
Observational Study Medicine®

OPEN
Predicting chemoradiotherapy response of
nasopharyngeal carcinoma using texture
features based on intravoxel incoherent
motion diffusion-weighted imaging
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Abstract
The aim of the study was to investigative the utility of gray-level co-occurrence matrix (GLCM) texture analysis based on intravoxel
incoherent motion diffusion-weighted imaging (IVIM-DWI) for predicting the early response to chemoradiotherapy for nasopharyngeal
carcinoma (NPC).
Baseline IVIM-DWI was performed on 81 patients with NPC receiving chemoradiotherapy in a prospective nested case–control

study. The patients were categorized into the residue (n=11) and nonresidue (n=70) groups, according to whether there was local
residual lesion or not at the end of chemoradiotherapy. The pretreatment tumor volume and the values of IVIM-DWI parameters
(apparent diffusion coefficient [ADC], D, D

∗
, and f) and GLCM features based on IVIM-DWI were compared between the 2 groups.

Receiver operating characteristic (ROC) curves in univariate andmultivariate logistic regression analysis were generated to determine
significant indicator of treatment response.
The nonresidue group had lower tumor volume, ADC, D, CorrelatADC, CorrelatD, InvDfMomADC, InvDfMomD and InvDfMomD

∗

values, together with higher ContrastD, Contrastf, SumAvergADC, SumAvergD, and SumAvergD
∗
values, than the residue group (all

P< .05). Based on ROC curve in univariate analysis, the area under the curve (AUC) values for individual GLCM features in the
prediction of the treatment response ranged from 0.635 to 0.879, with sensitivities from 54.55% to 100.00% and specificities from
52.86% to 85.71%. Multivariate logistic regression analysis demonstrated D (P= .026), InvDfMomADC (P= .033) and SumAvergD
(P= .015) as the independent predictors for identifying NPCwithout residue, with an AUC value of 0.977, a sensitivity of 90.91% and a
specificity of 95.71%.
Pretreatment GLCM features based on IVIM-DWI, especially on the diffusion-related maps, may have the potential to predict the

early response to chemoradiotherapy for NPC.

Abbreviations: ADC = apparent diffusion coefficient, AngScMom = angular second moment, AUC = area under the curve,
D
∗
= pseudo-diffusion coefficient, D = pure diffusion coefficient, DifEntrp = difference entropy, Difvarnc = difference variance, DWI =

diffusion-weighted imaging, f= perfusion fraction, GLCM= gray-level co-occurrencematrix, InvDfMom= inverse differencemoment,
IVIM-DWI = intravoxel incoherent motion diffusion-weighted imaging, MRI = magnetic resonance imaging, NPC = nasopharyngeal
carcinoma, ROC = receiver operating characteristic, ROI = region of interest, SumAverg = sum average, SumEntrp = sum entropy,
SumOfSqs = sum of squares, SumVarnc = sum variance, VOI = volume of interest.
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Figure 1. Study flow diagram in this study.
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1. Introduction

As a tumor with a noticeable geographic and racial distribution
worldwide, nasopharyngeal carcinoma (NPC) is a common
malignancy of head and neck in South China, such as Guangxi
and Guangdong provinces.[1,2] In most areas worldwide, annual
incidence of NPC is <1 per 100,000 for both sexes, for example,
0.5 and 0.2 per 100,000 person-years for male and female in the
United States, respectively.[1] However, the newly reported
incidence of NPC in Guangxi and Guangdong is about 11 per
100,000.[2] Chemoradiotherapy is currently regarded as the
preferred treatment for locally advanced NPC as it can decrease
the local recurrence rate and subsequently achieve significant
survival benefit.[3,4] However, local failure (ie, residue or
recurrence) remain one of the predominant patterns of treatment
failure in patients with NPC.[5] Predicting therapeutic response to
chemoradiotherapy as early as possible has remarkable clinical
benefit for patients with NPC, which could optimize treatment
regimen, avoid unnecessary suffering from chemoradiotherapy
toxicity, and reduce medical cost.
Nowadays, magnetic resonance imaging (MRI) is playing an

increasingly important role in lesion detection, clinical staging,
and therapeutic effect evaluation and prediction for NPC.[6–9]

