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Background: Psychiatric traits are heritable, highly comorbid and genetically correlated, suggesting that genetic
effects that are shared across disorders are at play. The aim of the present study is to quantify the predictive capacity
of common genetic variation of a variety of traits, as captured by their PRS, to predict case-control status in a child
and adolescent psychiatric sample including controls to reveal which traits contribute to the shared genetic risk
across disorders. Method: Polygenic risk scores (PRS) of 14 traits were used as predictor phenotypes to predict case-
control status in a clinical sample. Clinical cases (N = 1,402), age 1–21, diagnostic categories: Autism spectrum
disorders (N = 492), Attention-deficit/ hyperactivity disorders (N = 471), Anxiety (N = 293), disruptive behaviors
(N = 101), eating disorders (N = 97), OCD (N = 43), Tic disorder (N = 50), Disorder of infancy, childhood or
adolescence NOS (N = 65), depression (N = 64), motor, learning and communication disorders (N = 59), Anorexia
Nervosa (N = 48), somatoform disorders (N = 47), Trauma/stress (N = 39) and controls (N = 1,448, age 17–84) of
European ancestry. First, these 14 PRS were tested in univariate regression analyses. The traits that significantly
predicted case-control status were included in a multivariable regression model to investigate the gain in explained
variance when leveraging the genetic effects of multiple traits simultaneously. Results: In the univariate analyses, we
observed significant associations between clinical status and the PRS of educational attainment (EA), smoking
initiation (SI), intelligence, neuroticism, alcohol dependence, ADHD, major depression and anti-social behavior. EA
(p-value: 3.53E-20, explained variance: 3.99%, OR: 0.66), and SI (p-value: 4.77E-10, explained variance: 1.91%, OR:
1.33) were the most predictive traits. In the multivariable analysis with these eight significant traits, EA and SI,
remained significant predictors. The explained variance of the PRS in the model with these eight traits combined was
5.9%. Conclusion: Our study provides more insights into the genetic signal that is shared between childhood and
adolescent psychiatric disorders. As such, our findings might guide future studies on psychiatric comorbidity and
offer insights into shared etiology between psychiatric disorders. The increase in explained variance when leveraging
the genetic signal of different predictor traits supports a multivariable approach to optimize precision accuracy for
general psychopathology. Keywords: Genetics; psychiatry; neurodevelopmental disorders; comorbidity; general P
factor.

Introduction
In this study, we aim to quantify the predictive
capacity of common genetic variation of a variety of
traits to reveal which traits contribute to the shared
genetic risk across disorders as it is well known that
psychiatric disorders are highly comorbid. High
comorbidity rates have for instance been shown
between anxiety disorders (anxiety), major depressive
disorder (MDD), attention-deficit/ hyperactivity dis-
order (ADHD), autism spectrum disorder (ASD),
schizophrenia, alcohol dependence and eating disor-
ders. (Katzman, Bilkey, Chokka, Fallu, & Klassen,
2017; Klimkiewicz, Klimkiewicz, Jakubczyk, Kieres-

Salomo�nski, & Wojnar, 2015; Ulfvebrand, Birgeg�ard,
Norring, H€ogdahl, & von Hausswolff-Juhlin, 2015)
Next to the comorbidity there is also extensive symp-
tom overlap (American Psychiatric Association,
2013). This overlap has been described for MDD and
anxiety (Tiller, 2013), ADHD, ASD, tic disorders and
obsessive compulsive disorder (OCD; Huisman-van
Dijk, van de Schoot, Rijkeboer, Mathews, & Cath,
2016). Interestingly, the occurrence of psychiatric
disorders is also correlated with psychological traits
in the general population such as lower educational
attainment (EA (Lee et al., 2018)), lower intelligence
(Savage et al., 2018), higher substance use among
which earlier smoking initiation (Liu et al., 2019),
higher neuroticism scores (Nagel et al., 2018), and
insomnia (Jansen et al., 2019). EA comprisesConflict of interest statement: No conflicts declared.
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cognitive abilities (intelligence), noncognitive abilities
(patience, self-control, temperament, motivation,
self-discipline, time preference), health endowments,
and family background (Conti, Heckman, & Urzua,
2010). There is a phenotypic link between EA and
health (Lynch & Hippel, 2016) as shown by previous
research involving EA and adult success on the labor
market and adult health including psychopathology,
with a focus on depression, which demonstrates an
important role for both cognitive abilities in early life
and noncognitive abilities (Conti et al., 2010). Intelli-
gence by itself also plays a major role in health and
wellbeing with higher intelligence being associated
with lower risk of mental health problems (Savage
et al., 2018). Focusing on substance use behaviors,
the literature shows that smoking behavior is related
to a host of psychiatric disorders among which
schizophrenia, ADHD, eating disorders, mood disor-
ders, anxiety and substance use disorders (Boksa,
2017), and in a US population patients with a psychi-
atric diagnosis have a 3.23 times greater odds of
smoking compared to individuals with no diagnosis
(Smith, Mazure, & McKee, 2014). High scores on
neuroticism questionnaires are associated with psy-
chiatric disorders (Hettema, Neale,Myers, Prescott, &
Kendler, 2006;Nagel etal., 2018), and insomnia isone
of the most common comorbidities of psychiatric
disorders (Jansen et al., 2019).

