management with no meal 
announcement are related to relative delay in insulin absorp-
tion. No significant improvements were observed in the post-
prandial phase in FCLC using FasterAspart compared to 
AspArt [139], thus demonstrating that the insulin absorp-
tion limits the postprandial peak management in FCLC. It 
has been shown that intraperitoneal insulin infusion allowed 
better control in unannounced meals, with a reduction of 
time spent in hyperglycemia in the postprandial phase [140]. 
This approach is not feasible in the real life in the majority 
of T1Ds but suggests that a more physiological and rapid 
insulin administration may be a potential solution for the 
postprandial peak challenge. Another approach to control 
postprandial peak is the pramlintide association. Pramlintide 
is an analog of amylin, co-secreted with insulin and deficient 
in T1D, that delays gastric emptying and suppresses gluca-
gon secretion. Use of subcutaneous Pramlintide in FCLC 
was associated with a reduction of the postprandial mag-
nitude of glycemic excursion (88 ± 42 vs. 113 ± 32 mg/dL; 
P = 0.006) compared with CLC alone [141]. Another chal-
lenge is related to physical activity management [142]: with 
commercialized AP models, the strategy of establishing a 
pre-set of different higher glucose targets reduces the risk of 
hypoglycemia. Methods to communicate physical activity to 
algorithms have been investigated such as adding hearth rate 
signal, as a surrogate of physical activity, measured through 

a heart rate monitor [143]. This approach reduced hypogly-
cemic risk during exercise and increased time in the target 
range (81% vs. 75%;P = 0.2). The necessity to wear another 
device limits this approach in real life.

3.7.3 � Bihormonal artificial pancreas

The main limitation to achieve better glycemic control 
is the hypoglycemic risk: to overcome this problem, a 
bihormonal approach could maximize the efficacy of AP 
in reducing the risk of hypoglycemia thanks to the co-
administration of glucagon. A bihormonal pancreas (BP) 
is similar to AP and consists of a CA installed in a smart-
phone that communicates with CGM, insulin, and gluca-
gon pump. Studies that evaluated the efficacy of BP had a 
rather shorter duration as compared to studies that assessed 
AP; nonetheless, BP [144, 145] showed both safety and 
feasibility in in- and outpatients. The device has been also 
assessed in a randomized crossover trial conducted at home 
for 11 days and allowed a reduction in mean glucose levels 
and in time spent in hypo [146]. Notably, there were no 
physical activity limitations and the patients didn’t have 
to input the correct amount of CHO at each meal but just 
the meal size. A comparison between AP and BP was per-
formed by Haidar, who showed an improvement of glu-
cose control during BP use in an overnight period in both 
children and adolescents, with less strong evidence in real 
life in adults [147]. BP has some limitations related to the 
necessity of wear 2 insulin pumps and a lack of evidence 
of long-term effects of the continuous administration of 
subcutaneous glucagon. To minimize the impact of wear-
ing 2 different pumps, a single wearable device integrating 
all components into one single device much more manage-
able in the real-life has been developed [148]. As shown in 
Table 3, some meta-analyses evaluated the efficacy of CLC 
in the outpatient setting, comparing different AP models 
with standard therapy (SAP). For example, Weisman in the 
first meta-analyses about AP efficacy reported that time 
in the target was 12·59% higher with artificial pancreas 
systems (p < 0·0001), and BP was associated with a greater 
improvement in time in the target and a reduction of time 
spent in hypoglycemia. [102]. A second meta-analysis per-
formed by Bekiari and colleagues in 2018 confirmed these 
data[101], both overnight and over 24 h, and AP efficacy 
was confirmed even considering the pediatric population, 
separately [103].

4 � Biological approach

The definitive cure of diabetes may probably come from the 
biological approaches since they aim to replace the secretion 
of insulin indefinitely.
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4.1 � State of art

The treatment of diabetes with exogenous insulin is often 
problematic due to recurrent hyper-and hypoglycemic epi-
sodes. In selected patients requiring a kidney transplant or 
suffering from recurrent severe hypoglycemia despite opti-
mal medical therapy, pancreas or isolated islet transplanta-
tion can restore normal glucose metabolism.

