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Abstract: Sarcopenia is characterized by a skeletal muscle disorder with progressive and generalized
loss of muscle mass and function, and it increases the risk of adverse outcomes with considerable
prevalence in patients with chronic liver disease. Sarcopenia in chronic liver disease underlies com-
plicated and multifactorial mechanisms for pathogenesis, including alterations in protein turnover,
hyperammonemia, energy disposal, hormonal changes, and chronic inflammation. The key contri-
bution to sarcopenia in patients with chronic liver diseases can be the hyperammonemia-induced
upregulation of myostatin, which causes muscle atrophy via the expression of atrophy-related genes.
Several clinical studies on emerging treatment options for sarcopenia have been reported, but only
a few have focused on patients with chronic liver diseases, with mostly nutritional and behavioral
interventions being carried out. The inhibition of the myostatin-activin receptor signaling pathway
and hormonal therapy might be the most promising therapeutic options in combination with an
ammonia-lowering approach in sarcopenic patients with chronic liver diseases. This review focuses
on current and emerging treatment options for sarcopenia in chronic liver diseases with underlying
mechanisms to counteract this condition.

Keywords: sarcopenia; chronic liver disease; muscle protein turnover; cirrhosis; non-alcoholic fatty
liver disease

1. Introduction

Sarcopenia is characterized by a skeletal muscle disorder with progressive and gen-
eralized loss of muscle mass, strength, and function, thus increasing the risk of adverse
outcomes, such as physical disability and higher rates of hospitalization and mortality [1].
The term “sarcopenia” was first used in the 1980s to refer to age-related skeletal muscle
decline [2]. The definition of sarcopenia has changed from muscle-wasting conditions
with low muscle mass into a term involving muscle function in the current concept of
sarcopenia [3,4]. The evolution of the definition is attributed to the fact that muscle function
has been shown to be a more influential clinical biomarker than muscle mass alone [5,6].
The overall prevalence of sarcopenia was estimated at 10% in both men and women, which
indicates that a considerable proportion of the elderly, even in a healthy population, has
sarcopenia [7]. Moreover, sarcopenia is generally known to be associated with various
chronic inflammatory states, including chronic liver disease [6]. It has been shown to
be a significant risk factor for non-alcoholic fatty liver disease (NAFLD), regardless of
obesity or metabolic syndrome [8–10]. This relationship was convincing because similar
pathological factors, including insulin resistance and inflammation, exist between sar-
copenia and NAFLD [11–13]. Notably, the prevalence rate of sarcopenia is assumed to be
30–70% in cirrhotic patients, with a higher rate among men than in women (61.6% vs. 36%,
respectively) [14–16]. Minimal hepatic encephalopathy, a complication of liver cirrhosis,
was significantly associated with the presence of either muscle mass loss or strength loss
(60.9% vs. 37.7%, respectively) [17]. In addition, sarcopenia commonly develops in patients
with end-stage liver disease, for which the prevalence of sarcopenia ranges from 14 to 78%
and from 30 to 100% in patients before and after liver transplantation, respectively [18].
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Furthermore, sarcopenia can be a clinically significant predictor of higher rates of mortality
and infection [16,19], longer hospitalization [20], and increased economic burden [21], thus
reducing the quality of life [22]. However, challenges arise because the mechanisms of
sarcopenia in chronic liver diseases are poorly understood and no approved and effective
therapeutics to counteract sarcopenia are available. Therefore, in this review, I focused on
the current and emerging treatment options for sarcopenia in chronic liver diseases with
underlying mechanisms to counteract this condition.

2. Etiology of Sarcopenia in Chronic Liver Diseases

Sarcopenia in chronic liver disease is a complicated and multifactorial disease with sev-
eral main drivers, such as impairment in protein turnover, malnutrition, hyperammonemia,
chronic inflammation, and hormonal changes (Figure 1). Understanding the hypotheses of
sarcopenia development would play a key role in overcoming the therapeutic limitations.

Figure 1. A schematic representation illustrating the regulation of muscle protein synthesis and
degradation with the contribution of chronic liver disease to sarcopenia. AKT, protein kinase B;
FOXO, Forkhead box O; GCN2, general control non-depressed 2; GH, growth hormone; IGF-1, insulin
growth factor-1; mTORC1, mammalian target of rapamycin complex 1; NF-κB, nuclear factor-κB;
UPP, ubiquitin–proteasome pathway.