Next to phenotypic overlap, extensive genetic over-
lap between psychiatric and psychological traits has
been observed. These traits are at least moderately
heritable (Polderman et al., 2015) with an underlying
genetic architecture of rare and common genetic
variation (Claussnitzer et al., 2020). A common
genetic overlap has been shown extensively in the
brain disorder (Bulik-Sullivan et al., 2015; Cross-
Disorder Group of the Psychiatric Genomics Consor-
tium, 2019), the psychiatric disorder (Demontis et al.,
2019; Grove et al., 2019; Schizophrenia Working
Group of the Psychiatric Genomics Consortium,
2014; Walters et al., 2018; Wray et al., 2018) and
psychological trait literature (Jansen et al., 2019;
Linn�er et al., 2019; Nagel et al., 2018; Tielbeek et al.,
2017;Walters et al., 2018).Health-related traits asEA
(Lee et al., 2018; Satterstromet al., 2020), intelligence
(Savage et al., 2018), smoking initiation (Liu et al.,
2019), insomnia (Jansen et al., 2019), risk-taking
behavior (RTB; Linn�er et al., 2019) and anti-social
behavior (Tielbeek et al., 2017) show genetic correla-
tions with psychiatric disorders and with each other.
These studies show that psychiatric disorders, psy-
chological traits and closely related phenotypes show
genotypic overlap that might be due to pleiotropy
(Watanabe et al., 2019; a locus affecting more than
one trait) and polygenicity (Watanabe et al., 2019;
multiple loci affecting one trait).

Building on the existing phenotypic and genetic
overlap as summarized above, research on a theo-
rized underlying general psychopathology factor, the
‘p factor’, tries to identify an underlying higher order

dimension for psychopathology in general, and
specific domains below this overarching p factor,
such as internalizing, externalizing or psychotic
experience domains (Caspi & Moffitt, 2018). This
hierarchical clustering is based on the hypothesis
that each mental disorder has a broadly shared and
a unique genetic component. The shared genetic
component is thought to capture the genetic part of
the broad range of symptoms that are common
across disorders, while the unique genetic compo-
nent is thought to capture disorder specific symp-
toms (Caspi et al., 2014; Murray, Eisner, & Ribeaud,
2016). In addition, it is suggested that the p factor
can combine all psychiatric disorders on a low to
high psychopathology severity scale. The hypothesis
is that a person’s score on this scale is informative of
family history, developmental history, brain func-
tioning and adult life impairment with higher p factor
scores representing worse outcomes. (Caspi & Mof-
fitt, 2018).

The findings regarding the p factor, genetic over-
lap, pleiotropy and polygenicity in psychopathology
provide support for studies exploring shared genetic
variation of nonspecific, shared psychiatric problems
as present in clinical psychiatric samples. The
shared heritability between traits and disorders
(Brainstorm Consortium et al., 2018; Bulik-Sullivan
et al., 2015) can be examined by means of polygenic
risk scores (PRS; Chatterjee, Shi, & Garc�ıa-Closas,
2016; Wray et al., 2014). A PRS is an individual’s
weighted sum of risk alleles for a trait based on
previously determined effects of those alleles for that
trait (Euesden, Lewis, & O’Reilly, 2015). At group
level, the PRS has the potential to distinguish cases
from controls. For example, the ADHD PRS has been
shown to distinguish cases from controls in an
ADHD and in an Autism Spectrum Disorder (ASD)
/ADHD combined sample (Jansen et al., 2019), and
the schizophrenia PRS differentiated patients who
developed schizophrenia from patients who did not
in a first episode psychosis sample (Vassos et al.,
2017). Despite this capacity to distinguish cases
from controls at a group level, the explained variance
of the PRS is limited, often below 5% (Jansen et al.,
2019). The predictive capacity of the PRS can be
improved by making predictions based on multiple
traits and disorders that share genetic influences
(Brainstorm Consortium et al., 2018; Bulik-Sullivan
et al., 2015), by using multivariate approaches
(Abdellaoui et al., 2018), or creating a multi-trait
predictor (Krapohl et al., 2018; Maier et al., 2018).
These methods seem promising as, for example, a
multi-polygenic score (Krapohl et al., 2018)
explained 4.8% of the variance in general cognitive
ability and 10.9% in educational achievement in an
adolescent sample, capturing 1.1% more variance
than the best single-score predictors.