4.1.1 � Pancreas transplantation

Pancreas transplantation (PT) is an option for selected subjects: 
however, it requires major abdominal surgery. PT demonstrated 
its efficacy in restore normoglycemia, stabilize complications, 
and reduce the burden of hypoglycemia [149]. This approach 
is often contemplated in subjects who required previous/ 
simultaneous kidney transplant for end-stage kidney disease 
since these subjects already require major surgery and immuno-
suppression: this strategy accounts for the majority of PT. New 
immunosuppressant agents have improved organ survival with 
a 5 years organ survival rate between 55 and 70%. The survival 
rate is increased when the pancreas is transplanted simultane-
ously to the kidney [150]. However, surgical intervention and 
immunosuppression effects, limit this option to a relatively small 
number of subjects.

4.1.2 � Islet transplantation

Islet Transplantation (IT) has been introduced 20 years ago: 
this procedure is more acceptable by T1Ds since it is less 

invasive and repeatable and could be proposed to patients 
who are ineligible for PT. Islets are isolated from donor 
pancreases, purified, injected into the portal vein to obtain 
their engraftment in the liver [151]. When compared to 
optimal insulin therapy, IT demonstrated higher efficacy 
in reducing severe hypoglycemia [152] and preventing 
microvascular complications [153]. In medium long-term 
efficacy, IT is lower than that of PT in providing insulin 
independence with approximately 50% of patients remained 
insulin-independent at 5 years [154]. Similar to PT, these 
approaches are limited by the number of donor organs and 
by the need for immunosuppression. Encapsulation of 
islet has been evaluated, to prevent rejection and immune 
response. The presence of encapsulation creates a barrier 
that prevents the access of immune cells, thus limiting the 
necessity of immunosuppression, but also precluding opti-
mal vascularization. Results were not satisfactory in terms 
of c peptide production and metabolic control but lead to a 
new strategy to protect transplanted cells [155].

5 � Future perspectives

5.1 � Beta cells replacement

PT and IT limits have sparked research for alternative 
sources of beta cells, potentially unlimited, and without the 
need for immunosuppression. Xenotransplantation repre-
sents a possible solution to the donor shortage and recent 
research in genetic modification and immunosuppressive 

Table 3   summary of the meta-analysis regarding artificial pancreas use in the outpatient setting

*two comparisons assessed both dual-hormone and single-hormone systems in a three-way crossover design
# in three studies, pediatric (≤ 18 years) and adult (> 18 years) patients’ data were entered as separate comparisons in the meta-analysis

Meta-Analysis Population Number of studies considered Change in time in 
range (70–180 mg/dl)

Change in time 
below range 
(< 70 mg/dl)

2017
Weisman A, Bai JW, Cardinez M, Kramer 

CK, Perkins BA
[102]

Adults and children All studies (24)
*Single-hormone (22)
Bi-hormonal (7)
#Adults (10)
Pediatric (11)

 + 12·59% (p < 0.0001)
 + 11.06% (p < 0.0001)
 + 19.52% (p < 0.0001)
 + 12.67% (p < 0.0001)
 + 12.30% (p = 0.0001)

-2.45% (p = 0.003)
-1.88% (p = 0.02)
-3.78% (p < 0.0001)
-1.23% (p = 0.02)
-1.58% (p = 0.14)

2018
Bekiari E, Kitsios K, Thabit H, 

Tauschmann M, Athanasiadou E, 
Karagiannis T, Haidich AB, Hovorka R, 
Tsapas A

[101]

Adults and children 41 studies
32 Single Hormone
5 Bi-hormonal
4 single hormone and
Bi-hormonal system against a 

control treatment

 + 9.62 (p < 0.001) -1.49 (p < 0.001)

2019
Karageorgiou V, Papaioannou TG, Bellos I, 

Alexandraki K, Tentolouris N, Stefanadis 
C, Chrousos GP, Tousoulis D

[103]