2.1. Alterations in the Protein Turnover

The balance between protein synthesis and degradation in skeletal muscles ensures
the maintenance of protein turnover [23]. Skeletal muscle protein turnover can be regulated
by several factors, including food intake, fasting, endocrine changes (i.e., insulin levels and
resistance, insulin-like growth factor 1 (IGF-1), testosterone, and corticosteroids), myostatin,
cytokines, and physical activity [24,25]. Some key molecular pathways that explain muscle
protein turnover include the following: Akt-mediated mammalian target of rapamycin
complex 1 (mTORC1) signaling, satellite cell signaling, and ubiquitin–proteasome signaling
pathways [26,27]. Muscle mass is positively regulated via mTORC1 with several factors,
such as growth factors, insulin or IGF-1, and energy status (glucose and amino acids) [28].
In addition, satellite cell signaling pathways contribute to muscle regeneration and growth
via myonuclear accretion [29]. Interleukin 6 (IL-6) may induce satellite cell proliferation
and the IGF-1 that is required for a growth stimulus activates the IGF-1–Akt pathway in
satellite cells, both of which results in muscle hypertrophy [30,31]. Myostatin, which is
a member of the transforming growth factor β (TGFβ) superfamily, negatively regulates
the satellite cell activation and self-renewal that contributes to muscle protein degradation
via inhibition of the Akt pathway for protein synthesis and an increase in the ubiquitin–
proteasome system to cause muscle atrophy [32,33]. Myostatin has been observed as
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a regulator of the catabolic pathway in skeletal muscle via the ubiquitin–proteasome
and autophagy–lysosome pathways. Additionally, it has been shown to downregulate
the Akt/forkhead box O (FOXO; transcription factor) pathway, causing muscle atrophy
through the expression of atrophy-related genes (atrogenes) [33].

In patients with chronic liver diseases, controversial results from whole-body turnover
studies have been published. As expected, some previous studies indicated that muscle
wasting in cirrhosis could occur due to the decrease in muscle protein synthesis using
different methods of arteriovenous exchanges and a whole-body trace [34–36]. However,
other whole-body turnover studies with phenylalanine and leucine labeling reported that
muscle protein turnover increased or remained unchanged [37,38]. These contradictory
observations may be attributed to the lack of homogeneity in the methodology and clinical
characteristics, including the etiology, age, and severity of liver diseases [15].

2.2. Hyperammonemia

Hyperammonemia, which is the increase in blood ammonia, in advanced liver dis-
eases is a result of liver dysfunction accompanied by blood shunted around the liver and
impaired ureagenesis [39,40]. Since skeletal muscle acts as a primary site for the depletion
of extrahepatic ammonia, muscle wasting commonly occurs in patients with chronic liver
diseases [39,41,42].

The mechanisms of muscle mass depletion that are related to hyperammonemia can
be explained as follows. Ammonia levels in skeletal muscle are substantially elevated in
patients with cirrhosis, thus resulting in the induction of the transcription factor NF-κB and
a further increase in the myostatin expression, followed by the inhibition of myogenesis and
an increase in autophagy [41,42]. Therefore, the key contribution to sarcopenia in patients
with chronic liver disease is the hyperammonemia-induced upregulation of myostatin. In
addition, the removal of ammonia occurs in skeletal muscles through the synthesis of glu-
tamine, which is exchanged for branched-chain amino acids (BCAAs), such as leucine [43].
This also explains the decreased tendency of plasma BCAAs in patients with cirrhosis [44].
Mitochondrial dysfunction can also explain the contribution of hyperammonemia to the
decrease in muscle protein synthesis. Because of higher ammonia levels in the muscle,
cataplerosis (the removal of intermediate metabolites in the tricarboxylic acid cycle) domi-
nantly occurs and induces a decrease in alpha-ketoglutarate, resulting in mitochondrial
dysfunction [15,41]. Furthermore, hyperammonemia has been reported to induce oxidative
stress by elevating the amount of reactive oxygen species (ROS) [45]. In conditions with
high levels of ammonia, the generation of ROS can lead to increased amounts of carbony-
lated proteins and thiobarbituric acid-reactive substances in skeletal muscle [45]. Given the
high prevalence of cirrhosis, the abovementioned studies suggest that ammonia-lowering
approaches, NF-κB inhibitors, myostatin inhibitors, and anaplerotic substrates against
mitochondrial dysfunction are potential therapeutics to counteract sarcopenia in chronic
liver diseases.