The aim of the present study is to quantify the
predictive capacity of common genetic variation of a
variety of traits, as captured by their PRS, to predict
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case-control status in a child and adolescent psy-
chiatric sample with a variety of psychiatric disor-
ders to reveal which traits contribute to the shared
genetic risk across disorders. Disorders present in
the sample, and closely related traits were used as
predictive traits. Both child or adolescent and adult
mental traits have been included as we expect
genetic overlap, since the majority of the adult
psychiatric disorders usually have their onset during
childhood or adolescence (Kessler et al., 2007) and
the genetic make-up of an individual is fixed during
life. To add, to our knowledge no genetic studies into
addiction in child and adolescent samples have been
presented. Firstly, we examined which individual
PRS of these phenotypes significantly predicted
receiving a diagnosis. Secondly, we evaluated
whether this prediction could be improved by com-
bining the joint genetic signals of the significantly
associated phenotypes. The findings of this study
will contribute to the identification of a shared
genetic signal across disorders.

Methods
Participants

Clinical sample: ‘Inside-out’. Data for this clinical
sample (‘Inside-out’) were collected from January 2001 until
January 2012 at the department of Child and Adolescent
Psychiatry of the Sophia Children’s Hospital, Erasmus Medical
Center in Rotterdam. The diagnostic classification was per-
formed by a clinician according to the Diagnostic and Statis-
tical Manual of Mental Disorders, fourth edition. This
procedure consisted of an interview with parents, a semi-
structured interview with the child based on the Semi-struc-
tured Clinical Interview for Children and Adolescents (McCo-
naughy & Achenbach, 2001), the Diagnostic Interview
Schedule for Children IV-P (Shaffer, Fisher, Lucas, Dulcan, &
Schwab-Stone, 2000), and the Autism Diagnostic Observation
Schedule-Generic (Lord et al., 1989) in case of a suspected
Autism Spectrum Disorder. The above-mentioned procedure
was part of standard clinical practice. Additionally, DNA was
extracted from saliva and genotyping was performed on the
Illumina Psych Chip array and Global Screening Array (see
Data section). For this study, ethical approval of the Erasmus
Medical center was obtained. The full sample (N = 1909)
consisted of children that received a clinical diagnosis
(N = 1594), and a group of children that did not receive a
diagnosis (N = 315). The current study used data of the 1,402
children (192 cases were removed after genetic quality control)
diagnosed with one or more DSM-IV disorders (ASD, ADHD, tic
disorder, OCD, MDD, anxiety, anorexia nervosa (AN)), eating
disorder NOS, and subcategories of mentioned disorders).
Intellectual disability was present in 16% of the sample.

Control sample. A Dutch population sample was used
(NESCOG, N = 943, age range: 17.0–79.0), previously
described by Polderman et al. (2013). Data were collected on
various behavioral symptoms, cognitive functioning, personal-
ity, environmental factors, and life events, in addition to
genetic information. To correct for undiagnosed ASD, ADHD
or anxiety status we excluded participants scoring 3 SD above
the mean on the Autism Quotient (AQ; Baron-Cohen, Wheel-
wright, Skinner, Martin, & Clubley, 2001), the attention
problems scale of the Young Adult Self Report (YASR; Achen-
bach, 1997), the Conners’ Adult ADHD Rating Scale (CAARS;

Conners, Erhardt, & Sparrow, 1999) or the Beck Anxiety
Inventory (BAI). Genotyping was performed on the Illumina
Psych Chip. This resulted in a sample of 939 participants (age
range 17–79, 38% male). In addition, we used a German
sample, the Berlin Psychosis Study (BePS; Skarabis & Ripke,
2017) of healthy adult individuals (N = 509, age range 18–84,
31% male). Participants whom reported having received a
bipolar disorder (BiP) or other psychotic disorder, ADHD, OCD,
MDD, anxiety, AN, or alcohol dependence diagnosis were
excluded (N = 31). The total control sample consisted of
1,448 individuals (age range 17–84, 35% males).

