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ABSTRACT 45 

 46 

Precise characterization and targeting of host cell transcriptional machinery hijacked by viral 47 

infection remains challenging. Here, we show that SARS-CoV-2 hijacks the host cell 48 

transcriptional machinery to induce a phenotypic state amenable to its replication. Specifically, 49 

analysis of Master Regulator (MR) proteins representing mechanistic determinants of the gene 50 

expression signature induced by SARS-CoV-2 in infected cells revealed coordinated inactivation 51 

of MRs enriched in physical interactions with SARS-CoV-2 proteins, suggesting their mechanistic 52 

role in maintaining a host cell state refractory to virus replication. To test their functional relevance, 53 

we measured SARS-CoV-2 replication in epithelial cells treated with drugs predicted to activate 54 

the entire repertoire of repressed MRs, based on their experimentally elucidated, context-specific 55 

mechanism of action. Overall, >80% of drugs predicted to be effective by this methodology 56 

induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This model 57 

for host-directed pharmacological therapy is fully generalizable and can be deployed to identify 58 

drugs targeting host cell-based MR signatures induced by virtually any pathogen. 59 

  60 
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INTRODUCTION 61 

Several approaches have been employed to identify specific host cell pathways and proteins 62 

whose individual interaction with viral proteins is either required to mediate SARS-CoV-2 infection 63 

or that represents key modulators of virulence 1-6. In contrast, a paucity of effort has been devoted 64 

to elucidating the host cell transcriptional control mechanisms and programs hijacked by viruses, 65 

including identification of the Master Regulator (MR) proteins that mediate the infection-mediated 66 

reprogramming of the host cell transcriptional state. More importantly, there has been no 67 

experimental evaluation of the role of such host MR proteins in the virus life cycle nor their 68 

amenability to pharmacological targeting. 69 

Here, we show that host MR proteins, representing viral infection-mediated determinants of the 70 

transcriptional regulatory programs hijacked by viruses, are required for establishing a host-cell 71 

phenotypic state amenable to virus replication. Specifically, we leveraged an established systems 72 

biology-based methodology, originally developed in the field of oncology 7, to identify MR proteins 73 

that mechanistically control the transcriptional state of virus infected cells. We then prioritized 74 

drugs capable of inverting the activity of MR proteins—thus decommissioning the regulatory 75 

programs induced by viral infection to maintain a pro-infective cell state—using another oncology-76 

based approach described in 8. We propose that extension and translation of these cancer-based 77 

methodologies to study viral infection can identify host cell MR proteins representing key 78 

mechanistic determinants of virus-mediated host cell reprogramming, as well as the drugs that 79 

can abrogate this transition.  80 

As we have previously shown, MRs can be accurately and systematically identified by assessing 81 

the enrichment of their transcriptional targets in differentially expressed genes, using the Virtual 82 

Inference of Protein activity by Enriched Regulon analysis (VIPER) 9. While many approaches 83 

can be used to identify the tissue-specific targets of a regulatory protein, the Algorithm for the 84 
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Accurate Reconstruction of Cellular Networks (ARACNe) 10 is among the few that have been 85 

extensively experimentally tested, with validation rates exceeding 70% 10-12. We have shown that 86 

VIPER can accurately measure the activity levels of >70% of regulatory proteins, including in 87 

single cells, where we have shown that metaVIPER 13—a VIPER extension specifically designed 88 

for single-cell analyses—can virtually eliminate the gene dropout issue due to low single cell 89 

profiling depth 14,15; and, notably, outperforms antibody-based measurements 14. Hereafter, for 90 

simplicity, we will refer to the transcriptional activity inferred by VIPER or mtaVIPER, as protein 91 

activity. The combination of these two algorithms has been highly effective in elucidating protein-92 

based mechanisms that were virtually undetectable by gene expression-based methods alone 93 

7,14,16,17 (see methods for additional details). Moreover, once MR protein activity levels are 94 

quantified by VIPER analysis, the CLIA-certified OncoTreat algorithm 8 can accurately and 95 

efficiently identify small molecule inhibitors that can invert their activity (MR-inverter drugs), 96 

thereby abrogating the regulatory programs they control. The OncoTreat algorithm leverages 97 

large-scale gene expression profiles of MR-matched cell lines perturbed with a comprehensive 98 

repertoire of clinically relevant drugs, including Food and Drug Administration (FDA)-approved 99 

and late-stage experimental agents, and has led to several clinical trials evaluating drug therapy 100 

for cancer (NCT02066532, NCT02632071, and NCT03211988, among others). 101 

Given the urgency and unmet needs mandated by the COVID-19 pandemic, we proceeded to test 102 

the applicability of this model to SARS-CoV-2 infection. Specifically, we asked whether this 103 

methodology could be used to identify host cell MR proteins representing the mechanistic 104 

determinants of the transcriptional programs hijacked by the virus to support efficient replication 105 

and, by extension, whether we can identify drugs capable of inverting their activity, thereby 106 

making host cells more resistant to hijacking and viral replication.  The methodology can be 107 

trivially generalized to other pathogens, conditional only on the availability of appropriate infection 108 

gene expression signatures.  109 
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VIPER-inferred MRs from multiple SARS-CoV-2 infection models consistently showed that the 110 

host MR proteins that were significantly activated following SARS-CoV-2 infection controlled 111 

innate immune response programs. This suggests that the transcriptional programs supporting 112 

optimal viral replication and infectivity, during the hijack phase, may be controlled by host MRs 113 

that were significantly inactivated following infection. Supporting this hypothesis, we found the 114 

inactivated MRs to be highly enriched in interactions with SARS-CoV-2 proteins and in genes 115 

reported as essential antiviral factors by CRISPR screens 2,4,6. To further test this hypothesis, we 116 

adapted the OncoTreat algorithm 8 to prioritize compounds based on their ability to activate the 117 

entire set of virus-inactivated MR proteins, and evaluated their effect on SARS-CoV-2 replication 118 

in infected epithelial cell cultures. Prioritization of 154 FDA-approved drugs—primarily for use in 119 

oncology—was highly effective, with >80% of the predictions effectively reducing SARS-CoV-2 120 

replication in colon epithelial cells, with no significant reduction of cell viability.  121 

Based on these findings, we conclude that SARS-CoV-2-induced transition of the host cell 122 

phenotypic state is required for its optimal replication. Moreover, we provide a model for 123 

systematically dissecting the MR proteins that mechanistically facilitate this transition and for 124 

identifying MR-inverting drugs that, by blocking this phenotypic transition, can induce a host cell 125 

regulatory state of “viral contraception.” This model, which we call, “ViroTreat,” could be used to 126 

identify therapeutic options in the COVID-19 setting and can be easily generalized to virtually any 127 

viral pathogen-mediated host cell hijacking that is essential for the infective cycle. 128 

RESULTS 129 

SARS-CoV-2-induced MR signature 130 

To elucidate the MR proteins mediating SARS-CoV2-induced host-cell phenotypic transition, we 131 

analyzed publicly available single cell (scRNASeq) profiles of SARS-CoV-2 infected epithelial 132 

cells (Supplementary Table 1), including epithelial cell lines from both lung adenocarcinoma 133 
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(Calu-3 and H1299) 18, and gastrointestinal organoid models from the ileum and colon 19. Single 134 

cell RNASeq analysis allows highly effective identification of individual virus-infected cells, which 135 

would otherwise represent only a minority of cells in culture. Moreover, single cell-based gene 136 

expression signatures—computed by comparing confirmed infected cells to non-infected 137 

controls—are less affected by contamination and dilution effects typical of bulk RNASeq 138 

signatures representing a mixture of infected and non-infected cells (Supplementary Fig. 1 and 139 

Methods). 140 

Single cell analysis revealed highly conserved differential protein activity signatures, as defined 141 

by the top 50 most differentially active candidate MRs, by analogy to tumor MRs 7. We will refer 142 

to this repertoire of virus-induced MRs as the Viral CheckPoint. The analysis identified a highly 143 

conserved MR core induced by SARS-CoV-2 infection, within each available cellular model, 144 

across all post-infection time-points for which data was available (p < 10-40, by 2-tailed aREA test, 145 

Fig. 1a and Supplementary Fig. 2a).  146 

When comparing equivalent time-points, we observed significant conservation of the differentially 147 

active protein signature across lineage-related cell models (e.g., Calu-3 vs. H1299, at 12h, p < 148 