2.3. Energy Disposal

Patients with advanced liver diseases, such as cirrhosis, are in an accelerated state
of starvation, with increased gluconeogenesis, fat oxidation, ketogenesis, and a catabolic
state [46–49]. In conditions of increased gluconeogenesis, circulating BCAAs in skeletal
muscle are likely to decrease due to increased utilization as an energy source [49]. Re-
duced amino acid levels promote adaptive cellular homeostasis with elevated autophagy
in skeletal muscles. Additionally, intracellular amino acid deprivation induces an inte-
grated stress response that is mediated via activation of the amino acid deficiency sensor
known as general control non-depressed 2 (GCN2) [50,51]. The activated sensor further
phosphorylates the eukaryotic initiation factor 2α (eIF2α), resulting in the upregulation
of the activating transcription factor 4 (ATF4), which induces the expression of Sestrin2
(stress response protein) and the sustained inhibition of mTORC1 to preserve amino acid
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levels [50,52]. Thus, the combined contribution of GCN2 and mTORC1 regulates the amino
acid homeostasis and subsequently restores the global protein synthesis [50,53].

Patients with cirrhosis and hyperammonemia experience a similar condition of in-
tegrated stress response due to amino acid deprivation. However, hyperammonemia
persistently activates GCN2 with an impaired translation of ATF4, which results in de-
creased muscle protein synthesis and impaired proteostasis [54,55]. Thus, patients with
hyperammonemia may detour to alternative pathways of an adaptive integrated stress re-
sponse, which is supposed to be mediated by the leucine exchanger SLC7A5/LAT1 [55,56].
The expression of SLC7A5/LAT1 was increased in patients with cirrhosis and it seems to
play a role in increasing leucine uptake [55,56]. Subsequently, increased leucine concentra-
tion can be utilized in the mitochondria for energy output and can prevent the breakdown
of GCN2-mediated protein synthesis as an adaptive response.

2.4. Hormonal Changes

Alterations in the endocrine system, such as hypotestosteronemia and an impaired
insulin/IGF-1 pathway, are associated with an advanced liver disease, which could also
contribute to muscle wasting [57]. Up to 90% of men with cirrhosis exhibit reduced serum
testosterone, which is proportional to the decrease in liver function [58,59]. Additionally,
testosterone deficiency has been shown to be an independent clinical biomarker in liver
cirrhosis, and lower levels of testosterone have been identified in sarcopenic patients with
cirrhosis compared to those without sarcopenia [58,60]. Hypogonadism, an abnormality
in the hypothalamic–pituitary–gonadal axis, is involved in sarcopenia and chronic liver
disease and contributes to low testosterone levels, further increasing mortality [61]. Since
the anabolic influence of testosterone is well known and important in skeletal muscles,
testosterone might reverse sarcopenia via multiple signaling pathways, including the
suppression of myostatin and muscle cell apoptosis and the stimulation of proliferation
pathways in muscle remodeling [62].

Growth hormone (GH) deficiency is correlated with fatty liver disease and the impair-
ment of cell metabolism, which contributes to the further development of chronic liver
disease [63]. GH primarily regulates the production of IGF-1, and the anabolic effect on
skeletal muscles arises from both GH and IGF-1 [64]. Besides low serum levels of testos-
terone, a decreased IGF-1 level has been demonstrated as one of the potential risk factors
for sarcopenia because IGF-1 contributes to the proliferation of satellite cells and increases
muscle protein synthesis via the activation of the Akt/mTORC1 signaling pathway [65–67].
Furthermore, IGF-1 inhibits the proteolysis and activation of muscle-atrophy-related ubiq-
uitin ligases, such as atrogin-1 (MAFbx) and MuRF-1 [68]. In elderly European men aged
≥70 years, low baseline IGF-1 was related to a greater reduction in gait speed; however, it
is necessary to identify whether the replacement of IGF-1 is effective and safe to reverse
sarcopenia in randomized controlled studies [69].