To provide a sense of the nature of comorbidities and
diagnoses we have the following Tables/Figures: Table 1
shows sample specifics such as sample size, age range and
genotyping array for the cases and controls. Figure 1 shows
the diagnostic composition as the amount of cases in the full
sample per disorder and the amount of cases per disorder in
that part of the sample diagnosed with intellectual disability,
as well as the percentage of the full sample with an intellectual
disability diagnosis, intellectual disability status and the sex
distribution. Tables S1 and S2 provide an overview of comor-
bidities.

Genotyping

Genotyping of part of the clinical sample (ADHD, ASD, tic
disorder and AN diagnosis) and of the NESCOG control sample
was performed on the Illumina PsychChip array. The Psy-
chChip SNP array contains HumanCore, Human Exome and
custom content to capture genetic variants previously linked
with psychiatric disorders (https://www.illumina.com/produc
ts/by-type/micproarray-kits/infinium-psycharray.html).

The remaining part of the clinical sample and the BePS
controls were genotyped on the Illumina Infinium Global
Screening Array (GSA; https://www.illumina.com/products/
by-type/microarray-kits/infinium-global-screening.html).

For SNP harmonization purpose between arrays, all samples
were imputed in the Michigan imputation server. After impu-
tation, the samples were combined. We used the Michigan
imputation server pipeline which uses the Haplotype Reference
Consortium (McCarthy et al., 2016; HRC) as a reference panel
and poorly imputed variants were excluded based on their
imputation score (R2 < 0.9). In all samples, SNPs were filtered
on MAF (<1%), SNP call rate (<95%) and Hardy–Weinberg
disequilibrium (p < .00001). In the control samples, individual
quality control filtering was based on missingness (>5%),
relatedness (pairwise IBD > 0.185), ancestry (within the range
of 1,000 Genomes CEU population on the first two principal
components (PCs)), outlying heterozygosity (excluded if > 3 x
SD from the mean of the heterozygosity rate), gender mismatch
and missing phenotypes. In the clinical sample, individuals
were filtered based on genotype and sex mismatch, outlying
heterozygosity and non-European ancestry (4 SD outside the

Table 1 Sample description

Cases
Controls

Clinical
sample NESCOG BePS

Total
controls

Sample size 1,402 939 509 1,448
Age range
(mean,
SD), years

1–20 (9.54,
3.71)

17–79
(40.7,
17.3)

18–84
(30.2,
12.1)

17–84
(37.0)

Gender %
male

61 38 31 35

Genotyping
array

GSA (32%),
Psych chip
(68%)

Psych
chip

GSA GSA (35%),
Psych chip
(65%)
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range of the first two genetic principal components of the
HapMap3 European founder population (CEU)), missingness
(>5%) and relatedness (pairwise Identity-By-Descent (IBD)
>0.185).

Polygenic scoring

The PRS is the sum of an individual’s ‘risk’ alleles for a certain
phenotype weighted by the allele effect sizes, which are
typically derived from linear association coefficients from a
genome wide association study (GWAS). For the PRS creation a
SNP p-value inclusion threshold of < 1 is used (Choi, Mak, &
O’Reilly, 2018; Maier et al., 2018). Using large publicly
available summary statistics from GWA studies, PRS were
constructed for EA (Lee et al., 2018), intelligence (Savage et al.,
2018), smoking initiation (Liu et al., 2019), neuroticism (Nagel
et al., 2018), insomnia (Jansen et al., 2019), RTB (Linn�er et al.,
2019), anti-social behavior (Tielbeek et al., 2017), ADHD
(Demontis et al., 2019), ASD (Grove et al., 2019), schizophrenia
(Pardi~nas et al., 2018), MDD (Wray et al., 2018), anxiety
(Otowa et al., 2016), alcohol dependence (Walters et al., 2018)
and BiP (Stahl et al., 2018; see Appendix S1). Table S3
provides an overview and details of the selected GWA studies.
The selected GWAS studies are large enough to use for this
type of analyses as shown by their LD intercept which show no
worrisome potential inflation (see Table S4). Inside-out, NES-
COG and the BePS samples are independent samples not
included in any of the GWAS.