10-40, Supplementary Fig. 2a). Interestingly, the virus-mediated MR signature was highly 149 

conserved even across unrelated lineages, when equivalent time-points were considered (e.g., 150 

H1299 vs. colon non-transformed organoid at 24h, p < 0.01, Supplementary Fig. 2a). Taken 151 

together, these findings suggest the existence of a highly reproducible, SARS-CoV-2-mediated 152 

MR activity signature in epithelial cells, regardless of organ context (lung vs. gastrointestinal (GI)). 153 

Interestingly, however, inactivated MRs were significantly more conserved than activated MRs, 154 

both across models and lineages (p < 10-6, 2-tailed paired U-test, Supplementary Fig. 2b,c), 155 

suggesting a potentially distinct biological role for the activated vs. inactivated components of the 156 

SARS-CoV-2 MR core. 157 
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The MR activity signatures detected by single cell analyses were also recapitulated by bulk-tissue 158 

analysis of SARS-CoV-2-infected epithelial cells (ST1), albeit at a slightly lower statistical 159 

significance, as we expected. These findings applied to both transformed models, including lung 160 

(Calu-3, H1299, and A549) and colon (Caco-2) adenocarcinoma, and normal human bronchial 161 

epithelial (NHBE) primary cells, as well as to more physiologic models, including lung organoids. 162 

As should be expected, MR conservation was more significant for models characterized by high 163 

infection rates (Supplementary Fig. 2a), likely due to signature dilution/contamination by a high 164 

proportion of non-infected cells in other models. 165 

MRs govern distinct biological functions 166 

Gene Set Enrichment Analysis (GSEA) 20 demonstrated a critical dichotomy of biological hallmark 167 

programs enriched in activated vs. inactivated MRs (Fig. 1b). Specifically, biological hallmarks 168 

enriched in activated MRs included inflammatory response, epithelial-to-mesenchymal transition 169 

(EMT) and interferon response. Indeed, among the top aberrantly activated MRs, we identified 170 

MX1, a protein induced by interferon I and II 21, the interferon regulator IRF9, and additional 171 

transcriptional regulators that mediate cellular response to interferons, such as STAT1 and 172 

STAT2 22 (Fig. 1a).  173 

In contrast, our model shows that biological hallmarks enriched in inactivated MRs were strongly 174 

related to virus-mediated host-cell hijacking programs, such as PI3K signaling, unfolded protein 175 

response, DNA repair, and metabolic-related processes 23,24 (Fig. 1b). Consistent with this 176 

observation, the most significantly inactivated MRs included several ribosomal subunit members 177 

(such as RPS27A, RPS3, RPL3, RPS6, RPS14), as well as proteins involved in cell cycle arrest 178 

(UBA52) 25, translational regulation, and cellular metabolism (GABPB1) 26 (Fig. 1a).  179 

VIPER-inferred MRs are enriched in SARS-CoV-2-interacting proteins 180 
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To assess whether activated vs. inactivated MRs in our model may represent a more effective 181 

target for drug-mediated reversal, we proceeded to assess whether either class was enriched in 182 

host proteins previously identified as cognate binding partners of SARS-CoV-2 proteins. For this 183 

analysis, we leveraged a collection of 332 host proteins previously reported to be involved in 184 

protein-protein interactions (PPIs) with 26 of the 29 proteins encoded by the SARS-CoV-2 185 

genome, as determined by mass-spec analysis of pull-down assays 2. Of these interactions, 90 186 

were with proteins included in the 5,734 we analyzed by VIPER. GSEA 20 revealed statistically 187 

significant enrichment of these 90 proteins in SARS-CoV-2 inactivated but not activated MRs, 188 

across all the evaluated single-cell protein activity signatures (p < 10-3, 2-tailed GSEA, 189 

Supplementary Fig. 3). This suggests that host cell proteins that physically interact with SARS-190 

CoV-2 proteins are mostly inactivated in response to the infection.  191 

VIPER-inferred MRs are enriched in viral infection-essential genes 192 

To further confirm the functional duality of the inferred MRs, we also assessed their enrichment 193 

in genes previously reported as essential to the virus infectious cycle. Specifically, we evaluated 194 

their enrichment in genes identified by functional CRISPR screens from two different studies, 195 

including using SARS-CoV-2 infected Vero 6 and Huh-7.5 4 cells. Consistent with our original 196 

observation and definition of the SARS-CoV-2 induced MR signature, the 50 most inactivated 197 

candidate MRs—as determined by integrating results from both lung and GI models—were 198 

significantly enriched in infection-essential genes identified in both CRISPR screen (p < 10-4 and 199 

p < 10-3, respectively), as well as in the integrated set (Supplementary Fig. 4a-c, p < 10-4). In 200 

contrast, the 50 most activated MRs were not significantly enriched in infection essential genes 201 

(Supplementary Fig. 4d-f).  202 

ViroTreat prioritization of FDA-approved drugs 203 
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To test the dependence of SARS-CoV-2 replication on inactivation of the MR proteins—termed 204 

Viral Checkpoint for analogy to tumor Checkpoints 7—, we adapted the OncoTreat algorithm 8 to 205 

identify small molecule compounds capable of activating such MRs (ViroTreat, Fig. 2). We 206 

hypothesize that such drug-induced effects would keep the host cell phenotype in a “viral 207 

contraception” regulatory state that effectively reduces viral replication rate. 208 

We have shown that drug Mechanism of Action (MoA)—as represented by the proteins that are 209 

differentially activated/inactivated—is an effective predictor of drug activity in vivo and in explants 210 

27,28. This is assessed by VIPER analysis of MR-matched cell lines following perturbation with a 211 

large repertoire of drugs, at the highest sublethal concentration (IC20), as assessed by dose 212 

response curves. The PanACEA database (PANcancer Analysis of Chemical Entity Activity) 29 213 

comprises drug perturbation RNA-seq profiles representing 25 cell lines and an average of 350 214 

drugs per cell line. Among these, the LoVo and NCI-H1973 cell lines were identified as whose 215 

lineage matched the GI epithelial and lung epithelial cell models used of SARS-CoV-2 infection 216 

assays, respectively. However, while LoVo (human colon cell line) showed statistically significant 217 

MR protein conservation (p < 10-5 by OncoMatch analysis 27), when compared with the colon 218 

adenocarcinoma cell line susceptible to SARS-CoV-2 infection (Caco-2 30, Supplementary Fig. 219 

5a,b), such conservation was not observed between NCI-H1793 cells and any of the three lung 220 

cell lines susceptible to SARS-CoV-2 infection (Calu-3, ACE2-A549 and H1299, Supplementary 221 

Fig. 5c-h). Based on these results and considering availability of a compatible cell line as a 222 

relevant validation model to experimentally assess ViroTreat-predicted drugs, for this model we 223 

focused our validation efforts on the GI context. 224 

VIPER was used to elucidate the MoA of 154 FDA-approved oncology drugs, where MoA is 225 

defined as the repertoire of proteins differentially activated/inactivated at 24h following drug 226 

perturbation. While this was done specifically in colon epithelial cells for this study, the analysis 227 

can be easily extended to assess drug MoA in other cellular contexts.  Specifically, the RNA-seq 228 
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profiles used in this analysis were generated at 24h (by PLATE-Seq assays 31), following 229 

treatment of a colon adenocarcinoma cell line (LoVo) with a library of FDA-approved drugs and 230 

vehicle control (DMSO). To avoid assessing cell death or stress mechanisms, rather than drug 231 

MoA effects, drugs were titrated at their highest sublethal concentration (i.e., their 48h IC20), as 232 

assessed by 10-point dose response curves (see methods for additional details). Resulting 233 

profiles were then used to assess the differential activity of regulatory proteins in drug vs. vehicle 234 

control-treated cells with the VIPER algorithm9. Finally, drugs were prioritized based on their 235 

ability to activate the MR proteins inactivated by SARS-CoV-2 infection, as assessed by their 236 

enrichment in proteins differentially activated by each drug, using the aREA algorithm8,9 (Fig. 2). 237 

ViroTreat predictions were averaged across available GI organoid models and across all 238 

evaluated time points. Among the 154 FDA-approved drugs profiled in LoVo cells, ViroTreat 239 

prioritized 22 (13 orally available and 9 intravenous) at a highly conservative statistical threshold 240 