2.5. Inflammation, NAFLD, and Obesity

NAFLD is a common liver disease worldwide that can subsequently progress to non-
alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatocellular carcinoma [70].
In particular, NASH is characterized by hepatic steatosis, inflammation, and liver cell
damage [71]. In addition to chronic inflammation, which is currently observed to have a
direct relationship with the severity of NAFLD, insulin resistance and physical inactivity
are important risk factors that are related to the development of both sarcopenia and
NAFLD [11,72]. Hepatic lipotoxicity and non-liver factors, such as inflammation in adipose
tissues, are linked to the elevation of proinflammatory cytokines and chemokines as key
markers of NASH, such as tumor necrosis factor α (TNF-α), IL-6, chemokine CC ligand-2,
and C-reactive protein [72–74]. Following adipocyte enlargement in NAFLD, macrophage
recruitment and polarization in the proinflammatory state in adipose tissues increase
various proinflammatory signals, such as adipokines, contributing to the progression
of NAFLD [75,76]. Among the inflammatory cytokines, TNF-α plays a key role in the
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alteration of muscle protein turnover in patients with liver disease [77–79]. TNF-α may alter
the phosphorylation of the mTORC1 pathway, thus decreasing muscle protein synthesis,
and might also induce the ubiquitin–proteasome system and the expression of atrogin-1,
resulting in muscle protein breakdown [77–80]. Furthermore, TNF-α-induced skeletal
muscle atrophy could be explained by the ceramide accumulation, which is related to
sphingolipid metabolism, and by the activation of NF-κB due to ROS elevation, which
increases muscle protein degradation [81–83]. Altogether, the elevation of circulating
inflammatory cytokines may contribute to muscle wasting in liver diseases, and decreasing
cytokine levels might be a pharmacological approach to attenuate the loss of skeletal
muscle mass.

Obesity is correlated with increased fatty acids, which causes oxidative stress and
autophagy, along with the accumulation of lipid intermediates in skeletal muscles [84–86].
The accumulation of lipid intermediates, including diacylglycerol and ceramides, into the
skeletal muscle (termed myosteatosis) can result in insulin resistance and mitochondrial
dysfunction via impaired β-oxidation capacity [84–86]. Myosteatosis can lead to muscle
atrophy, and the extent of lipid infiltration is negatively correlated with muscle function and
regeneration [87,88]. Sarcopenic obesity is characterized by the accumulation of excessive
adipose tissues, along with a decline in lean body mass [89]. Similar to myosteatosis,
obese adipocytes induce the accumulation of proinflammatory immune cells, including
macrophages and lymphocytes, as well as the abnormal production of diverse adipokines,
which leads to the development of local proinflammatory conditions [89]. Leptin, one of
the secreted adipokines from inflamed adipose tissue, contributes to the loss of skeletal
muscle [90]. Furthermore, inflammatory cytokines of TNF-α and IL-6 induce insulin
resistance via inhibition of the insulin receptor activity and signaling, along with decreased
glucose uptake [91]. An increased level of leptin stimulates the production of TNF-α and
IL-6, resulting in a vicious cycle [89]. Other obesity-induced inflammatory factors include
resistin and retinol-binding protein 4, which inhibits insulin signaling and contributes to
insulin resistance, respectively [92–94]. In addition, obesity can induce a decreased level of
fibroblast growth factor 21 and adiponectin, which results in decreased insulin signaling
and β-oxidation in the liver [95,96]. Therefore, obesity could be a crucial factor for the
complex mechanisms of pathophysiology between sarcopenia and NAFLD [97].

Altogether, intramuscular lipids have detrimental effects on muscle function, includ-
ing mitochondrial dysfunction, oxidative stress that contributes to lipotoxic conditions,
and insulin resistance, along with the release of proinflammatory myokines. Therefore,
in a vicious cycle of inflammation, the exacerbated inflammation in adipose tissues and
skeletal muscles triggers the development of sarcopenic obesity and NAFLD. To the best of
our knowledge, the effects of lipid derivatives in patients with chronic liver disease and
sarcopenia have not yet been studied.

3. Current and Emerging Treatment Options for Sarcopenia in Chronic Liver Disease

In recent decades, several drugs have been investigated in clinical trials to counteract
sarcopenia, but no pharmacologically effective therapeutics have been approved to date.
However, current and emerging treatment options for sarcopenia have been reported to be
under development. In February 2021, a manual search from the Clinicaltrials.gov database
(accessed on 1 February 2021) yielded several published interventional clinical trials related
to sarcopenia and the potential expanded use with mostly late-phase studies (Table S1).
In addition, the list of clinical trials studying therapeutic interventions for sarcopenia in
chronic liver disease is provided in Table 1, which mostly consists of dietary supplements
and/or behavioral interventions. Unfortunately, there is only one registered interventional
clinical trial of a pharmacological treatment option using testosterone, indicating that the
development of a new drug is urgently needed (Table 1). The following section discusses an
update on the potential pharmacological treatment options for the treatment of sarcopenia
with chronic liver diseases.