The polygenic scoring was performed using PRSice2 (Eues-
den et al., 2015). Prior to polygenic scoring SNPs in high LD
were clumped using PRSice2 (LD R2 < 0.1, 250 kb pair
window). For interpretational purposes the results were stan-
dardized to mean 0 and SD 1.

Statistical analysis

Genetic correlation with LDSC regression. Using
linkage disequilibrium score (LDSC) regression (Bulik-Sullivan
et al., 2015), we calculated genetic correlations across all
included traits based on the GWAS summary statistics we
used for the PRS calculations of our predictor phenotypes. In
addition, we computed the genetic correlations of the PRS in
SPSS in our clinical sample to compare to the LDSC results.

Regression analyses. First, we performed 14 univariate
analyses to investigate which PRS were able to distinguish
between cases and controls (outcome variable). Although all
participants of the discovery and target sample were of
European descent, the baseline model included eight PCs to
account for potential population stratification The baseline
model included, in addition to the eight PCs to account for
population stratification, chip (GSA or Psych Chip, to correct
for array effects), and sex as covariates. Age was not added as a
covariate as all cases are children and all controls are adults.
The PCs were calculated on all samples together and were
based on the pruned data with Eigensoft (Price et al., 2006;
version 3.0) software. After Bonferroni multiple testing correc-
tion for 14 tests we assessed the significance (p-value) of each
predictor phenotype as well as its explained variance. The
explained variance of the PRS is based on Nagelkerke pseudo

R2 (i.e., the difference between the full model R2 and the
covariate only (baseline) model R2). As 16% of Inside-out cases
are co-diagnosed with intellectual disability (ID) we investi-
gated if the results were driven by the ID subgroup by
comparing the diagnostic distribution of the whole sample to
the ID part of the sample. Additionally, we ran the univariate
analysis for the intelligence and EA PRS on the part of Inside-
out without ID (N: 1,180, see Figure 1) to adjust the analysis if
needed. The same covariates were included and the results
were assessed the same way as the full sample results. Second,
the significantly associated PRS from the univariate analyses
were tested for their significance in a multivariable analysis.

Results
Genetic correlations between the predictor
phenotypes

The genetic correlations as calculated from the
summary statistics (Figure 2, Table S5) were overall
in line with the available literature. As shown in the
correlational matrix in Table S5, all included traits
showed intermediate to high correlations with at
least two other traits. Therefore all 14 PRS of
predictive phenotypes were included in the subse-
quent analyses. The Pearson correlations between
the prs in our clinical sample (Table S6) show some
differences with the genetic correlations between the
GWAS summary statistic of the phenotypes. These
differences can be partially explained by a difference
in sample size. The clinical sample is much smaller
than the GWAS sample sizes resulting in a less
precise estimate. In general, the significances are
quite similar giving no reason for concern.

Regression analyses

The univariate logistic regression analyses showed
eight significantly associated PRS (P Bonferroni
corrected (bf) < 0.05); EA, intelligence, smoking
initiation, neuroticism, anti-social behavior, ADHD,
MDD and alcohol dependence (Table 2a and Fig-
ure 3a). Presented p-values are Bonferroni cor-
rected. Fit statistics are provided in Table S7.

When comparing the whole clinical sample to the
ID cases in our sample, the ID cases sub-sample
showed a larger proportion of ASD cases (42% vs
26%) and fewer anxiety cases (8% vs. 16%), and
eating disorders (2% vs. 8%). Proportions of the other
diagnostic groups were very similar between the full
sample and the ID cases. The additional regression
analyses in the sample without ID cases gave similar
results for the EA and intelligence PRS (see
Table S8).