(p < 10-5, Bonferroni corrected (BC)), see Fig. 3 and Supplementary Table 2). 241 

ViroTreat-predicted drugs inhibit SARS-CoV-2 replication 242 

To provide proof-of-concept validation for the ViroTreat predictions in our model, we first assessed 243 

drug-mediated inhibition of SARS-CoV-2 replication by ViroTreat-predicted vs. control drugs in 244 

the colon adenocarcinoma cell line (Caco-2) known to support SARS-CoV-2 infection 30. 245 

For this assay, we considered all 13 ViroTreat-inferred orally-available drugs, as a more clinically 246 

relevant group, and the top 5 most significant intravenous (IV) drugs. As candidate negative 247 

controls, we selected 12 drugs—including 8 orally available agents and 4 IV drugs—not inferred 248 

as statistically significant by ViroTreat (p ³ 0.01, Fig. 3 and Supplementary Table 2). Caco-2 cells 249 

were pre-treated for 24h prior to SARS-CoV-2 infection. Drug concentration was maintained 250 

through the entire infection time course and the relative virus replication levels and cell viability 251 

were assessed by immunofluorescence staining 24h post-infection (see methods and Fig. 4a). 252 
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For each drug, the viability-normalized effect on SARS-CoV-2 replication (antiviral effect) was 253 

quantified as the log-ratio between viral replication and cell viability reduction relative to vehicle-254 

treated (DMSO) controls (Supplementary Fig. 6). Since multiple concentrations were tested, the 255 

lowest concentration corresponding to a significant antiviral effect was reported (Supplementary 256 

Table 2). As a proof-of-concept for the ability of this model to identify drugs capable of reducing 257 

replication of SARS-CoV-2, we considered drugs to be validated only if their antiviral effect was 258 

statistically significant (FDR < 0.05) and they induced a decrease in virus replication of at 259 

least 20%. This additional condition was used to further increase the stringency when considering 260 

the antiviral effect of a drug (see Methods). 261 

Of 18 drugs predicted to activate the MR proteins inactivated by SARS-CoV-2 infection, 15 (83%) 262 

showed statistically significant antiviral effect. In contrast, none of the 12 drugs selected as 263 

potential negative controls showed significant antiviral effect (Fig. 4b and Supplementary Table 264 

2), demonstrating a significant enrichment of ViroTreat results in drugs with antiviral activity (p < 265 

10-5, 1-tailed Fisher’s exact test (FET)). Consistently, the Receiver Operating Characteristic 266 

(ROC) had an Area Under the Curve AUC = 0.907 (95% Confidence Interval: 0.77–0.91), which 267 

is highly statistically significant (p < 10-4, Fig. 4c), demonstrating the predictive power of ViroTreat 268 

in this proof-of-concept. 269 

To further assess the pathogen-specific nature of ViroTreat predictions, we tested the ability of 270 

the 8 ViroTreat-inferred drugs showing the strongest inhibition of SARS-CoV-2 replication, to 271 

inhibit rotavirus replication in Caco-2 cells. Interestingly, none of these drugs significantly impaired 272 

rotavirus replication (Supplementary Fig. 7 and Supplementary Table 2), showing that ViroTreat-273 

inferred antiviral effects cannot be attributed to generalized impairment of host cellular functions 274 

universally required for viral replication, but rather to activation of host-cell MRs required for the 275 

maintenance of a host-cell phenotypic state specifically refractory to SARS-CoV-2 replication.  276 
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To also assess whether the antiviral activity of ViroTreat-predicted oncology drugs in Caco-2 cells 277 

might possibly be attributed to their antineoplastic effects in a cancer cell context, we evaluated 278 

the antiviral properties of the top 8 drugs in non-transformed, human GI organoid-derived 2D 279 

primary cell cultures. When tested in this more physiologic context, 7 of the 8 assayed drugs, 280 

including idarubicin, bosutinib, cyclosporine, bicalutamide, vorinostat, amiodarone and 281 

osimertinib, demonstrated significant antiviral effect against SARS-CoV-2 based on our original 282 

criteria (FDR < 0.05 and decrease in SARS-CoV-2 replication of at least 20%, Fig. 4d and 283 

Supplementary Fig. 7). Except for bicalutamide, which exerted its antiviral effect at a 125-fold 284 

higher concentration, all drugs were tested at concentrations comparable to their 48h IC20 in LoVo 285 

cells, representing the highest sub-toxic concentration usable for optimal MoA elucidation. These 286 

findings suggest that ViroTreat can apply the molecular characterization of a drug’s MoA, as 287 

obtained by the measured effect of the drug on protein activity levels in tissue lineage-matched, 288 

neoplastic cell line models, to prioritize and repurpose drugs with potential antiviral activity in both 289 

infected tumor models as well as non-transformed human organoid-derived 2D primary cell 290 

cultures.  291 

Finally, to test the tissue lineage context-specificity of ViroTreat predictions, we assessed the 292 

antiviral effect of the 8 ViroTreat predicted drugs for the GI context showing the strongest inhibition 293 

of SARS-CoV-2 infection in Caco-2, in lung adenocarcinoma cell line models (Calu-3 and ACE2-294 

A549). Interestingly, only cyclosporine and osimertinib showed a significant antiviral effect (FDR 295 

< 0.05 and ≥ 20% virus replication decrease), while amiodarone, apremilast, bicalutamide, 296 

bosutinib, exemestane, and pimozide did not (Supplementary Fig. 8 and Supplementary Table 297 

2). These results highlight the relevance of lineage context-specificity when prioritizing drugs with 298 

ViroTreat. 299 



 14 

DISCUSSION 300 

We report here a model characterizing the regulatory biology of virus-host interaction, in which 301 

viral infection induces a phenotypic transition in the host cell toward a state that is promotive of 302 

viral replication. We applied Master Regulator (MR) inference analysis 9,16 to systematically 303 

dissect the transcriptional regulators (MR proteins) hijacked by the virus (Viral CheckPoint) and 304 

demonstrated, using a model of SARS-CoV-2 infection in gastrointestinal epithelial cells, that 305 

pharmacologically blocking this transition is sufficient to maintain the host cell in a state of 306 

“transcriptional contraception” that is adverse to virus replication. We adapted the OncoTreat 307 

framework, originally developed to prioritize drugs for cancer 8, to identify drugs with concerted 308 

activity on the Viral Checkpoint.  309 

 310 

We propose that the approach employed in this model, which we call ViroTreat, can be used as 311 

a mechanism-based framework for repurposing drugs, based on their ability to reprogram host 312 

cells to a state refractory to virus hijacking. In contrast to previous host cell-centric approaches 313 

aimed at targeting single host cell proteins that directly interact with the viral proteome, the 314 

ViroTreat model was designed to target the entire MR protein module, whose concerted 315 

regulatory activity is responsible for implementing and maintaining a virus replication-permissive 316 

transcriptional state in the host cell.  Thus, ViroTreat expands the one disease/one target/one 317 

drug paradigm to targeting an entire protein module (i.e, Viral Checkpoint) based on the accurate 318 

assessment of each drug’s proteome-wide MoA, as dissected from perturbational profile data. 319 

Such a holistic approach to matching disease dependencies to drug MoA overcomes the inherent 320 

limitations of drug repurposing efforts that focus on inhibitors of individual proteins or single 321 

pathways to thwart viral replication as part of a host cell-targeting strategy.  322 
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Viral Checkpoint MR identification requires availability of gene expression signatures of virus-323 

infected cells. Therefore., to avoid model-specific confounding effects and to identify a more 324 

universal and reproducible MR signature of viral infection, we performed MR analysis in multiple, 325 

complementary cellular models, including both transformed cell lines and normal 3D-organoid 326 

cultures representing both airway and GI epithelium lineages. In addition, to avoid confounding 327 

effects from a heterogeneous combination of infected and non-infected cells—representing the 328 

majority of the cell population—MR analysis was also performed at the single cell level, using 329 

SARS-CoV-2 genome mapped reads to unequivocally identify infected cells. Finally, we avoided 330 

confounding effects from single cell transcriptional state heterogeneity by comparing each 331 

infected cell to a small pool of the closest non-infected cells, based on MR analysis, as controls. 332 