Convention morphology-based MRI offers little benefit in the
early prediction of therapeutic effect in NPC. Recently, functional
MRI approaches including dynamic contrast-enhanced MRI and
diffusion-weighted imaging (DWI) have been utilized to predict
the treatment response for NPC.[8,10–12] Nevertheless, previous
studies have demonstrated variable efficacy of dynamic contrast-
enhanced MRI and DWI in early predicting the response of NPC
to chemoradiotherapy.[8,10–15] These controversial results might
result from that theseMRI approaches were based on the analysis
of mean value of MRI parameter, which cannot accurately reflect
histologic heterogeneity. Heterogeneity is a common phenome-
non in malignancies and it is strongly linked with curative effect
of NPC.[16,17] Texture features derived fromMRI have the ability
to quantitate tumor heterogeneity.[16,18–20] Some published
studies have demonstrated the advantage of texture features
over the analysis of morphology-based MRI and mean value of
MRI parameter in discriminating clinical stage or treatment
response for a variety of tumors.[21–24]

Up to now, most of the available MRI literatures on texture
analysis were based on morphologic image, although several on
dynamic contrast-enhanced MRI or the apparent diffusion
coefficient (ADC) map derived from DWI.[16,20,21] Morphologic
image cannot provide functional information of tissue microstruc-
ture, which may limit its potential to early predict treatment
response of tumors. In regard to theADC value, it is obtained from
a mono-exponential diffusion model and only reflects hybrid
diffusion information resulting from both Brownian movement
and microcirculation perfusion. Intravoxel incoherent motion
DWI (IVIM-DWI), with the ability to separate pure diffusion
movement and perfusion, was found to bemore powerful than the
ADC value in predicting the curative effect of NPC.[11,12]

The utility of texture features derived from IVIM-DWI in
predicting the response to chemoradiotherapy of NPC is still
unknown until now. Gray-level co-occurrence matrix (GLCM) is
a widely used texture analysis algorithm which generates texture
features to quantify the spatial gray-level variation within local
neighborhoods around each pixel in an image.[21,25–27] GLCM
features have shown promise in predicting the treatment response
in many kinds of tumors.[20,26,28,29] Therefore, we hypothesize
that GLCM analysis based on IVIM-DWI has a capacity to
2

predict the early response to chemoradiotherapy for NPC, which
is still unclear until now according to the best of our knowledge.
The aim of this study was to investigate this capacity of GLCM
approach.

2. Materials and methods

2.1. Patient selection and treatment procedure

This prospective single-center study was approved by theMedical
Ethics Committee in our institution, and all patients with NPC
signed written informed consent. Inclusion criteria of this study
were as follows: newly diagnosed and pathologically confirmed
of nonkeratinizing NPC, above 18 years old, patients were
scheduled for chemoradiotherapy, and Karnofsky score ≥80.
Patients were excluded if they had prior antitumor treatment for
NPC, did not sign the informed consent form, or had contra-
indications for MRI. Ninety patients with NPC were initially
enrolled from September 2016 to April 2017 (Fig. 1). All patients’
clinical stages were determined with reference to the 7th edition
of the International Union Against Cancer/American Joint
Committee on Cancer (UICC/AJCC) staging system.[30]

All patients received a 2-cycle induction chemotherapy (21
days per cycle) that consisted of 135 to 175mg/m2 paclitaxel on
day 1 accompanied by 80mg/m2 nedaplatin on days 1, 2, and 3.
After induction chemotherapy, all patients received radiotherapy
with a total dose of 70 to 76 Gy and 30 to 33 times to completion.
After radiotherapy, 2 head and neck radiologists (LF andHJ with
15 and 6 years of experience in neck radiology, respectively) who
were blinded to the texture analysis data read the MRIs
individually and classified the patients with NPC into the residue
and nonresidue groups, with a double-blind control, according to
whether regional residue was identified on MRI and pharyngo-
rhinoscopy which were performed at the end of chemo-
radiotherapy. If they have different views of residual tumor,
the third neck radiologist (YX with more than 20 years of
experience in neck radiology) would analysis these data and
eventually determined whether there was residue or not.