Figure 1 Diagnostic composition Inside-out. Abbreviations: ASD = autism spectrum disorder; ADHD = attention-deficit/hyperactivity
disorder; OCD = obsessive compulsive disorder, disorder of infancy, childhood full diagnostic term: Disorder of infancy, childhood or
adolescence NOS Mot., learn., comm. dev. disorder comprises motor, learning and communication developmental disorders, ID:
intellectual disability. A: Numbers per disorder are based on a total 1,402 cases. Comorbid disorders are included, therefore totaling more
than 1,402 diagnoses B: Intellectual Disability (ID) status for all 1,402 cases. C: ID severity for all ID cases. ID severity known for 89% of all
ID cases. D: Sex distribution in Inside-out. E: The chart is based on all ID cases (N 222). Comorbid disorders are included, therefore totaling
more than 222 diagnoses [Colour figure can be viewed at wileyonlinelibrary.com]
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In a second instance, we retained only PRS with
P_bf < 0.05 (EA, intelligence, smoking initiation,
neuroticism, anti-social behavior, ADHD, MDD and
alcohol dependence) for inclusion in a multivariable
model. Of the eight PRS included in the full multi-
variable model (EA, intelligence, smoking initiation,
neuroticism, anti-social behavior, ADHD, MDD and
alcohol dependence) two remained statistically sig-
nificant (EA, SI; see Table 2b and Figure 3b). The full
model has an explained variance of 17.8%. Of this,
the PRS account for 5.9% of the variance, which is an
increase of 1.91% compared to the explained vari-
ance of the highest scoring univariate PRS (EA) of
3.99%. The remaining part of the explained variance
can be attributed to the covariates. Details are
shown in Table S9.

Discussion
Polygenic risk scores of EA and smoking initiation
are the main predictors of case-control status in our
clinical psychiatric child and adolescent sample.
PRS of Intelligence, neuroticism, anti-social behav-
ior, ADHD, MDD and alcohol dependence are the
other predictor phenotypes that in univariate anal-
yses significantly distinguished between cases and
controls. The multivariable analysis, testing the joint
genetic signal of multiple predictor PRS had a higher
predictive capacity compared to single PRS analysis.
The increase in explained variance highlights the
usability of multiple PRS in joint models to optimize
precision accuracy for general psychopathology.

Based on the first series of univariate analyses, we
included eight significantly predicting traits in the
multivariable analysis (EA, intelligence, smoking
initiation, neuroticism, anti-social behavior, ADHD,
MDD and alcohol dependence). Significant predic-
tion came either from phenotypes that were based on
a larger GWAS and hence had likely more statistical
power (EA, intelligence, smoking initiation, neuroti-
cism, MDD; Lee et al., 2018; Liu et al., 2019; Nagel
et al., 2018; Savage et al., 2018; Wray et al., 2018) or
were the more prevalent disorders in the sample
(ADHD; Demontis & Walters, 2017), with a couple of
exceptions (i.e., smaller GWAS and low prevalence in
sample; anti-social behavior and alcohol depen-
dence; Tielbeek et al., 2017; Walters et al., 2018).
Four of these traits (EA, smoking initiation, anti-
social behavior, MDD) remained significant predic-
tors for case-control status in the multivariable
analysis of which EA and smoking initiation survived
multiple testing correction. Due to the high genetic
correlations between respectively EA and intelligence
(r .7), smoking initiation and alcohol dependence (r
.8), neuroticism and MDD (r .7), and anti-social
behavior and ADHD (r .9) the significance of one of
both traits may be random, or based on only subtle
differences between them. The significant positive
association for the anti-social behavior PRS is a
somewhat surprising finding as this GWAS is
smaller and hence less powerful. We hope this result
will be replicated in a future study. When comparing
the results of the univariate and multivariable anal-
ysis we see that the explained variance increased

Figure 2 Overview of the genetic correlations based on the GWAS summary statistics [Colour figure can be viewed at wileyonlinelibrary.c
om]
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from 3.99% (the highest explained variance result of
the EA PRS as a single predictor) to 5.90%. The rise
in explained variance shows that the addition of
phenotypes is not only useful in studies with small,
hence low powered GWAS summary statistics as
shown before (Maier et al., 2018), but that it is also
useful for more general defined phenotypes as diag-
nostic status. Yet, it is important to note that the
general psychopathology construct might be less
representative of some disorders, in particular ASD,
given the reported PRS associations. We did not find
a statistically significant association between six
traits (insomnia, RTB, ASD, schizophrenia, anxiety,
BIP) and case-control status in our sample. For
insomnia, this is possibly due to the genetic corre-
lation of insomnia being larger in mood disorders
than in eating disorders and ASD (Jansen et al.,
2019). Our sample composition might be too varied
with not enough mood disorder cases included to
generate a detectable enrichment of common genetic
variation for INS. RTB was included in our model as
it has a genetic correlation with ADHD and anti-
social behavior and a phenotypic overlap between
these three traits is present. However, the genetic
correlation might be too weak to predict clinical
status. In addition, our sample comprises not only