Finally, to achieve cell context-specific elucidation of drug MoA, we analyzed drug perturbations 333 

in cell lines that recapitulate the biology of the infected cells, based on conservation of their most 334 

differentially active/inactive MRs, as previously described 27. 335 

The ViroTreat framework prioritizes drugs from a predefined library used to generate 336 

perturbational assays. For this proof-of-concept, we maximized the translational potential of drug 337 

predictions, by focusing our analysis on FDA-approved drugs used primarily in an oncology 338 

setting; with particular emphasis on orally available drugs. However, the approach can be easily 339 

extended to explore a much larger library of pharmacological compounds. Moreover, the 340 

database of drug context-specific MoA can be generated independently and prior to the 341 

identification, isolation and characterization of a viral pathogen of interest, making it readily 342 

available for current as well as future pandemics. 343 

In addition, while most studies have focused on drugs that act as high affinity inhibitors of target 344 

proteins 2-6,32,33, to our knowledge, this is the first study to focus on pharmacologic agents 345 

predicted to activate, rather than inhibit, an entire protein module of Master Regulator proteins 346 

whose inactivation by the virus was found to be necessary for viral hijack and replication. By 347 
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inducing drug-mediated reversion of the Viral Checkpoint activity, we successfully reprogrammed 348 

host cells to a regulatory state of “viral contraception,” thereby significantly buffering the virus’s 349 

ability to hijack the host cell machinery required for its infective cycle.  350 

Critically, Virotreat predicted SARS-CoV-2-specific antiviral activity of drugs that have recently 351 

emerged as potential host cell-targeting antivirals, in completely unbiased fashion. Among these, 352 

cyclosporine 34, amiodarone 35, pimozide 36, mitoxantrone 37, osimertinib 38, bosutinib 39, and 353 

bicalutamide 40. Moreover, three of the Virotreat-predicted drugs—cyclosporine (NCT04492891), 354 

amiodarone (NCT04351763), and bicalutamide (NCT04509999)—are being evaluated in clinical 355 

trials for their safety and efficacy in persons with SARS-CoV-2 infection, suggesting that host cell 356 

targeting provides a viable strategy to complement viral-protein targeting drugs.  357 

Among the methodological limitations, the most critical one is the need to obtain physiologic 358 

models to identify appropriate infection signatures, generate relevant drug perturbational profiles, 359 

and validate predicted drugs. In addition, there are also challenges in assessing the optimal 360 

concentration at which each compound should be profiled.  361 

From a translational perspective, in the setting of both the current and future pandemics, as well 362 

as for recurrent epidemics such as those caused by influenza and other viral pathogens, the Viral 363 

Checkpoint framework can leverage bulk and single-cell profiles from infected cells to quickly 364 

identify the precise set of MR proteins responsible for creating a virus infection-friendly 365 

environment in the host cell. Once identified, independent of the specific viral pathogen, potential 366 

therapeutic agents can be efficiently prioritized by the ViroTreat model, using readily available—367 

and relatively inexpensive—perturbational databases to elucidate context-specific, proteome-368 

wide drug MoA. Host cell-directed therapies shown to be effective in cell line and organoid models 369 

based on such predictions can then undergo rapid validation in more physiologic contexts, prior 370 
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to testing in human trials designed to evaluate their safety and therapeutic value in the clinical 371 

setting. 372 

  373 
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 374 

Figure 1. Changes in host cell protein activity in response to SARS-CoV-2 virus infection. 375 

a. Left, heatmap showing the activity of the top 10 most activated proteins in response to SARS-376 

CoV-2 infection in each of the models and time-points profiled at the single-cell level. Right, 377 

heatmap showing the activity of the top 10 most inactivated proteins in response to SARS-CoV-378 

2 infection in each of the models and time-points profiled at the single-cell level. b. Heatmap 379 

showing the enrichment of biological hallmarks in the SARS-CoV-2-induced protein activity 380 

signatures. Shown is the Normalized Enrichment Score (NES) estimated by the aREA algorithm, 381 

with purple color indicating enrichment in the over activated proteins and green color indicating 382 

enrichment in the inactivated proteins. 383 
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 385 

Figure 2. Schematic representation of the ViroTreat algorithm. a. Virus-induced MR 386 

proteins—the Viral Checkpoint—dissected by VIPER analysis of a gene expression signature, 387 

obtained by comparing an infected tissue or relevant model with non-infected mock controls. b. 388 

Context-specific drug MoA database, generated by perturbing an appropriate cell model with 389 

therapeutically relevant drug concentrations, followed by VIPER analysis of the drug-induced 390 

gene expression signatures to infer the drug-induced protein activity signature. ViroTreat 391 

prioritizes drugs able to activate the Viral Checkpoint’s negative MR proteins by quantifying the 392 

enrichment of such proteins on the drugs’ context-specific MoA. 393 
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 395 

Figure 3.  ViroTreat results for the GI models. Shown are the enrichment plot for the top 50 396 

most inactivated (blue vertical lines) proteins, in response to SARS-CoV-2 infection (the negative 397 

component of the viral Checkpoint) of the ileum organoid for 12h, on the protein activity signature 398 

induced by the drug perturbations—drug context-specific MoA, represented by the green-orange 399 

color scale in the x-axis—of LoVo colon adenocarcinoma cells. The heatmap shows the 400 

Bonferroni’s corrected -log10(p-value) estimated by ViroTreat. Shown are all the 22 candidate 401 

drugs (ViroTreat p < 10-5) and 12 drugs selected as negative controls (ViroTreat p > 0.01) in both 402 

ileum and colon-derived organoids at 12 and 24 hours post-infection. 403 
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 405 

Figure 4. Experimental validation of ViroTreat predictions. a. Representative 406 

immunofluorescence images of non-infected (Mock) Caco-2 cells, vehicle control (DMSO) treated 407 

and SARS-CoV-2 infected cells, and representative examples of a drug showing significant 408 

antiviral effect (Cyclosporine), of a drug showing non-significant antiviral effect (Thalidomide) and 409 

a drug showing non-significant antiviral effect and cell toxicity (Fedratinib). Drug concentration 410 

(µM) is indicated to the left of the images showing triplicated experiments. Cells were stained with 411 

DNA dye Draq5 (red) and anti-dsRNA antibody (green). b. Scatterplot showing the ViroTreat 412 

results (x-axis) compared to the specific antiviral effect (y-axis) experimentally evaluated in Caco-413 

2 colon adenocarcinoma cells. The vertical and horizontal dashed lines represent the thresholds 414 

for statistical significance for ViroTreat (p-value = 10-5, BC) and specific antiviral effect (FDR = 415 

0.05), respectively. c. ROC analysis for the ViroTreat predictions, considering as positive 416 

response a specific antiviral effect at FDR < 0.05 with at least 20% reduction in virus replication. 417 

Estimated AUC, 95% confidence interval (CI) and p-value are indicated in the plots. d. Effect of 8 418 

drugs, showing the strongest reduction in SARS-CoV-2 replication in Caco-2 cells, on cell viability 419 
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and SARS-CoV-2 replication in GI organoid-derived 2D primary cell cultures. Bars indicate the 420 

mean ± SEM. Antiviral effect: * FDR < 0.05, ** FDR < 0.01.  421 
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METHODS 422 

Cells 423 

Vero E6 (ATCC CRL-1586) and Caco-2 (ATCC HTB-37) cells were maintained in DMEM 424 

supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin.  425 

GI organoids 426 

Human tissue was received from colon resection from the University Hospital Heidelberg. This 427 

study was carried out in accordance with the recommendations of the University Hospital 428 

Heidelberg with informed written consent from all subjects in accordance with the Declaration of 429 

Helsinki. All samples were received and maintained in an anonymized manner. The protocol was 430 

approved by the “Ethics commission of the University Hospital Heidelberg” under the protocol S-431 

443/2017. Stem cells containing crypts were isolated following previously described protocols 41. 432 

Organoids were passaged and maintained in basal and differentiation culture media 433 

(Supplementary Table 3) as previously described 41. 434 

Viruses 435 

SARS-CoV-2 (strain BavPat1) was obtained from the European Virology Archive. The virus was 436 

amplified in Vero E6 cells and used at a passage 3 for all experiments as previously described 437 