Children 25 studies
23 single-hormone
2 Bi-hormonal

 + 11.97% (p = 0.0003) -0.67% (p = 0.004)
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regimens have increased interest in this area. Until now small 
clinical studies have considered this possibility, especially 
using pigs beta cells. Major barriers to xenotransplantation 
are represented by an instant blood-mediated inflammatory 
reaction, chronic rejection, and the risk of transmission of 
porcine infectious diseases. To overcome the risk of acute 
rejection, related to different cell surface epitopes between 
humans and donor, genetically modified Xeno islet have 
been created, using gene-editing techniques to alter proteins 
in cells surface. As demonstrated for human beta cell trans-
plantation, encapsulation could protect also Xeno islet from 
immune attack. There are persistent barriers to xenotrans-
plantation and further data are necessary to establish an ideal 
genetically modified porcine islet to evaluate the possibility 
of clinical studies [156].

Future strategies for beta-cell replacements are based on 
stem cell (SC) to create insulin-producing cells (IPC) from 
SC [157–161]. The first problem to solve is the source of 
IPC: these cells could be produced from a stem cell-derived 
from human embryonic cells (EC) [162] or human-induced 
pluripotent stem cells (IPSC) [163]. EC are pluripotent cells 
derived from the blastocyst that can proliferate indefinitely, 
and differentiate in different tissues. At variance, IPSC is 
derived from adult mature tissue, and is re-programmed by 
appropriate stimuli to pluripotent cells [164]. These types of 
stem cells are similar in pluripotent capacity, and have the 
potential to create IPC: however, there are significant ethical 
issues in using EC so that the main source of stem cells can 
be considered the IPSC. Pivotal studies in this field reported 
insulin-producing cells obtained either by EC or IPCS but 
their generation rate was low and with a poor secretory 
response to high glucose, probably due to the low differen-
tiation efficiency of protocols employed [165–167]. In 2014 
a detailed protocol to generate mature and functional insulin-
producing cells from SC was published, describing 7 sequen-
tial stages to obtain beta cells able to reverse hyperglycemia 
in diabetic mice [164]. The 7 stages were defined by endo-
derm, primitive gut hub, posterior foregut, pancreatic endo-
derm, pancreatic endocrine precursors, immature beta cells, 
and maturing beta cells. Veres demonstrated that during these 
processes only 45% of produced cells are beta-cell [168] 
since, at each step of the process, a consistent fraction of the 
cells deviated from the desired path: the consequence of this 
was the generation of an array of different cell phenotypes 
such as alfa cells, non-endocrine pancreatic exocrine cells, 
enterochromaffin cells, and also replicating cells which poses 
a serious question about malignancy risk. The beta cells dem-
onstrated their functionality when transplanted in diabetic 
mice in 40 days, showing secretion of C-peptide and insulin 
in response to glucose. Maturation of the beta cells could be 
obtained in vitro with the administration of different small-
molecules and hormones, or in vivo, with the transplantation 
of pancreatic progenitor [169]: it has been established that, 

in vivo, maturation is not related to the pancreas environment 
since maturation was obtained also after pancreas progenitor 
transplantation in mice kidney surface [170], thus suggest-
ing that a critical point is a micro vascularization that sup-
plies nutrients and oxygen. In this context, several groups are 
developing encapsulation devices that allow both substrate 
supply for beta cells and protection against immune attack; 
furthermore, encapsulation has the potential to limit the risk 
of neoplasm formation due to the presence of undifferentiated 
cells. The preparation of the ideal device should contem-
plate the biocompatibility of the membrane, the possibility of 
exposure to blood to allow adequate metabolism for the cells, 
the adequate release of insulin, and sufficient isolation from 
immune-competent cells. Thus, major difficulties are related 
to the finding of an optimal balance between permeability 
and defense against the host’s immune response. Novel cell 
encapsulation systems are being developed to overcome these 
problems, and studies in humans are ongoing to evaluate the 
role of this approach [171]. A different strategy consists of 
the production of IPC directly from diabetic patients to over-
come several obstacles related to the immune response. It 
has been documented that the production of IPC from skin 
fibroblasts of T1Ds is reliable [172], and it has been con-
firmed that these cells are similar to adult beta cells and able 
to produce insulin in response to glucose variation both in 
vitro and in murine models [173]. Limits of this approach 
are related to differences intrinsic to patients with T1Ds, with 
the need to develop different stem cell lines. In conclusion, 
today the main challenges in developing a beta cell replace-
ment using stem cells are related to 1 the efficient generation 
of safe and functional insulin-producing cells (pancreatic 
progenitor or beta cells); 2. the transplantation of cells that 
do not spark the immune response; 3. conditions that allow 
adequate nutritional support; 4. the protection from the risk 
of malignant transformation; 5. a durable normalization of 
glycemia. However, several progress has been performed in 
the last decades suggesting that stem cell-based therapy for 
T1DM could represent the most advanced approach for a 
definitive cure of T1D.