2.2. MRI protocols

Before chemoradiotherapy, all patients received conventional
MRI and IVIM-DWI examinations on a 1.5 Tesla MRI scanner
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(Optima MR360; GE Healthcare, Milwaukee, WI). The
conventional MRI protocols included the following: axial T1-
weighted spin-echo images (repetition time [TR], 580 milli-
seconds; echo time [TE],7.8 milliseconds; slice thickness, 5mm;
intersection space, 1mm; and number of excitations [NEX], 2);
and axial T2-weighted spin-echo images with fat suppression
(TR, 6289 milliseconds; TE, 85 milliseconds; slice thickness, 5
mm; intersection space, 1mm; and NEX, 2).
Single-shot diffusion-weighted spin-echo echo-planar (SE-DW-

EPI) sequence was used to gather IVIM-DWI data, with 22-cm
field of view, 5-mm slice thickness, 1-mm slice gap, 4225-
millisecond TR, 106-millisecond TE, 128�130 matrix, and
4 NEX. A total of 12 axial slices covering the nasopharynx were
obtained. Ten b values (0, 50, 80, 100, 150, 200, 400, 600, 800,
and 1000s/mm2) were applied in the IVIM-DWI data acquisi-
tion. A local shim box covering the nasopharyngeal region was
applied to minimize susceptibility artifacts.
2.3. IVIM-DWI parametric maps acquisition

All IVIM-DWI data were transferred to the Advantage
Workstation (version AW 4.6; GEMedical Systems, Milwaukee,
WI) for postprocessing using the MADC kit, a software package
for multiple ADC measurement. Four IVIM-DWI parametric
(ADC; pure diffusion coefficient,D; pseudo-diffusion coefficient,
D

∗
; perfusion fraction, f) maps of each primary NPC lesion were

generated on the basis of a pixel-by-pixel fitting according to the
Levenberg–Marquardt algorithm.[31]
2.4. IVIM-DWI parametric values measurement

To determine the scope of each tumor, one radiologist (WL with
10 years of experience in head and neckMRI) whowas blinded to
the clinical and pathologic results and the treatment response
manually traced the outer edge of the lesion on each axial ADC
map with reference to the T2-weighted image, and the
corresponding 2-dimensional (2D) region of interest (ROI) for
each map was acquired. Both the most superior and the most
inferior slices for each tumor were excluded to avoid volume
averaging. Based on all the ROIs of this tumor, the MADC kit
automatically generated a 3-dimensional (3D) volume of interest
(VOI) for this tumor and output the volume datum and the mean
ADC value of this VOI. The same VOI was also automatically
copied and pasted by this software onto all the other IVIM-DWI
maps, and the corresponding parametric values were obtained.
Subsequently, these axial maps with ROI were saved as BMP
format images for texture analysis.
2.5. Texture analysis

All the BMP format images were transferred into the MaZda
program (http://www.eletel.p.lodz.pl/programy/mazda/index.
php?action=mazda) for texture analysis. Because the ROIs in
the IVIM-DWImaps cannot be utilized automatically byMaZda,
one radiologist (WL) carefully manually traced the border of
these original ROIs to generate new ROIs for texture analysis.
Subsequently, a VOI for each tumor was generated automatically
based on these newROIs. For each VOI, gray-level normalization
was performed by using m±3s (m, gray-level mean; s, gray-level
standard deviation), to minimize the influence of contrast and
brightness variation. For each IVIM-DWI parametric map, 11
GLCM features were extracted automatically from the VOI by
MaZda, including Angular Second Moment (AngScMom),
3

Contrast, Correlat, Difference Entropy (DifEntrp), Difference
Variance (Difvarnc), Entropy, Inverse Difference Moment
(InvDfMom), Sum Average (SumAverg), Sum Entropy
(SumEntrp), Sum of Squares (SumOfSqs), and Sum Variance
(SumVarnc).
2.6. Sample size estimation

The sample size was calculated according to the formula n= (Ua/
d)/P (1 – P). The allowable error (d) was set to 10%.The residual
lesion rate (P) was supposed to 35%, according to our prior
data.[11] The significance level (a) was defined as 0.05, and the
critical value of Ua as 1.96; therefore, n=86. The eventual
sample size was 90, allowing for loss of up to 5% of the patients.
2.7. Statistical analysis