Clinicaltrials.gov
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Table 1. Current and emerging therapeutic interventions for sarcopenia with chronic liver diseases observed in clinical trials.

Target or
Mechanism

of Action
Intervention Sponsor/

Collaborator
Clinical
Phase Indication Status NCT

Number
Year

Title
Start End

Testosterone Testosterone
undecanoate

Institute of
Liver and

Biliary
Sciences,

India

NA Liver
cirrhosis Recruiting NCT03995251 2019 2020

Efficacy and Safety of
Testosterone Therapy in
Improving Sarcopenia in
Men with Cirrhosis: A
Randomized Controlled Trial

Behavior Exercise

University
of California,

San Fran-
cisco/Johns

Hopkins
University,

Duke
University

NA

End-stage
liver disease,
sarcopenia,

liver
cirrhosis

Completed NCT02367092 2016 2019 Exercise Intervention in
Liver Transplant Patients

Behavior Exercise
Memorial
Hospital
Groups

NA

End-stage
liver disease,
chronic liver

failure,
sarcopenia

Completed NCT04546048 2018 2019

The Early Strength Training
Exercise Therapy in Liver
Recipients: Protocol for an
Observational Feasibility
Trial

Behavior

Pulmonary
rehabilita-

tion exercise,
home-based

exercise

Mayo Clinic NA End-stage
liver disease Recruiting NCT03266575 2018 Ongoing

Does Pulmonary
Rehabilitation Improve
Frailty and Sarcopenia in
End-Stage Liver Disease?

Dietary
supplement

Amino acid
infusion

Rigshospitalet,
Denmark/
Hvidovre
University
Hospital

NA Cirrhosis Completed NCT02132962 2014 2015 Sarcopenia and Cirrhosis

Dietary
supplement BCAA

Puerta de
Hierro

University
Hospital

NA Sarcopenia Completed NCT04073693 2017 2019

Characterization of the
Nutritional Status in the
Patient with Liver Cirrhosis
and Impact of a Nutritional
Intervention with Nutritional
Supplements with BCAA vs.
Standard Treatment in the
Subgroup of Patients with
Sarcopenia

Dietary
supplement BCAA

Dayanand
Medical

College and
Hospital

4 Liver
cirrhosis Recruiting NCT03633279 2018 2020

Treatment of Sarcopenia
Improves the Muscle Mass
and Muscle Strength of
Patients with Liver
Cirrhosis—Child C: A
Randomized Double Blind
Control Trial

Dietary
supplement BCAA

Institute of
Liver and

Biliary
Sciences,

India

NA Chronic liver
disease Recruiting NCT04246918 2020 Ongoing

Effect of Branched Chain
Amino Acids
Supplementation on Muscle
Mass, Muscle Quality, and
Molecular Markers of Muscle
Regeneration in Patients
With Chronic Liver Disease:
A Randomized Controlled
Trial

Dietary
supplement HMB

University
of Roma La

Sapienza
NA Sarcopenia Completed NCT03234920 2015 2018

Effects of β-Hydroxy-β-
methylbutyrate (HMB)
Supplementation after Liver
Transplantation:
Randomized and Controlled
Pilot Study

Dietary
supplement CaHMB

Shanghai
Zhongshan

Hospital
NA

Sarcopenia,
liver

cirrhosis
Unknown NCT03605147 2018 2019

The Effect of Calcium β-
Hydroxy-β-methylbutyrate
Supplementation in
Sarcopenia in Liver Cirrhosis:
A Randomized Double-Blind
Controlled Trial

Dietary
supplement HMB

University
of Roma La

Sapienza
NA

Sarcopenia,
liver

cirrhosis
Recruiting NCT03892070 2019 2020

β-Hydroxy-β-
methylbutyrate
Supplementation and
Physical Activity in Liver
Cirrhosis: A Controlled Trial
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Table 1. Cont.