5.2 � Gene therapy

Gene therapy has also been considered to achieve permanent 
restoration of insulin production [174]: studies in this field con-
firmed the possibility of obtaining ectopic insulin production 
from different cells, for example, keratinocytes or fibroblasts 
[175, 176] using ex vivo gene transfer methods. Using in vitro 
techniques, gene transfer genetically modified cells in vitro, then 
they are transplanted into the subjects: in animal models, this 
approach allowed a secretion of insulin able to promote glucose 
uptake and normalize glycemia. In vivo gene transfer is per-
formed by viral vectors that modify cells, such hepatocytes, to 
produce insulin: in murine models, glucose-dependent insulin 
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production by the liver has been demonstrated, with a parallel 
correction of hyperglycemia [177]. However, gene therapy has 
some limitations related to risk related to genes chromosomal 
integration, viral vector safety, and immune response against 
virus used in vivo transfer. Gene therapy could be also applied 
to other mechanisms involved in overt diabetes progression: 
in vivo gene transfer of antiapoptotic factors demonstrated an 
increased number of beta cells survival by reducing apoptosis 
induced by the immune response [178]. Although there are no 
studies available in humans, the results obtained in animal mod-
els suggest a possible role of this approach in the future.

5.3 � Prevention of T1D

T1D is an autoimmune disease: with his background in 
mind, trials have been conducted to halt or slow down 
the natural history of the disease. Viruses have been 
considered responsible for the immune response, so vac-
cination against viruses associated with T1D have been 
tested [179]. Also, the induction of immune tolerance 
to beta-cell antigens, such as GAD or insulin, have been 
explored [180, 181]. None of these studies was success-
ful since they did not delay beta cell destruction [182]. 

Table 5   Actual T1D therapy with advantages and limitations are represented, with future perspectives

Pro Cons Perspectives

MDI Cost
New insulin with more flexibility in 

administration

Need for multiple injections
No data download/sharing

Smart insulin pens

Insulin pump HbA1c reduction
Hypo reduction
Complication reduction
Increase survival

DKA risk
Advance management skills
Need for a team with expertise

Automatic devices

SAP Therapy HBa1c reduction
Hypo reduction
Improvement on QoL

Alarm fatigue
Accuracy
Needle
Advance management skills
Need for a team with expertise

Factory calibrated devices
Increased accuracy
New sensors

HCL HbA1c reduction
Hypo reduction
QoL (?)

Alarms fatigue
Advance management skills
Need for a team with expertise

FCLC

Pancreas transplantation Remission of disease
Reduction of complication

Immunosuppression
Surgical intervention

Stem cells

Islet Transplantation Remission of disease Immunosuppression Islet Encapsulation
Stem cells
Xenotransplantation

Table 6   Diabetes challenges and pharmacology, technology and biology approaches to solve them

Challanges Pharmacology Technology Biology

Today Tomorrow Today Tomorrow

Glycemic control New insulin Adjunc-
tive therapies

Insulin pump
CGM
CLC

FCLC
Bihormonal

Pancreas/islet transplantation Stem cells
Gene therapy

Hypoglycemia New insulin CGM
CLC

FCLC
Bihormonal

Pancreas/islet transplantation Stem cells
Gene therapy

Burden disease-related - CGM
CLC
Smart pen
Data sharing

FCLC Transplantation (limited by 
immunosuppressant)

Stem cell with no immuno-
suppressive therapy

Quality of life (new insulin) CLC FCLC Transplantation (limited by 
immunosuppressant and 
surgical intervention)

Stem cell with no immuno-
suppressive therapy

Prevention of disease Immunosuppression
Vit D?