All statistical analyses were done through SPSS version 22.0
(SPSS Inc, Chicago, IL) or MedCalc v15.0 software (MedCalc
Software bvba, Ostend, Belgium). A 2-tailed test pattern was used
in all statistical analyses with the level of statistical significance
determined as P< .05. Categorical variables (gender, Tumor-
Node-Metastasis [TNM] stage, and pathologic grade) were
presented as frequency, and were compared using the Chi-
squared test. Continuous variables (age, tumor volume, and the
values of IVIM-DWI parameters and GLCM features) were
expressed as mean± standard deviation. The nonparametric
Mann–Whitney U test was used in univariate analysis to explore
the possible differences in continuous variables between the
residue and nonresidue groups. Subsequently, multivariate
logistic regression analysis (forward stepwise, LR; probability
for stepwise entry, 0.05; removal, 0.1) was performed to identify
the independent prognostic factors, using the indicators with
statistical significance (P< .05) in univariate analysis as input
variables. The discrimination power of the individual GLCM
features and multivariate regression model for predicting the
therapeutic response was determined with receiver operating
characteristic (ROC) curve analysis.
3. Results

Of the initially enrolled 90 patients, 9 were eliminated because of
serious image distortion (n=3), dental artifacts (n=3), with-
drawal by patients (n=1), or receiving other antitumor therapy
after the end of chemoradiotherapy (n=2) (Fig. 1). Thus, this
study eventually included the remaining 81 patients whose
clinical and pathologic characteristics are shown in Table 1. At
the end of chemoradiotherapy, 11 patients were found with
residual lesion and 70 were not.
There was no significant difference in age, gender, clinical

stage, and pathologic grade between the residue and nonresidue
groups (Table 1). Significantly larger baseline tumor volume was
found for the residue group than for the nonresidue group
(P= .035). In regard to the IVIM-DWI parametric values, the
nonresidue group exhibited obviously lower ADC and D values
(all P< .01) than the residue group, whereas D

∗
and f did not

show significant difference between the 2 groups (Table 2).
Among those 44 GLCM features extracted from the IVIM-DWI
maps, 10 of them showed distinct difference between the 2
groups (Tables 3–6). The nonresidue group exhibited lower
CorrelatADC, CorrelatD, InvDfMomADC, InvDfMomD, and
InvDfMomD

∗
values, together with higher ContrastD, Contrastf,

SumAvergADC, SumAvergD, and SumAvergD
∗
values, than the

http://www.eletel�.�p.lodz.pl/programy/mazda/index.php?action=mazda
http://www.eletel�.�p.lodz.pl/programy/mazda/index.php?action=mazda
http://www.md-journal.com


Table 1

Patient’s clinical and pathologic characteristics.

Characteristic Whole cohort (n=81) Residue group (n=11) Nonresidue group (n=70) P

Age, y 48.43±12.03 48.91±11.63 48.36±12.17 .889
Tumor volume, mm3 3396.68±3997.54 5746.19±5634.52 3027.47±3592.84 .035
Gender .530
Male 56 9 47
Female 25 2 23

Pathologic grade .983
Undifferentiated 55 8 47
Differentiated 26 3 23

T stage .092
T1 2 0 2
T2 30 4 26
T3 26 3 23
T4 23 4 19

N stage .534
N0 2 0 2
N1 6 1 5
N2 56 6 50
N3 17 4 13

M stage .633
M0 79 11 68
M1 2 0 2
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residue group (all P< .05). Figure 2 shows 2 examples of MRIs
for patients with NPC with different responses.
Based on ROC curve in univariate analysis, the area under the

curve (AUC) values for individual GLCM features in the
prediction of the treatment response ranged from 0.635 to
0.879, with sensitivities from 54.55% to 100.00% and
specificities from 52.86% to 85.71% (Table 7). Among the 10
individual predictors, InvDfMomD had the highest specificity
(100.00%), InvDfMomADC owned the best specificity (85.71%),
whereas SumAvergD exhibited the highest AUC value (0.879),
followed by InvDfMomADC (AUC=0.865) and SumAvergADC