Target or
Mechanism

of Action
Intervention Sponsor/

Collaborator
Clinical
Phase Indication Status NCT

Number
Year

Title
Start End

Dietary
supplement

Ensure Plus
Advance,

Ensure High
Protein

Instituto
Aragones de
Ciencias de

la Salud/
Refbio2:
Trans-

Pyrenean
Cooperation
Network for
Biomedical
Research

NA
Sarcopenia,

liver
cirrhosis

Active, not
recruiting NCT03285217 2017 2019

HMB for Denutrition in
Patients with Cirrhosis
(HEPATIC)

Dietary
supplement

Fresubin
energy
(dietary
protein
energy

supplement)

Medical
University

of Graz
NA

Sarcopenia,
liver

cirrhosis
Recruiting NCT03080129 2017 Ongoing

Microbiome and Sarcopenia
in Patients with Liver
Cirrhosis: A Prospective
Controlled Cohort Study

Dietary
supplement

Medically
tailored
meals,

protein
supplements

University
of Michigan NA

Sarcopenia,
liver

cirrhosis,
hepatic

encephalopa-
thy,

ascites

Recruiting NCT04675775 2021 Ongoing

Medically Tailored Meals to
Prevent Recurrent Hepatic
Encephalopathy: The
BRAINFOOD Pilot Trial

Multifactorial
intervention

Home
exercise,

BCAA sup-
plements,

multispecies
probiotic

Fundació
Institut de
Recerca de

l’Hospital de
la Santa

Creu i Sant
Pau

NA

Sarcopenia,
liver

cirrhosis,
frailty

syndrome
(FS)

Recruiting NCT04243148 2020 Ongoing

Frailty in Patients with
Cirrhosis: Prognostic Value
of the Phase Angle in
Hospitalized Patients and
Effect of a Multifactorial
Intervention (Home Exercise,
Branched-chain Amino
Acids, and Probiotics)

Multifactorial
intervention

Physical
training
program,

behavioral
modification

therapy,
nutritional

consultation

University
of Arkansas NA

End-stage
liver disease,

liver
transplant,
sarcopenia,

cirrhosis

Completed NCT02776553 2016 2020

A Physical Activity Program
in End-Stage Liver Disease:
Pilot Study Assessing
Changes in Physical Fitness,
Sarcopenia, and the
Metabolic Profile

Data were presented in the Clinicaltrials.gov on 1 February 2021. Abbreviation: BCAA, branched chain amino acid; HMB, β-hydroxy-β-
methylbutyrate; NA, not applicable.

3.1. Hormonal Treatment

Since testosterone deficiency is a common feature in advanced liver diseases, a previ-
ous study reported that testosterone treatment can reduce fat mass and hemoglobin A1c
and can increase muscle and bone mass, along with hemoglobin elevation in patients with
cirrhosis [61]. Testosterone treatment particularly increases the expression of androgen
receptors, resulting in muscle cell growth and the differentiation for muscle protein synthe-
sis [98]. In addition, testosterone drives the upregulation of IGF-1 via the Akt pathway to
enhance beneficial effects on muscle growth via the proliferation of satellite cells [62,99]. By
means of another pathway, testosterone replacement therapy contributes to the myostatin
downregulation, further suppressing apoptosis in skeletal muscles [62]. However, clear
molecular evidence of testosterone treatment should be obtained via further research, and
adverse events, such as cardiovascular diseases, fluid retention, gynecomastia, sleep apnea,
and the progression of prostatic diseases, need to be cautiously monitored [100]. Therefore,
long-term confirmatory studies are needed to prove its efficacy and safety in sarcopenic
patients with chronic liver diseases [101].

As previously mentioned, GH deficiency is correlated with the development of chronic
liver diseases, which supports the hypothesis that GH replacement treatment can improve
muscle mass by increasing serum IGF-1 levels and IGF binding protein 3 with the activation
of the mTORC1 signaling pathway [102–104]. GH replacement therapy may also involve
antioxidant defenses through the activation of mitochondrial biogenesis pathways [104].
However, GH supplementation may cause a high rate of adverse reactions, including

Clinicaltrials.gov
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worsening ascites and edema, with limited applicability due to its high cost [104,105].
Therefore, the clinical utility of GH replacement treatment needs to be confirmed in further
studies to identify its safety and efficacy in clinical use.