groups whom we expect to take more risk (ADHD)
but also groups who are less likely to take risk
(MDD/ anxiety) or with no relation to the risk
phenotype (ASD, OCD/TIC disorders). As BiP and
schizophrenia in general have a later age of onset
compared to other psychiatric disorders (Abidi et al.,
2017; Lijster et al., 2017; Patten, 2017) they are not
present in our sample as this is a child and adoles-
cent sample hence the common genetic variation of
schizophrenia and BiP might not be enriched in
Inside-out despite the link between ASD and
schizophrenia (Zheng, Zheng, & Zou, 2018). The
ASD PRS was expected to be associated as this is one
of the larger diagnostic groups within the sample.
However, this PRS has not been associated with the
ASD subgroup in Inside-out in previous research,
nor was the schizophrenia PRS (Jansen et al., 2019).
Several explanations may explain this finding. First,
ASD might have a unique genetic signature includ-
ing an important contribution of rare variants (Sat-
terstrom et al., 2020) that is not captured by the
PRS, and second, the PRSmight be inaccurate due to
a smaller GWAS sample size. Lastly, given the high
heterogeneity of ASD, the diagnostic composition
within the ASD Inside-out sample may differ from
the ASD cases included in the GWAS sample.

Table 2 (a) Univariate logistic regression analysis. (b) Multivariable logistic regression analysis

(a) PRS % explained variance PRS p p_bfa OR 95% CI for ORc

EA 3.99 2.52E-21 3.53E-20 0.66 0.61–0.72
SI 1.91 3.41E-11 4.77E-10 1.33 1.22–1.44
IQ 1.53 3.22E-09 4.51E-08 0.78 0.72–0.85
MDD 1.02 1.00E-06 1.40E-05 1.27 1.15–1.40
ADHD 0.99 2.00E-06 2.80E-05 1.22 1.13–1.32
NEU 0.58 2.47E-04 3.46E-03 1.16 1.07–1.26
AD 0.50 6.27E-04 8.78E-03 1.15 1.06–1.24
ASB 0.47 9.84E-04 1.38E-02 1.14 1.06–1.24
INS 0.19 3.76E-02 5.27E-01 1.09 1.01–1.18
RTB 0.13 7.92E-02 1 1.07 0.99–1.16
ANX 0.11 1.16E-01 1 1.06 0.99–1.15
SCZ 0.07 1.98E-01 1 1.10 0.95–1.27
BiP 0.06 2.36E-01 1 1.07 0.96–1.19
ASD 0.03 4.30E-01 1 0.97 0.89–1.05

(b) PRS p p_bfb OR 95% CI for ORc

EA 2.43E-09 1.94E-08 0.74 0.76–0.81
SI 2.43E-04 1.94E-03 1.18 1.08–1.29
MDD 1.96E-02 1.57E-01 1.13 1.02–1.25
ASB 3.92E-02 3.14E-01 1.09 1.00–1.18
ADHD 6.48E-02 5.19E-01 1.08 1.00–1.18
IQ 1.48E-01 1 0.93 0.86–1.02
AD 2.12E-01 1 1.05 0.97–1.15
NEU 3.18E-01 1 1.04 0.96–1.14

Clinical sample (N cases: 1,402, N controls: 1,448). Baseline model covariates: 8 PCs, sex and chip. All included PRS have SNP p-
value threshold < 1.
AD = alcohol dependence; ADHD = attention-deficit/hyperactivity disorder; ANX = anxiety; ASB = anti-social behavior; ASD = autism
spectrum disorder; BiP = bipolar disorder; EA = educational attainment; INS = insomnia; IQ = intelligence; MDD = major depressive
disorder; NEU = neuroticism; RTB = risk-taking behavior; SCZ = schizophrenia; SI = smoking initiation.
aAfter Bonferonni multiple testing (p-bf) correction f or14 tests.
bAfter Bonferonni multiple testing correction for 8 tests.
cUpper and lower limits are shown.
[Corrections made on 22 April 2021, after first online publication: In Tables 2a and b, the ‘OR’ and ‘95% CI for OR’ values for SI have
been corrected in this version.]
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Another large diagnostic group in our sample is the
anxiety group. Surprisingly, this PRS did not distin-
guish between cases and controls. As the anxiety
PRS is based on a GWAS with a small sample (7,016
cases, 14,745 controls) it is likely to be underpow-
ered.