30,42.   438 

SARS-CoV-2 infection assay 439 

20,000 cells were seeded per well into a 96-well dish 24 hours prior to drug treatment. 100μL of 440 

media containing the highest drug concentration was added to the first well. Six serial 1:5 dilutions 441 

were made (all samples were performed in triplicate). Drugs were incubated on cells for 24 hours. 442 

Prior to infections, fresh drugs were replaced and SARS-CoV-2 at multiplicity of infection (MOI) 3 443 
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was added to each well. 24 hours post-infection cells were fixed in 4% paraformaldehyde (PFA) 444 

for 10 mins at room temperature (RT). PFA was removed and cells were washed twice in 1X PBS 445 

and then permeabilized for 10 mins at RT in 0.5% Triton-X. Cells were blocked in a 1:2 dilution of 446 

Li-Cor blocking buffer (Li-Cor) for 30 mins at RT. Cells were stained with 1/1000 dilution anti-447 

dsRNA (J2, SCIONS) for 1h at RT as marker of infected cells as previously described 30. Cells 448 

were washed three times with 0.1% Tween in PBS. Secondary antibody goat anti-mouse IR 800 449 

(Thermo) and DNA dye Draq5 (Thermo) were diluted 1/10,000 in blocking buffer and incubated 450 

for 1h at RT. Cells were washed three times with 0.1% Tween/PBS. Cells were imaged in 1X PBS 451 

on a LICOR imager. Effect of drugs were analyzed by comparing the average fluorescence of 452 

mock treated cells to drug treated cells. Draq5 staining was used to determined cell viability.  453 

Rotavirus infection assay 454 

40,000 cells were seeded per well into a collagen-coated 96-well dish 24 hours prior to drug 455 

treatment. 100μL of media containing the highest drug concentration was added to the first well. 456 

Six serial 1:5 dilutions were made (all samples were performed in triplicate). Drugs were incubated 457 

on cells for 24 hours. Media was removed and cells were washed 2X with serum-free media and 458 

were infected with WT SA11 Rotavirus expressing mKate at MOI 0.1 (calculated in MA104 459 

cells) diluted in serum-free media. Rotavirus was previously activated for 30 minutes at 37°C in 460 

serum-free media containing 2 µg/ml trypsin. Infection was allowed to proceed for 1 hour. 461 

Following infection, virus was removed and cells were washed 1X with serum-free media. Media 462 

containing drugs and 0.5 µg/ml trypsin were added back to cells to allow for Rotavirus 463 

propagation. 24 hours post-infection cells were fixed with 2% PFA for 15 mins and then stained 464 

with DAPI. Cells were imaged in 1X PBS on a Cell Discoverer 7 using a 5X objective. 465 

Quantifications of infection was carried out by quantifying the number of infected cells (mKate 466 

positive cells) in infected and not infected samples using CellProfiler. 467 
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SARS-CoV-2 infection of human colon organoids-derived 2D primary cell cultures 468 

Organoids were cultured in 24-well plates in basal medium for 5-7 days following the original 469 

protocol of Sato and co-workers 41. To obtain human colon organoids-derived 2D primary cell 470 

cultures, the medium was removed from the 24-well plates, organoids were washed 1X with cold 471 

PBS and spun (450g for 5 mins). PBS was removed and organoids were digested with 0.5% 472 

Trypsin-EDTA (Life technologies) for 5 mins at 37°C. Digestion was stopped by addition of serum 473 

containing medium. Digested-organoids were spun again at 450g for 5 mins and the supernatant 474 

was removed and digested organoids were re-suspended in basal media at a ratio of 250 µL 475 

media/well (corresponding to approximately 400 organoids per ml). Prior seeding, the 48-well 476 

tissue culture plates were coated with 2.5% human collagen in water for 1 h at 37°C. The collagen 477 

mixture was removed from the 48-well plate and 250 µL of trypsin-digested organoids 478 

(corresponding to about 100 digested organoids) were added to each well. 48 hours post-seeding 479 

differentiation media (Supplementary Table 3) was added to cells and 4 days post-differentiation 480 

cells were treated with drugs at the indicated concentrations for 2 hours prior to SARS-CoV-2 481 

infection. Media containing drugs was removed and 106 focus forming units (FFU) (as determined 482 

in Vero cells) of SARS-CoV-2 was added to each well for 1 hour at 37°C. Following 1 hour 483 

incubation, virus was removed and fresh differentiation media containing drugs was added to 484 

cells. 24 hours post-infection RNA was harvested, and virus replication was monitored by RT-485 

qPCR. 486 

Estimation of the antiviral effect 487 

We define the antiviral effect of a drug as its viability-normalized effect on SARS-CoV-2 488 

replication. The antiviral effect was quantified as the log-ratio between virus replication and cell 489 

viability reduction relative to vehicle-treated controls. Statistical significance was estimated by 490 

Student’s t-test for each evaluated drug concentration, and multiple-hypothesis testing due to the 491 
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multiple evaluated concentrations was corrected using the conservative Bonferroni’s method. 492 

Multiple hypothesis testing due to multiple evaluated drugs was further corrected by Benjamini-493 

Hochberg False Discovery Rate (FDR).  494 

Drugs predicted by ViroTreat were considered validated when showing a significant antiviral effect 495 

(FDR < 0.05) and a reduction in virus replication of at least 20%. This additional criterium was 496 

used to increase the stringency when evaluating the predictions and the threshold was inferred 497 

by fitting a gaussian mixture model (GMM) to the relative replication in response to all evaluated 498 

drugs (Supplementary Fig. 9). This analysis identified four groups of drugs—i.e. components of 499 

the GMM analysis. The first two groups, based on their mean, showed an average decrease in 500 

infectivity of  65% and 30%; the third group showed an average decrease in infectivity close to 501 

zero (3.5%);  and the forth group showed an average increased in infectivity of 29% 502 

(Supplementary Fig. 9). Based on this analysis, we empirically estimated 20% as a reasonable 503 

threshold distinguishing drugs that inhibit viral replication (first and second groups) from drugs 504 

that showed no effect or increased replication (third and fourth groups, see Supplementary Fig. 505 

9). The GMM analysis was performed using the mixtools package available on CRAN 506 

(https://cran.r-project.org/web/packages/mixtools/index.html) (Supplementary Fig. 9). 507 

RNA isolation, cDNA, and RT-qPCR 508 

RNA was harvested from cells using RNAeasy RNA extraction kit (Qiagen) as per manufactures 509 

instructions. cDNA was made using iSCRIPT reverse transcriptase (BioRad) from 250 ng of total 510 

RNA as per manufactures instructions. RT-qPCR was performed using iTaq SYBR green 511 

(BioRad) as per manufacturer’s instructions, TBP or HPRT1 were used as normalizing genes. 512 

See Supplementary Table 4 for primers used. 513 

VIPER analysis of bulk RNA-Seq datasets 514 



 27 

The source for all the datasets is listed in Supplementary Table 1. RNA-Seq raw-counts data for 515 

Calu-3, H1299 and Caco-2 cell line models were obtained from Gene Expression Omnibus 516 

Database (GEO, GSE148729) 18. Raw-counts data for A549 cell line, Normal Human Bronchial 517 

Epithelial (NHBE) primary cells, a post-mortem lung tissue sample from a COVID-19 patient and 518 

a healthy human lung biopsy were downloaded from GEO (GSE147507) 43. Normalized data 519 

(Transcript per Kilobase Million, TPM) for lung organoids were downloaded from GEO 520 

(GSE160435). Raw-count data was normalized using the variance stabilization transformation 521 

(VST) procedure as implemented in the DESeq package from Bioconductor 44. 522 

Differential gene expression signatures for the Wyler’s dataset 18 (GSE148729) were computed 523 

by comparing the SARS-CoV-2 infected samples against the centroid—i.e. the average 524 

expression of each gene—of the closest matched non-infected (mock) samples as identified by 525 

unsupervised clustering. Specifically, we first performed K-means cluster analysis of the 526 

normalized gene expression profiles. The optimal number of clusters was estimated by silhouette-527 

score analysis as implemented in the “fviz_nbclust” function of the “factoextra” package 528 