3.2. Myostatin and Activin Receptor

Myostatin is an important target in various studies because of its detrimental effects
on muscle protein synthesis [106]. Myostatin inhibits the differentiation and growth of
skeletal muscle cells by binding to the activin type IIB (ACVRIIB) receptor, which subse-
quently inhibits the differentiation of myoblasts and the mTORC1 signaling pathway [107].
Stamulumab (MYO-029), a myostatin inhibitor studied in human trials, is a recombinant
human antibody that neutralizes myostatin, which inhibits its binding to ACVRIIB. How-
ever, further development was stopped due to the limited efficacy on muscle strength in
phase 2 clinical trials in patients with muscular dystrophy. Landogrozumab (LY-2495655),
another myostatin inhibitor as a humanized monoclonal antibody under review, also binds
to myostatin and neutralizes its activity. Landogrozumab has been shown to increase total
lean body mass with a fat mass reduction in older weak fallers and to improve general
physical performance [108]. Clinical trials of landogrozumab treatment for muscle atrophy
in patients with hip arthroplasty identified improvement in muscle mass; however, the lean
body mass did not meet the threshold [109]. Trevogrumab (REGN1033) is another human
monoclonal antibody that targets myostatin for the treatment of sarcopenia, where its safety
and efficacy are still being assessed after the completion of phase 2 clinical trials [110].

Ramatercept (ACE-031), an ACVRIIB/Fc recombinant fusion protein, binds to the
ligands (e.g., myostatin, activins, and growth differentiation factor 11) of ACVRIIB to inhibit
the endogenous receptor binding. Despite its award of orphan designation and accelerated
review by the U.S. Food and Drug Administration (FDA), further development for the
treatment of muscular dystrophy was stopped after completion in 2011 because of safety
concerns, such as minor nosebleeds, gum bleeding, and/or small dilated blood vessels
within the skin [111,112]. ACE-083, as an alternative form of ACE-031, is a locally acting
and follistatin-based fusion protein that binds and acts by neutralizing myostatin, activins,
and growth differentiation factor 11 [113]. Follistatin is known to improve muscle growth
and function by preventing ligands from binding to receptors [114]. A first-in-human phase
I clinical trial of ACE-083 demonstrated that it was well tolerated and produced increased
muscle volume in healthy volunteers, which provides evidence for the potential treatment
of various neuromuscular disorders, along with the need for further investigation of its
efficacy and safety [115].

ACVRIIB is another potentially effective target for the development of treatments for
sarcopenia. Bimagrumab (BYM-338), a human monoclonal antibody targeting ACVRIIB,
was designed to competitively bind to ACVRIIB with higher affinity than its ligands.
Breakthrough therapy designation was granted to bimagrumab in 2013 by the FDA for
sporadic inclusion body myositis, which is characterized by inflammatory myopathy
and progressive skeletal muscle atrophy. A preclinical study showed that bimagrumab
increased the differentiation of myoblasts and inhibited the activity of myostatin or activin
A, thus resulting in the improvement of skeletal muscle mass in mice [116]. A phase
2 clinical trial of bimagrumab in elderly patients with sarcopenia and limited mobility
showed that bimagrumab improved muscle growth/function and mobility [117]. However,
other late phases of clinical trials for bimagrumab treatment increased skeletal muscle mass
in one study but observed no significant effects on functional capacity in sarcopenic patients
with chronic obstructive pulmonary disease or sporadic inclusion body myositis [118,119].
In addition, the clinical use of ACVRIIB inhibitors may cause several adverse events,
including muscle spasms, diarrhea, and acne [117–119]. Although there are many past and
ongoing studies showing that the inhibition of the myostatin/ACVRIIB signaling pathway
may counteract sarcopenia, the combination approaches with nutritional and/or physical
activity could be a more promising and effective treatment for sarcopenia [110,120]. While
this therapeutic approach has not yet been studied in sarcopenic patients with chronic
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liver diseases, the current status of research indicates that myostatin/ACVRIIB signaling
inhibition can be an emerging treatment option for muscular dystrophy.

3.3. Ammonia-Lowering Treatment

As previously discussed, hyperammonemia is a feature of patients with cirrhosis
that contributes to abnormal skeletal muscle proteostasis. Although the clinical utility of
ammonia-lowering treatment is expected to be effective, whether this therapeutic approach
can improve proteostasis and reverse sarcopenia in chronic liver disease is uncertain. A
preclinical study showed that ammonia-lowering treatment significantly increased lean
body mass and improved grip strength and skeletal muscle growth [121]. Perturbed molec-
ular actions due to hyperammonemia were also improved with the reduction of myostatin
expression and autophagy markers and with the reversal of GCN2/eIF2α phosphory-
lation [121]. L-ornithine L-aspartate can be an adequate option for ammonia-lowering
treatment for patients with cirrhosis suffering from hepatic encephalopathy through the
improvement of skeletal muscle growth and function, as supported by several random-
ized clinical trials and meta-analyses [122]. In addition, nutraceuticals, such as BCAA,
L-carnitine, omega-3 polyunsaturated fatty acids, zinc, and vitamin D, may provide a
promising standard of care with beneficial improvements in muscle homeostasis for sar-
copenia in chronic liver disease [123]. Confirmation of these ammonia-lowering approaches
for the treatment of sarcopenia in chronic liver disease is necessary for powered and well-
controlled clinical trials to provide further evidence of efficacy.