- - - Gene Therapy

Cure - - - Transplantation Stem cell with no immuno-
suppressive therapy
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Similar results were obtained with subcutaneous insulin 
administration [183]. The gut microbiome has a role in 
immune regulation, and it has been shown a correlation 
between specific bacterial species and T1D development. 
Although there is no evidence about the modification in 
microbiota in the prevention of T1D, this hypothesis could 
be explored in the future to determine how the gut can 
modulate immune regulation [184, 185]. Immunosuppres-
sive therapy was also assessed to maintain insulin secre-
tion in the early phase of T1D. Some studies performed in 
the early 90 showed that the treatment with cyclosporine 

increased remission rate in new-onset diabetic subjects 
[186] during 2 years follow up but obvious drug toxicity 
restrained its use. However, these data suggested that the 
immunosuppression was able to preserve beta cells from 
the immune, encouraging studies in this field. For exam-
ple, in subjects with new-onset diabetes, therapy with a 
low dose of anti-thymocyte reduced the decline beta-cell 
function ad improved HbA1c more than subjects treated 
with placebo [187]. Anti-CD20 monoclonal antibody dem-
onstrated a significant reduction in c peptide decline vs 
placebo 1 year after drug infusion [188] and also other 

Fig. 2   Different steps in diabetes onset and management, actual and future perspectives.. In each phase of diabetes onset different approaches are 
described in second column and actual and future perspectives are described in third column
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agents were evaluated with similar results, offering new 
approaches for the cure shortly [189]. Overall, these data 
showed that the natural history of type 1 diabetes could 
be modified, but further studies are necessary to evalu-
ate the long-term effect of immunosuppressive therapy. 
Other agents were considered for their role in inflamma-
tion and immunomodulation [190]. Recently great interest 
has emerged about the role of vitamin D in the prevention 
of T1D high-risk subjects [191]. Preclinical studies in 
mice demonstrated an effect on beta-cell dysfunction and 
inflammation [192], supported by epidemiological data 
that demonstrate a correlation between hypovitaminosis D 
and T1D [193, 194]. Unfortunately, the evidence for this 
link was inconclusive and further studies are necessary 
to test such a hypothesis. Omega-3 polyunsaturated fatty 
acids (O3PUFA) anti-inflammatory role has been explored 
but there are little data on their effect: in animal models, 
dietary intervention with O3PUFA reduces inflammatory 
markers and the incidence of T1D [195]. Epidemiological 
data [196] suggest a correlation between omega-3 fatty 
acid intake and the risk of appearance of diabetes-specific 
autoantibodies. In table 4 ongoing trial regarding type 1 
diabetes prevention have been reported.

6 � Conclusions

Although in the recent year the management of diabetes 
has dramatically improved, yet the disease has a remark-
able impact on subjects with diabetes (Table 5). Particu-
larly in young patients, the burden related to the chronic-
ity and complications calls for new solutions (Table 6). 
The development of the first models of AP made pos-
sible the dream of creating a system able to automati-
cally modify insulin administration through insulin pump 
based on the values ​​detected by the glucose sensor. AP 
led to a further improvement of glycemic control with a 
parallel reduction of burden related to the management of 
diabetes, especially hypoglycemia. Unfortunately, these 
systems are not yet fully automated and still require the 
patient’s intervention, especially during the and physi-
cal activity. Although the technology can be considered 
today the most advanced way to manage diabetes, a 
definitive cure could be obtained only through the bio-
logical approaches that guarantee a constant replace-
ment of insulin such as pancreas transplants, and islet 
cell transplants. In perspective, stem cells, and the pos-
sibility of creating new potentially, unlimited beta cells, 
likely not requiring immunosuppressive therapy, could 
be finally the cure for diabetes (Fig. 2).
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