(AUC=0.861). Multivariate logistic regression analysis demon-
strated D (P= .026), InvDfMomADC (P= .033), and SumAvergD
(P= .015) as the independent predictors for identifying NPC
without residue, with an AUC value of 0.977, a sensitivity of
90.91% and a specificity of 95.71%.
4. Discussion

This study focused on the performance of GLCM texture analysis
based on IVIM-DWI on predicting the early response to
chemoradiotherapy for patients with NPC. Our data showed
that NPC lesions with residue after chemoradiotherapy differs
from those without in the pretreatment GLCM features related to
Table 2

Differences in the values of IVIM-DWI parameters between the
residue and nonresidue groups.

Parameter Residue (n=11) Nonresidue (n=70) P

ADC, �10�3 mm2/s 1.050±0.220 0.899±0.163 .018
D, �10�3 mm2/s 0.825±0.172 0.659±0.119 .002
D
∗
, �10�3 mm2/s 19.289±13.268 17.814±13.422 .461

f 0.279±0.142 0.269±0.079 .847

ADC= apparent diffusion coefficient, D
∗
=pseudo-diffusion coefficient, D=pure diffusion coefficient,

f=perfusion fraction, IVIM-DWI= intravoxel incoherent motion diffusion-weighted imaging.
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IVIM-DWI, which demonstrates the potential of GLCM analysis
to predict the curative effect for NPC. Our observations also
revealed that GLCM analysis might facilitate more IVIM-DWI
parameters (ie,D

∗
and f) to obtain the capacity for predicting the

treatment response of NPC. Moreover, the diffusion-related
IVIM-DWImaps may be superior to the perfusion-related ones in
terms of providing GLCM features for predicting the early
response of NPC to chemoradiotherapy.
The present study demonstrated that Contrast, Correlat,

InvDfMom, and SumAverg could serve as MRI biomarkers to
differentiate between the residual and nonresidual NPC lesions
before the start of chemoradiotherapy. Among the above GLCM
features strongly correlated to treatment response, Contrast and
InvDfMom are descriptors of tissue heterogeneity, while
Correlation and SumAverg are not directly related to heteroge-
neity, according to the GLCM algorithm.[29,32] Lower
InvDfMom or higher Contrast value indicates more heterogene-
ity.[25,27] In the present study, the nonresidue NPC group had
higher ContrastD and Contrastf values, as well as lower
InvDfMomADC, InvDfMomD, and InvDfMomD

∗
values, than

the residue group, indicating that NPC with more heterogeneity
on the IVIM-DWI maps before treatment might be associated
with better response to chemoradiotherapy. Similar to our
observation, several studies also reported that malignancies with
higher heterogeneity on clinical imaging maps might have better
therapeutic response in a variety of tumors.[25,29,33] In a recent
study,[29] malignant lymphomas demonstrating complete meta-
bolic responders (CMRs) to chemotherapy reportedly showed
higher pretreatment Contrast value on the standard uptake value
map derived from 18F-FDG PET-CT than those of non-CMR. A
prior report[33] revealed that hepatocellular carcinomas with
complete response (CR) after transcatheter arterial chemo-
embolization exhibited higher Moments (a GLCM feature that
is virtually the opposite of homogeneity, namely higherMoments
value represents lower homogeneity) value on the pretherapeutic
iohexol-enhanced CT images than those with non-CR. Teruel
et al[34] also found that breast cancer lesions achieving CR to
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Table 3

Differences in the GLCM features values from ADC map between
the residue and nonresidue groups.

Texture feature Residue (n=11) Nonresidue (n=70) P

AngScMomADC 0.017±0.014 0.013±0.009 .473
ContrastADC 54.815±14.536 64.185±15.591 .071
CorrelatADC 0.805±0.031 0.759±0.070 .034
DifEntrpADC 1.082±0.090 1.115±0.089 .270
DifVarncADC 29.574±5.567 32.912±4.981 .082
EntropyADC 2.165±0.151 2.145±0.169 .473
InvDfMomADC 0.420±0.167 0.195±0.122 <.001
SumAvergADC 50.914±9.185 60.810±6.351 <.001
SumEntrpADC 1.681±0.100 1.669±0.097 .526
SumOfSqsADC 139.177±21.489 136.796±23.856 .783
SumVarncADC 501.894±74.209 482.999±94.947 .491

ADC= apparent diffusion coefficient, GLCM=gray-level co-occurrence matrix.