3.4. Clinical Nutrition

In cirrhotic patients, the rates of both hepatic glucose production and oxidation
are decreased owing to a depletion of hepatic glycogen, although gluconeogenesis is
increased [124,125]. Thus, patients are susceptible to an accelerated state of starvation after
an overnight fast [49]. Furthermore, impaired protein turnover and decreased plasma
levels of essential fatty acids are observed in cirrhosis [126,127]. Therefore, the European
Society for Clinical Nutrition and Metabolism (ESPEN) guideline recommends that the
starvation period be kept short in cirrhosis to ameliorate protein turnover by taking
3–5 meals/day and a late evening snack [128]. A late evening snack has been shown to
improve the nitrogen balance and decreased lipid oxidation, regardless of the composition
or type of formulation used [129,130]. It is also suggested that cirrhotic patients with
sarcopenia should include an optimal energy intake of 30–35 kcal/kg/day and a target
protein intake of 1.2–1.5 g/kg/day [128]. To overcome protein depletion in cirrhotic patients
with sarcopenia, including those with sarcopenic obesity, increased protein intake can
improve protein anabolism and the status of total body protein [128,131,132]. In addition, in
cirrhotic patients, including those with advanced cirrhosis and a previous episode of hepatic
encephalopathy, a long-term BCAA supplementation (0.20–0.25 g/kg/day) had beneficial
effects on protein metabolism, resulting in improved muscle mass, as well as minimal
hepatic encephalopathy [133–136]. Since a specific nutritional intervention is needed in
sarcopenic patients with chronic liver disease, multidisciplinary nutrition care should be
implemented in the metabolic management of patients to achieve nutritional goals.

3.5. Regenerative Therapeutic Approach: Mitochondrial Restoration and Anti-Inflammation

Since the current pharmaceutical options for sarcopenia in chronic liver diseases may
be ineffective and restricted in terms of the available clinical evidence, novel therapeutic
approaches are necessary to improve mitochondrial function, reduce chronic inflammation,
and induce muscle tissue regeneration, thus leading to increased muscle growth and func-
tion. Considering the abovementioned etiology of sarcopenia, regenerative medicine and
stem cell therapy are potential alternatives for sarcopenia alleviation because of their ability
to change the proinflammatory microenvironment into regenerating and reinnervating
conditions by producing anti-inflammatory cytokines [137]. Mesenchymal stem cell trans-
plantation has been shown to modulate immunological effects through the production of
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anti-inflammatory cytokines, including IL-10 and IL-13, and to stimulate neurosupportive
effects by secreting factors including basic fibroblast growth factor and vascular endothelial
growth factor [138–142]. In addition, mesenchymal stem cells may restore mitochondrial
function in skeletal muscle via the mediation of mitochondrial transplantation [143]. How-
ever, stem cell transplantation has many restrictive hurdles to overcome (e.g., controversial
safety and efficacy, ethics, pharmaceutical manufacturing process, and quality control); the
secretome of stem cells that houses the important anti-inflammatory agents may provide
a more promising option than the direct use of stem cells [137]. Nevertheless, extensive
research through preclinical and clinical studies with a larger patient population is still
required to determine its efficacy and safety as a potential therapeutic option for sarcopenia
in chronic liver disease.

4. Conclusions

Sarcopenia in chronic liver disease is a complicated and multifactorial disease with
various contributing factors. Several clinical studies on sarcopenia in chronic liver diseases
have examined the effects of nutritional supplements, behavioral interventions, and their
combinations, but pharmacological therapeutic approaches have rarely been studied. Since
the attempt of a nutritional approach is not always effective in improving clinical out-
comes, behavioral intervention is practically impossible for bedridden patients who may
need these approaches the most. Therefore, there is an urgent need to develop potential
treatment options, including an ammonia-lowering approach that blocks the myostatin–
activin receptor pathway, as well as hormonal therapy, regenerative therapeutics, and their
combinations, to prevent and reverse sarcopenia.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-172
9/11/3/250/s1, Table S1: Current and emerging treatment options for sarcopenia that have been
observed in clinical trials.
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