Limitations

A weak point of the study is the referral bias present
in samples generated in one institute. However,
when comparing the diagnostic composition of
Inside-out to a general psychiatric European sample
of older children, we see a similar diagnostic com-
position (Gerritsen et. al. Milestone, oral communi-
cation). The main difference is the higher percentage
of depression diagnoses in Milestone. As younger
children are less likely to be diagnosed with depres-
sion and more likely to be diagnosed with anxiety,
which later develops into depression, it seems likely
these children will be included in different groups at
younger ages, quite possibly in the ADHD, ASD and
anxiety groups. With this in mind, in general, in both
samples ADHD, ASD and anxiety show the highest
prevalence, which suggests Inside-out is a good
representation of the broader general child and
adolescent psychiatric population. It would have
been interesting to take educational level, cognitive
performance and substance use into account. How-
ever, this information was not available for all
samples used. In addition, this would remove part
of the shared variance (Loe & Feldman, 2007), we did
perform a sensitivity analysis excluding ID cases. A
general concern regarding PRS studies in clinical
samples is the limited clinical usability (Torkamani,
Wineinger, & Topol, 2018). Our effect sizes are in line
with the current literature (Jansen et al., 2019)
meaning 5.9% still leaves room for many other

contributing factors. Another point to keep in mind
is the relatively small sample size of 1,402 cases and
1,448 controls adding up to 2,850 participants.
However, with acceptable standard errors and 95%
CI intervals for the OR in the regression analysis we
feel this study adds value and can function as a pilot
study leading into larger studies in this direction.
Finally, It would be informative to run additional
sensitivity analyses to rule out that the results are
being driven by the ASD/ADHD part of the sample.
Due to power issues this is currently not an option.
However, the neurodevelopmental part of the paper
has been analyzed extensively (Jansen et al., 2019)
and besides a significant association with the ADHD
PRS, no significant associations with the schizophre-
nia and ASD PRS have been observed. Still, we
cannot rule out that other predictors might be
associated specifically in this sample due to the over
representation of ADHD and ASD.

Strong points of the study are our carefully
curated sample and the comparison between chil-
dren as cases and adults as controls. As the controls
are adults, the chance of them receiving an addi-
tional diagnosis of ADHD or ASD is small making
them pure controls for these traits. In addition, the
NESCOG control sample was corrected for undiag-
nosed ADHD, ASD and anxiety status. In the BePS
sample, no psychiatric diagnoses were allowed.

Future directions in this area of research are
replication in a larger independent child and ado-
lescent sample, and preferably in an adult sample as
well. Next to replication, research into causality is of
great importance. We show association between
diagnostic status and low EA and smoking initiation
but are not able to address the issue of causality.
Still, if low EA and smoking initiation are good
predictors of psychiatric disorders, studies exploring
early interventions targeting EA and smoking

Figure 3 (A) The explained variance for all tested traits in the univariate analyses. The explained variance is based on Nagelkerke R2. The
effect sizes are shown as Odds Ratios (ORs). (B) The ORs based on the multivariable analyses [Colour figure can be viewed at wileyonline
library.com]
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initiation to clarify their role in the development of
psychiatric disorders can be useful. In addition,
future studies will benefit from a longitudinal design
to investigate how PRS correlate to later life out-
comes. Based on this a risk profile of a group of
individuals can be generated identifying individuals
at risk whom might benefit from early interventions.
Our PRS selection is a first step in identifying PRS
suitable for this type of study.

To conclude, our findings suggest that a lot of the
genetic variance influencing psychiatric disorders
influence a myriad of mental health-related traits.
Hence, a genetic vulnerability for low EA and SI are
potential predictors for general psychopathology in
children and adolescents which can be taken into
account as some of the potential factors in the
development of psychiatric symptoms. In addition,
a genetic vulnerability for low EA and SI might
contribute to specific comorbidity patterns as
observed between psychiatric symptoms and to the
broad range of psychiatric symptoms and as such
might represent important contributors to the p
factor. Our findings can guide future studies on
psychiatric comorbidity, and the p factor, and stud-
ies addressing the causal directions between EA, SI
and general psychopathology.
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Key points

� We tested the association between child and adolescent psychiatric clinical status and polygenic risk scores of
psychiatric disorders and psychological traits.

� We observed significant associations between clinical status and the polygenic risk scores of educational
attainment, smoking initiation, intelligence, neuroticism, alcohol dependence, ADHD, major depression and
anti-social behavior.

� These findings can guide future studies on psychiatric comorbidity and offer insights into shared etiology
between psychiatric disorders.
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