Table 5

Differences in the GLCM features values fromD
∗
map between the

residue and nonresidue groups.

Texture feature Residue (n=11) Nonresidue (n=70) P

AngScMomD
∗

0.011±0.006 0.010±0.005 .934
ContrastD

∗
55.534±14.177 62.681±13.966 .210

CorrelatD
∗

0.804±0.048 0.779±0.069 .335
DifEntrpD

∗
1.102±0.094 1.130±0.069 .482

DifVarncD
∗

29.222±4.969 31.783±5.297 .205
EntropyD

∗
2.240±0.127 2.187±0.148 .195

InvDfMomD
∗

0.362±0.082 0.304±0.067 .035
SumAvergD

∗
50.026±5.031 56.112±5.889 .002

SumEntrpD
∗

1.741±0.057 1.196±0.092 .104
SumOfSqsD

∗
143.036±18.621 148.776±34.958 .901

SumVarncD
∗

516.609±70.516 532.424±138.960 .945

D
∗
=pseudo-diffusion coefficient, GLCM=gray-level co-occurrence matrix.
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chemotherapy had higher baseline Contrast and Entropy
(Entropy is a texture feature representing tissue heterogeneity)
values on the 1-, 2-, and 3-minute postgadolinium T1-weighted
MRIs than those with a response of stable disease according to
the Response Evaluation Criteria in Solid Tumors (RECIST)
v1.1. Nevertheless, contrary finding was reported in another
study on breast cancer in which the responders (ie, with a
chemotherapy-induced decrease in tumor diameter of >50%)
demonstrated lower baseline Contrast value on the T1-weighted
MRIs after administration of gadolinium agent, compared with
the nonresponders.[27] These conflicting findings might result
from the differences in the imaging protocols and treatment
methods, especially from the great variations with regard to the
classification of response across studies.[27,34]

The IVIM-DWI can simultaneously extract diffusion and
perfusion information from viable tissues.[6,11,12] Among the 4
IVIM-DWI parameters, both D

∗
and f are related to microcircu-

lation perfusion, whileD is associated with pure diffusion.[6,11,12]

ADC represents the total diffusion in viable tissues and is mainly
related to diffusion rather than perfusion under the condition of b
values >200s/mm2.[11,12,35] In regard to the four IVIM-DWI
parameters, our data indicated that all of them could provide
baseline GLCM features to predict the early outcome of
chemoradiotherapy for NPC. Our data demonstrated that the
pretreatment ADC and D values had the potential to predict the
early-term treatment response for NPC, while D

∗
and f had not,

which is in line with several prior studies.[11,12,15] In the present
Table 4

Differences in the GLCM features values from D map between the
residue and nonresidue groups.

Texture feature Residue (n=11) Nonresidue (n=70) P

AngScMomD 0.017±0.015 0.013±0.008 .424
ContrastD 50.661±10.544 61.786±14.486 .021
CorrelatD 0.805±0.039 0.753±0.066 .012
DifEntrpD 1.068±0.095 1.112±0.083 .129
DifVarncD 28.656±4.142 31.679±4.788 .137
EntropyD 2.159±0.148 2.131±0.161 .308
InvDfMomD 0.449±0.082 0.321±0.083 <.001
SumAvergD 51.298±5.252 59.450±5.570 <.001
SumEntrpD 1.682±0.090 1.654±0.095 .177
SumOfSqsD 134.206±18.105 128.075±22.385 .363
SumVarncD 484.345±64.451 450.513±88.216 .168

D=pure diffusion coefficient, GLCM=gray-level co-occurrence matrix.
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and previous studies, the performance of D and f on
differentiating curative effect was based on measure of mean
IVIM-DWI parametric value instead of on texture analysis. Thus,
it could be inferred that GLCM texture analysis may improve the
performance of the perfusion-related IVIM-DWI parameters on
the prediction of therapeutic effect for NPC, compared with the
traditional average-based IVIM-DWI analysis.
In the univariate analysis in this study, the majority (7/10,