(https://cran.r-project.org/web/packages/factoextra/index.html). Cluster solutions were evaluated 529 

from k=2 to k=10 and the solution with the highest average of silhouette scores was considered 530 

as optimal. Based on the optimal cluster solution, we selected as reference for each infected 531 

sample the centroid of the mock samples within the same cluster. In cases of clusters constituted 532 

by infected samples only, the centroid of the mock samples in the closest cluster were used as 533 

reference. Because a two clusters solution was estimated as optimal for all cluster analysis, the 534 

other cluster was the trivial closest cluster solution in all cases. Cluster solutions with less than 535 

two samples per cluster were considered ineffective. For Calu-3 cell line, we noticed that samples 536 

associated to the two series (series-1 and series-2) clustered separately—i.e. samples clustered 537 

according to series memberships.  To avoid possible batch effects in the analysis, the samples of 538 

these two series were re-clustered separately to identify the best matched mock control samples 539 
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in each series independently. For series-1, the mock samples at 4h and 24h clustered together 540 

and were used as reference to compute the differential expression signatures of all the Calu-3 541 

SARS-CoV-2 infected samples. For series-2, three mock samples, including one mock sample at 542 

4h and two mock samples at 12h clustered together and were used as reference to compute the 543 

differential expression signatures for all the Calu-3 SARS-CoV-2 infected samples. Of note, in 544 

series-2, one mock sample at 4h (GSM4477923) clustered separately from all the other samples 545 

with a silhouette score of zero which indicates no clear cluster assignment. This sample was 546 

considered as outlier and excluded from the downstream analysis. For the Caco-2 cell line, the 547 

centroid of the 4h mock samples was used as reference to compute the differential expression 548 

signatures of the SARS-CoV-2 infected samples at 4h and 12h, while the centroid of 24h mock 549 

samples was used as reference to compute the differential expression signatures of the 24h 550 

SARS-CoV-2 infected samples. For the H1299 cell line, the centroid of the 4h mock samples was 551 

used as reference to compute the differential expression signatures of the SARS-CoV-2 infected 552 

samples at 4h and 12h; and the centroid of the 36h mock samples was used as reference to 553 

compute the differential expression signatures of the 36h SARS-CoV-2 infected samples. 554 

Differential gene expression signatures for the Blanco-Melo’s dataset 43 (GSE147507) were 555 

computed using the centroid of the matched—i.e. same cell line or primary cells—mock control 556 

samples as reference. For the post-mortem human lung sample from a COVID-19 patient, the 557 

differential gene expression signature was computed using the healthy human lung biopsy 558 

samples as reference. 559 

Differential gene expression signatures for the lung organoid sample was computed using as 560 

reference its matched mock control sample. 561 

The differential activity of 5,734 proteins, including 1,723 transcription factors, 630 co-transcription 562 

factors, and 3,381 signaling proteins, was estimated for each of the differential gene expression 563 
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signatures with the VIPER algorithm 9, using matched context-specific models of transcriptional 564 

regulation. Lung, colon and rectal adenocarcinoma context-specific models of transcriptional 565 

regulation were reverse-engineered, based on 517 lung, 459 colon and 167 rectal 566 

adenocarcinoma samples in The Cancer Genome Atlas (TCGA) with the ARACNe algorithm 10,45, 567 

as discussed in 16. While, ideally, regulatory networks from non-cancer-related epithelial cells may 568 

have been more appropriate, use of cancer-related regulatory networks is justified by the high 569 

conservation of protein transcriptional targets in cancer-related and normal cells from the same 570 

lineage 11. The regulatory models are available as part of the aracne.networks R package from 571 

Bioconductor. Specifically, protein activity signatures in response to SARS-CoV-2 infection of the 572 

lung adenocarcinoma cell lines (Calu-3, H1299 and A549), lung organoids and human lung tissue 573 

samples were inferred with the VIPER algorithm using the lung adenocarcinoma context-specific 574 

network. Protein activity signatures for Caco-2 colorectal carcinoma cell line were estimate with 575 

the metaVIPER algorithm 13 using the colon and rectal adenocarcinoma context-specific 576 

networks. 577 

The VIPER-inferred protein activity signatures of infected samples at the same time point in the 578 

same cell line were integrated using the Stouffer method 46. 579 

VIPER analysis of scRNA-Seq datasets 580 

Single-cell (sc)RNAseq count matrices, based on Unique Molecular Identifiers (UMI), for Calu-3 581 

and H1299 lung adenocarcinoma cell lines were downloaded from GEO (GSE148729). Both 582 

count matrices were already filtered for low quality cells as described 18. Count matrices (UMI) 583 

from ileum and colon organoids were made available by Boulant lab and are also publicly 584 

available on GEO (GSE156760). Count matrices were filtered for low quality cells as described 585 

by Triana et al., 2021 42. 586 
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In contrast to bulk RNASeq profiles, single cell RNASeq profiles (scRNASeq) allow effective 587 

identification of the individual cells likely to be infected by the virus, which commonly represent a 588 

minority of cells in a culture. For this study, therefore, we defined cells to be infected if they present 589 

at least one sequenced read mapped to the SARS-CoV-2 genome. Critically, gene expression 590 

signatures based on scRNASeq profiles, as computed by comparing bona fide infected cells to 591 

non-infected controls, are less affected by contamination and dilution effects characteristic of bulk 592 

RNASeq-derived signatures, resulting from a variable proportion of infected vs. non-infected cells.  593 

To account for confounding effects and gene expression profile heterogeneity associated with 594 

mechanisms that are independent of viral infection 18,42—such as cell cycle and the use of models 595 

derived from cancer cell lines 47—differential expression signatures between infected and non-596 

infected single cells were computed by comparing each infected cell to its k = 50 closest non-597 

infected ones (Supplementary Fig. 1). This approach significantly improved accuracy and 598 

reproducibility of differential gene expression signatures, including across different cell lines, by 599 

minimizing confounding effects not associated with viral infection. To identify mock controls cells 600 

for each individual infected cell we transformed the count matrices to count per million (CPM) and 601 

subsequently to VIPER-inferred protein activity signatures. Briefly, gene expression profiles were 602 

transformed to differential gene expression signatures using the “scale” method—i.e. z-score 603 

transformation—as implemented in the VIPER package 9. Then, using lung adenocarcinoma 604 

context-specific models of transcriptional regulation, we transformed the single-cell gene 605 

expression signature matrices for Calu-3 and H1299 cell lines to VIPER-inferred protein activity 606 

signature matrices. Similarly, using colon and rectal adenocarcinoma context-specific networks, 607 

we transformed the single-cell gene expression signature matrices for ileum and colon organoids 608 

to the corresponding metaVIPER-inferred protein activity signature matrices.  609 

The phenotypic state similarity between cells of the same dataset was quantified by the euclidean 610 

distance, calculated based on the top 100 principal components of the VIPER-inferred protein 611 
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activity matrix. Briefly, the Singular Value Decomposition (SVD) was used to estimate the matrix 612 

of cells by eigenproteins (principal components), and linear regression analysis was used to 613 

identify the components (eigenprotein vectors) significantly associated to the viral infection, 614 

expressed as the sum of the normalized UMI viral counts—counts mapping to the SARS-CoV-2 615 

genome. For ileum and colon, the vectors of viral counts were generated by summing the 616 

normalized counts generated by targeted sequencing analysis 42. Principal components 617 

significantly associated with infection (p < 0.05) were removed from the PCA space. Next, we 618 

performed a K-Nearest Neighbors (KNN) analysis in the dimensionally reduced PCA space, 619 

considering the top 100 infection-independent principal components, to identify the phenotypically 620 

closest 50 mock cells for each of the infected cells. The KNN analysis was performed using the 621 

FNN package 48. The 50 phenotypically closest mock cells were used as reference to compute 622 

the SARS-CoV-2-induced differential gene expression signature for each of the infected cells. 623 

Specifically, the differential gene expression signature for each infected cell was estimated by 624 

subtracting the mean expression of the 50 phenotypically closest mock cells and dividing by their 625 

standard deviation. For Calu-3 and H1299 cell lines, we considered as “SARS-CoV-2-infected” 626 

all the cells with at least 1 sequencing read mapping to the SARS-CoV-2 genome.  For ileum and 627 

colon, we considered as “SCOV2-infected”, all cells identified by targeted sequencing 42. 628 

The differential gene expression signatures of SARS-CoV-2 infected cells were transformed to 629 

inferred protein activity signatures by VIPER and metaVIPER algorithms, as described above. 630 