70.0%) of the GLCM features predictive of therapeutic response
were generated from the diffusion-related IVIM-DWI parametric
maps, whereas only 3 (3/10, 30.0%) from the perfusion-related
maps. Moreover, the 10 predictors in this study belonged to 4
kinds of GLCM features, namely Contrast, Correlat, InvDfMom,
and SumAverg. As for Correlat, all the 2 predictors were
extracted from the ADC and D maps instead of from the D

∗
or f

maps. In terms of Contrast, InvDfMom, and SumAverg, although
both the diffusion- and perfusion-related IVIM-DWI maps could
provide predictor for therapeutic effect, the AUC value of each
individual predictor from the diffusion-related maps was higher
than that from the perfusion-related maps, for example,
InvDfMomD (AUC=0.844) versus InvDfMomD

∗
(AUC=

0.699). Furthermore, multivariate analysis demonstrated that
all the independent predictors (ie, D, InvDfMomADC, and
SumAvergD) were generated from the ADC or D map, rather
than from theD

∗
and fmaps. Similar to the findings of this study,

previous reports based on an analysis of mean parametric value
have revealed that the diffusion-related IVIM-DWI indices were
Table 6

Differences in the GLCM features values from f map between the
residue and nonresidue groups.

Texture feature Residue (n=11) Nonresidue (n=70) P

AngScMomf 0.014±0.007 0.013±0.009 .378
Contrastf 46.475±10.035 55.957±13.672 .032
Correlatf 0.840±0.046 0.829±0.052 .544
DifEntrpf 1.079±0.071 1.102±0.072 .349
DifVarncf 27.734±3.393 29.712±5.953 .378
Entropyf 2.189±0.126 2.142±0.164 .363
InvDfMomf 0.358±0.074 0.328±0.072 .225
SumAvergf 39.933±5.298 41.939±6.978 .440
SumEntrpf 1.714±0.070 1.683±0.095 .282
SumVarncf 164.536±36.790 168.861±29.911 .783
SumOfSqsf 608.033±147.382 619.485±119.054 .710

f=perfusion fraction, GLCM=gray-level co-occurrence matrix.

http://www.md-journal.com


Table 7

Performance of predictors on the differentiation between the
residue and nonresidue groups in univariate analysis.

Predictor Cut-off value Sensitivity Specificity AUC (95% CI)

Tumor volume 3958.656 mm3 54.55% 78.57% 0.635 (0.521–0.739)
ADC 0.902 � 10�3 mm2/s 81.82% 55.71% 0.723 (0.613–0.817)
D 0.722 � 10�3 mm2/s 72.73% 72.86% 0.791 (0.686–0.873)
ContrastD 56.695 72.73% 62.86% 0.717 (0.606–0.811)
Contrastf 51.523 72.73% 64.29% 0.703 (0.591–0.799)
CorrelatADC 0.770 90.91% 52.86% 0.700 (0.588–0.797)
CorrelatD 0.768 90.91% 60.00% 0.738 (0.628–0.829)
InvDfMomADC 0.305 81.82% 85.71% 0.865 (0.567–0.913)
InvDfMomD 0.339 100.00% 60.00% 0.844 (0.747–0.915)
InvDfMomD

∗
0.336 75.45% 70.00% 0.699 (0.587–0.796)

SumAvergADC 56.462 81.82% 82.86% 0.861 (0.766–0.928)
SumAvergD 55.769 90.91% 74.29% 0.879 (0.788–0.941)
SumAvergD

∗
51.011 63.64% 85.71% 0.791 (0.686–0.873)

ADC= apparent diffusion coefficient, AUC= area under the curve, CI=confidence interval, D
∗
=

pseudo-diffusion coefficient, D=pure diffusion coefficient, f=perfusion fraction.