Single-cell protein activity signatures of each data set were integrated by arithmetic mean at each 631 

available time point for each cell line. 632 

Similarity of VIPER-inferred protein activity signatures 633 

The conservation of MR proteins between VIPER-inferred protein activity signatures was 634 

quantified by the reciprocal enrichment of the top 25 most activated, and the top 25 most 635 
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inactivated proteins in signature S1 in proteins differentially active in signature S2 and vice versa 636 

49, as implemented by the viperSimilarity() function in the viper package from Bioconductor. 637 

Enrichment of biological hallmarks on SARS-CoV-2 infection-induced protein activity 638 

signatures 639 

Hallmarks gene sets (v.7.2) were downloaded from the molecular signatures database (MSigDB) 640 

website (http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). Enrichment of the MsigBD 641 

biological hallmarks protein-sets on the SARS-CoV-2 induced, VIPER-inferred protein activity 642 

signatures, with the aREA algorithm 9. 643 

Enrichment of Viral Checkpoint MRs on infection essential genes identified by CRISPR 644 

screens 645 

CRISPR screen results (z-score) were downloaded from the supplementary data of Wei et.al 6 646 

(Vero-E6 cells) and Schneider et. 4 (Huh-7.5 cells). Z-scores were integrated across all 647 

experimental conditions for each cell line using the Stouffer’s method. Enrichment of the top 50 648 

most activated, and the top 50 most inactivated proteins in response to SARS-CoV-2 infection, 649 

obtained after integrating (average) all 10 single-cell protein activity signatures, on each CRISPR 650 

experiment z-score signature, and on their Stouffer’s integration, were estimated by GSEA. 651 

Normalized Enrichment Score (NES) and p-value were estimated by permuting the genes in the 652 

CRISPR signatures 10,000 times uniformly at random. SARS-CoV-2 inactivated MRs essential 653 

for infectivity were identified as the genes in the leading-edge for the GSEA of the inactivated 654 

MRs on the integrated CRISPR screen signature. 655 

Enrichment of SARS-CoV-2 interacting protein on host proteins differentially active in 656 

response to SARS-CoV-2 infection 657 
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A list of 332 SARS-CoV-2 interacting proteins was obtained from the supplementary materials of 658 

Gordon et al., 2. 90 of the 332 interacting proteins were represented among the regulatory proteins 659 

for which we could infer their activity. Enrichment analysis of this 90 SARS-CoV-2 interacting 660 

proteins on the VIPER-inferred protein activity signatures was performed by GSEA. NES and p-661 

values were estimated by permuting the VIPER-inferred protein activity signatures 10,000 times 662 

uniformly at random. 663 

ViroTreat analysis 664 

We have previously shown that tumor checkpoints can be pharmacologically switched, either off 665 

8,12,17,50,51 or on 16, leading to their collapse and loss of viability or gain of associated functional 666 

properties, respectively. This observation was instrumental for the development and validation of 667 

the NY CLIA certified, VIPER-based methodology OncoTreat, for the prioritization of small 668 

molecule compounds that can either inactivate or activate a tumor checkpoint on a sample-by-669 

sample basis, with critical applications in precision oncology 8. Based on the successful outcomes 670 

observed with OncoTreat when evaluated in the context of tumor suppression, we sought to 671 

develop a novel, analogous algorithm, ViroTreat, to identify small molecule compounds capable 672 

of suppressing viral infection by targeting the Viral Checkpoint module. Similar to its use in cancer, 673 

ViroTreat systematically assesses and prioritizes a small-molecule compound’s ability to reverse 674 

the activity of a set of MR proteins based on large-scale drug perturbation assays in cell lines that 675 

recapitulate (a) the regulatory model of the target cellular population and (b) the activity of MR 676 

proteins. Specifically, perturbational assay data are comprised of RNASeq profiles generated at 677 

24h (by PLATE-Seq assays 31), following treatment of MR-matched cell lines with a library of FDA-678 

approved and late-stage experimental drugs (in Phase 2 and 3 clinical trials) and DMSO as 679 

control. These profiles are then used to assess the differential activity of relevant MRs in drug vs. 680 

DMSO-treated cells. Finally, enrichment of MR proteins in proteins whose activity has been 681 

inverted by the drug is computed by protein set enrichment analysis (PSEA) using the aREA 682 
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algorithm 8,52. The RNASeq profiles used for ViroTreat analysis were generated at 24h following 683 

treatment of LoVo cells with a repertoire of 154 FDA-approved oncology drugs. Perturbations 684 

were performed at each drug’s highest sublethal concentration (48h IC20) or maximum serum 685 

concentration (Cmax) at its Maximum Tolerated Dose (MTD), whichever was lower. This was done 686 

to prevent confounding effects, unrelated to the drug MoA, resulting from cell death or stress 687 

pathway activation. RNASeq data was generated using PLATE-Seq, a fully automated, 96-well 688 

based assay 31 (Supplementary Table 2). 689 
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 849 

Supplementary Figure 1. Diagram showing the workflow used to compute the protein 850 

activity signatures induced by SARS-CoV-2 infection from scRNA-Seq data. Related to 851 

Figure 2 and methods. Normalized single-cell gene expression profiles for all cells of the same 852 

model (i.e. Calu3, H1299, colon and ileum) were transformed to differential gene expression 853 

signatures by applying the z-score procedure. Single-cell differential gene expression signatures 854 

were then transformed to protein activity profiles by applying the VIPER algorithm with context-855 

specific regulatory networks. A principal component analysis (PCA) was performed on these 856 

VIPER-inferred protein activity profiles. For each infected cell the closest 50 mock cells in the 857 

PCA space were selected as reference to compute a SARS-CoV-2 induced differential gene 858 

expression signature. The VIPER algorithm was then applied to these SARS-CoV-2 induced 859 

differential gene expression signatures to infer SARS-CoV-2 induced protein activity signatures.  860 
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 862 

Supplementary Figure 2. Conservation of VIPER-inferred Viral Checkpoint. Related to 863 

Figure 2. a. Heatmap showing the conservation across single-cell and bulk-tissue samples. 864 

Results are expressed as -log10(p-value), estimated by the reciprocal enrichment of the 25 most 865 

activated and 25 most inactivated proteins in each signature using the aREA algorithm as 866 

implemented in the viperSimilarity function of the VIPER package. b-c. Conservation specifically 867 

for the top 50 most activated proteins (b) and most inactivated proteins (c) in response to SARS-868 

CoV-2 infection between time points and models profiled at the single-cell level. 869 
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 871 

Supplementary Figure 3. Enrichment of host factors known to physically interact with 872 

SARS-CoV-2 proteins on the host proteins differentially active in response to viral 873 

infection. Related to Figure 2. GSEA showing the enrichment for the SARS-CoV-2 interacting 874 

proteins in the individual SARS-CoV-2 induced protein activity signatures. NES and p-values were 875 

estimated by one-tailed test and 1,000 permutations. 876 
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 878 

Supplementary Figure 4. Enrichment of candidate SARS-CoV-2 infection MR proteins on 879 

host factors essential for SARS-CoV-2 infectivity. Related to Figure 2. GSEA showing the 880 

enrichment of the top 50 most inactivated proteins in response to SARS-CoV-2 infection 881 

(inactivated candidate MR proteins) on the antiviral essential genes (a-c), but no enrichment of 882 

the top 50 most activated proteins in response to SARS-CoV-2 infection (activated candidate MR 883 

proteins) on the pro-viral essential genes (d-f), identified by 2 CRISPR screens (a, b, d and e) and 884 

their integration (c and f). 885 
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 887 

Supplementary Figure 5. Conserved activity of MR proteins between cell line models 888 

susceptible to SARS-CoV-2 infection (Caco-2, Calu-3, ACE2-A549 and H1299) and the 889 

lineage context-matched cell lines included in the drug perturbation PANACEA resource 890 

(LoVo and NCI-H1793). Related to Figure 2-3. a. GSEA for the enrichment of the Caco-2 top 891 

25 most activated and top 25 most inactivated proteins in the LoVo protein activity signature. b. 892 

GSEA for the enrichment of the LoVo top 25 most activated and top 25 most inactivated proteins 893 

in the Caco-2 protein activity signature. c. GSEA for the enrichment of the Calu-3 top 25 most 894 

activated and top 25 most inactivated proteins in the NCI-H1793 protein activity signature. d. 895 