Figure 2. Examples of baseline intravoxel incoherent motion diffusion-
weighted imaging (IVIM-DWI) maps, VOI for texture features extraction, and
pre- and posttherapy T2WI images for nasopharyngeal carcinoma. The upper
2 rows show images from a patient (case A) in the nonresidue group, whereas
the lower 2 rows exhibit images from a patient (case B) in the residue group. For
case A, the primary lesion disappeared at the end of chemoradiotherapy, its
baseline ContrastD, Contrastf, CorrelatADC, CorrelatD, DifVarncADC, DifVarncD,
InvDfMomADC, InvDfMomD, InvDfMomD

∗
, SumAvergADC, SumAvergD, and

SumAvergD
∗
values were 63.738, 56.015, 0.711, 0.698, 34.892, 34.361,

0.245, 0.257, 0.328, 62.340, 63.267, and 60.157, respectively. For case B, the
nasopharyngeal tumor demonstrated residue at the end of chemoradiother-
apy, its baseline ContrastD, Contrastf, CorrelatADC, CorrelatD, DifVarncADC,
DifVarncD, InvDfMomADC, InvDfMomD, InvDfMomD

∗
, SumAvergADC, SumA-

vergD, and SumAvergD
∗
values were 52.135, 45.632, 0.773, 0.784, 26.876,

25.178, 0.401, 0.423, 0.387, 45.867, 49.376, and 48.763, respectively.
ADC=apparent diffusion coefficient, D

∗
=pseudo-diffusion coefficient, D=

true-diffusion coefficient, f=perfusion fraction, IVIM-DWI= intravoxel incoher-
ent motion diffusion-weighted imaging, post-T2WI=posttreatment T2-
weighted imaging, pre-T2WI=pretreatment T2-weighted imaging, VOI=
volume of interest.
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more powerful than the perfusion-related ones in the pretreat-
ment prediction of response to chemoradiotherapy for
NPC.[11,12] Taken together, these observations might signify
that the pretreatment diffusion-related IVIM-DWI indices have
an advantage over the perfusion-related ones in the early
prediction of the curative effect in patients with NPC, whether
based on texture analysis or average parametric value.
In this study, we explored the routine MRI findings (ie, tumor

volume and TNM stage that indicates the degree of tumor
progression), IVIM-DWI mean-parameter-value analysis and
IVIM-DWI texture analysis for predicting NPC with lesion
residue. The residue and nonresidue groups did not differ from
each other in the TNM stage, suggesting that the clinical stage is
of little benefit to predict the early response of NPC. In this study,
NPCwith larger baseline tumor volume was found more likely to
appear residue at the end of chemoradiotherapy, which implied
that tumor volume may serves as an indicator to predict the early
chemoradiotherapy effect for NPC. Nevertheless, among all the
13 individual indicators in the prediction of tumor residue in the
6

present study, tumor volume exhibited the lowest AUC value
(0.635). Additionally, in the multivariate analysis in this study, it
is the functional MRI indices (ie, D and texture features derived
from IVIM-DWI maps), rather than tumor volume, that acted as
the independent predictors to the treatment outcome of NPC.
Moreover, this multivariate model had a significantly higher
AUC value than tumor volume (AUC, 0.977 vs 0.635; P= .002).
These observations strengthened the opinion that functionalMRI
approach may be more powerful than morphologic MRI
methods in predicting chemoradiotherapy efficacy of malignan-
cies including NPC.
There are several limitations in our study. First, we did not

analysis the posttreatment GLCM features from the IVIM-DWI
maps for NPC, which may result in insufficient discuss on the
correlation between the therapeutic response and IVIM-DWI-
based texture features for NPC. Second, we did not perform an
analysis of a subgroup of patients stratified by TNM stages
because of the relatively small sample size of certain stage
subgroups, for example, the T1, N0, N1, and M1 subsets. In
addition, the long-term outcome of NPC receiving chemo-
radiotherapy had not been evaluated in the present study.
Therefore, further studies with larger patient population, long-
term follow-up, stratification by clinical stage, and analysis of
posttreatment IVIM-DWI-based texture features are warranted
to comprehensively understand the relevance between the texture
features and therapeutic effect for NPC.
In conclusion, the observations in this study indicated that

GLCM features based on IVIM-DWI, especially on the diffusion-
related map, may be a potential tool for predicting the early
response of NPC before starting chemoradiotherapy.
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