GSEA for the enrichment of the NCI-H1793 top 25 most activated and top 25 most inactivated 896 

proteins in the Calu-3 protein activity signature. e. GSEA for the enrichment of the ACE2-A549 897 
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top 25 most activated and top 25 most inactivated proteins in the NCI-H1793 protein activity 898 

signature. f. GSEA for the enrichment of the NCI-H1793 top 25 most activated and top 25 most 899 

inactivated proteins in the ACE2-A549protein activity signature. g. GSEA for the enrichment of 900 

the H1299 top 25 most activated and top 25 most inactivated proteins in the NCI-H1793 protein 901 

activity signature. h. GSEA for the enrichment of the NCI-H1793 top 25 most activated and top 902 

25 most inactivated proteins in the H1299 protein activity signature. Normalized enrichment score 903 

(NES) and p-value were estimated by two-tailed test and 1,000 permutations. 904 

  905 
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 906 

Supplementary Figure 6. Experimental evaluation of the antiviral effect of FDA-approved 907 

drugs in Caco-2 cells. Related to Figure 4 and Supplementary Table 2. a. 15 of the 18 drugs 908 

predicted by ViroTreat showing significant antiviral effect (FDR < 0.05 and ≥ 20% viral replication 909 

decrease). b. 3 of the 18 drugs predicted by ViroTreat showing no significant antiviral effect. c. 910 

12 drugs not significant by ViroTreat (p ≥ 0.01) selected as putative negative controls. The scatter-911 

plots show the effect of each drug¾SARS-CoV-2 replication shown in cyan and cell viability in 912 

red¾relative to vehicle control (y-axis), assayed at different concentrations (x-axis) in triplicate. 913 

The lines indicate the average across replicates. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 10-914 

4, ****** p < 10-6, 1-tailed Student’s t-test, BC. 915 
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 917 

Supplementary Figure 7. Experimental evaluation of 8 drugs, predicted by ViroTreat and 918 

showing the strongest SARS-CoV-2 antiviral effect in Caco-2 cells, for their effect on 919 

rotavirus replication. Related to Figure 4 and Supplementary Table 2. The scatter-plots show 920 

the effect of each drug¾rotavirus replication shown in cyan and cell viability in red¾relative to 921 

vehicle control (y-axis), assayed at different concentrations (x-axis) in triplicate. The lines indicate 922 

the average across replicates. * p < 0.05, 1-tailed Student’s t-test, BC. 923 

  924 

Feature Cells Infection

0

50

100

150
0

0
.0

0
8

0
.0

4

0
.2 1 5

2
5

1
2
0

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Exemestane

 *

0

50

100

150

0

0
.0

8

0
.4 2

1
0

5
0

2
5
0

1
2
0
0

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Cyclosporine

0

50

100

150

0

0
.0

4

0
.2 1 5

2
5

1
2
0

6
2
0

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Amiodarone

0

50

100

150

0

0
.0

1
2

0
.0

6

0
.3

1
.5

7
.5 3
8

1
9
0

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Bosutinib

0

50

100

150

0

0
.0

0
4

0
.0

2

0
.1

0
.5

2
.5 1
2

6
2

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Vorinostat

0

50

100

150

0

8
e
−
0
6

4
e
−
0
5

2
e
−
0
4

0
.0

0
1

0
.0

0
5

0
.0

2
5

0
.1

2

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Idarubicin

 *

0

50

100

150

0

0
.0

1
2

0
.0

6

0
.3

1
.5

7
.5 3
8

1
9
0

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Osimertinib

0

50

100

150

0

0
.0

8

0
.4 2

1
0

5
0

2
5
0

1
2
0
0

Concentration (µM)

R
e

la
tv

iv
e

 e
ff
e

c
t 

(%
)

Bicalutamide



 48 

 925 

Supplementary Figure 8. Experimental evaluation of the antiviral effect of FDA-approved 926 

drugs in lung adenocarcinoma cell lines. Related to Figure 4 and Supplementary Table 2. 927 

A set of drugs, predicted by ViroTreat for the GI context and with validated antiviral effect in Caco-928 

2 cells were evaluated in Calu-3 (a) and A549-ACE2 (b) cells. The scatter-plots show the effect 929 

of each drug¾SARS-CoV-2 replication shown in cyan and cell viability in red¾relative to vehicle 930 

control (y-axis), assayed at different concentrations (x-axis) in triplicate. The lines indicate the 931 

average across replicates. * p < 0.05, ** p < 0.01, **** p < 10-4, 1-tailed Student’s t-test, BC. 932 
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 934 

Supplementary Figure 9. Distribution for the relative effect of the evaluated drugs on 935 

SARS-CoV-2 replication. Related to Figure 4. Histogram and Gaussian Mixture Model (GMM) 936 

fitted to the relative effect of the drugs, expressed as percentage, on SARCS-CoV-2 replication 937 

in Caco-2 cells. The dashed orange vertical line represents the threshold of 20% used as 938 

additional criteria when considering the antiviral effect of a drug. 939 
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Supplementary Table 1: SARS-CoV-2 host cell RNA-Seq and scRNA-Seq datasets. 943 

Model Type of Data Publication Source 

Calu3 Bulk RNASeq Wyler et al.1 (GEO) GSE148729 

H1299 Bulk RNASeq Wyler et al.1 (GEO) GSE148729 

Caco2 Bulk RNASeq Wyler et al.1 (GEO) GSE148729 

A549 Bulk RNASeq Blanco Melo et al.2 (GEO) GSE147507 

Lung Organoids Bulk RNASeq   (GEO) GSE160435 

NHBE Bulk RNASeq Blanco Melo et al.2 (GEO) GSE147507 

Human lung Bulk RNASeq Blanco Melo et al.2 (GEO) GSE147507 

Calu3 scRNASeq Wyler et al.1 (GEO) GSE148729 

H1299 scRNASeq Wyler et al.1 (GEO) GSE148729 

Ileum scRNASeq Triana et al.3 Boulant  Lab 

Colon  scRNASeq Triana et al.3 Boulant  Lab 

Vero6 CRISPRcas9  Wei et al.4 Supplementary Data 

A549 CRISPRcas9  Daniloski et al.5 Supplementary Data 

Huh-7.5 CRISPRcas9  Wang et al.6 Supplementary Data 

Huh-7.5 CRISPRcas9  Schneider et al.7 Supplementary Data 
 944 
1Wyler, E., et al. (2021). iScience 24(3): 102151. 945 
2Blanco-Melo, D., et al. (2020). Cell 181(5): 1036-1045 e1039. 946 
3Triana, S., et al. (2021). Mol Syst Biol 17(4): e10232. 947 
4Wei, J., et al. (2021). Cell 184(1): 76-91 e13. 948 
5Daniloski, Z., et al. (2021). Cell 184(1): 92-105 e116. 949 
6Wang, R., et al. (2021). Cell 184(1): 106-119 e114. 950 
7Schneider, W. M., et al. (2021). Cell 184(1): 120-132 e114. 951 
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Supplementary Table 2: Drugs library, ViroTreat and focused validation screen results. 953 

< See supplementary file Table-S2.xlsx > 954 
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Supplementary Table 3: Organoids’ culture media. 956 

Compound Final concentration 

Basal media  

Ad DMEM/F12  
+GlutaMAX 

+HEPES 

+P/S 

 

 

L-WRN 50% by volume 

B27 1:50 

N-acetyl-cysteine 1 mM  
EGF 50 ng/mL 

A83-01 500 nM 

IGF-1 100 ng/mL 
FGF basic 50 ng/mL 

Gastrin 10 mM 

  

Differentiation Media  
Ad DMEM/F12  

+GlutaMAX 

+HEPES 
+P/S 

 

 

B27 1:50 

N-acetyl-cysteine 1 mM  
R-spondin 5% by volume 

Noggin 50 ng/mL 

EGF 50 ng/mL 
Gastrin 10 mM 

A83-01 500 nM 
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Supplementary Table 4: PCR primers. 958 

Gene name Species Forward sequence Reverse sequence 

HPRT1 Human cct ggc gtc gtg att agt gat aga cgt tca gtc ctg tcc ata a 

COV1 SARS-CoV-2 gcc tct tct gtt cct cat cac aga cag cat cac cgc cat tg 

 959 

 960 
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