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Abstract

Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers

for phenotype ascertainment. Phenotypes for such diseases are often identified on the

basis of clinically defined criteria; however such criteria may not be suitable for understand-

ing the genetic composition of the diseases. Various statistical approaches have been pro-

posed for phenotype definition; however our previous studies have shown that differences

in phenotypes estimated using different approaches have substantial impact on subsequent

analyses. Instead of obtaining results based upon a single model, we propose a new

method, using Bayesian model averaging to overcome problems associated with phenotype

definition. Although Bayesian model averaging has been used in other fields of research,

this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained

using multiple models. We illustrate the new method by applying it to simulated genetic and

phenotypic data for Kofendred personality disorder—an imaginary disease with several

sub-types. Two separate statistical methods were used to identify clusters of individuals

with distinct phenotypes: latent class analysis and grade of membership. Bayesian model

averaging was then used to combine the two clusterings for the purpose of subsequent link-

age analyses. We found that causative genetic loci for the disease produced higher LOD

scores using model averaging than under either individual model separately. We attribute

this improvement to consolidation of the cores of phenotype clusters identified using each

individual method.

Introduction

An important goal of genetic research is to understand the composition and genetic architec-

ture of a heritable phenotype. Springboarding from the rapid reduction in the cost of genotyp-

ing and increases in computational ability, many studies have been published on the

identification of different classes or subgroups of individuals based on phenotype data. In

humans alone, phenotypic classes have been identified for diverse problems ranging across
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food acceptance [1], social behaviour (e.g. nicotine dependence) [2], psychological disorders

(e.g schizophrenia) [3] and a wide variety of diseases [4–6]. The results of these phenotype

analyses are often then subjected to genetic analyses in order to identify genes that are associ-

ated with, or can differentiate between, phenotype classes.

For many diseases without clear biomarkers, phenotypes are identified on the basis of clini-

cally defined criteria. While these criteria assist in clinical diagnostics, they may not be suitable

for understanding the genetic architecture of the disorder [7]. Thus different statistical meth-

ods for phenotype definition have been proposed, including latent class analysis [8], grade of

membership [9], item response theory [10], factor analysis [11, 12], discriminant analysis [13]

and factor mixture analysis [14]. However, different approaches can result in the identification

of slightly, or sometimes substantially, different phenotype classes, and we have shown else-

where that this can in turn significantly affect the results of subsequent analyses [15]. As phe-

notype identification is an indispensable precursor to most modern genetic analyses,

including association studies, QTL analyses and family-based (linkage) analyses, methods for

definitive phenotype calling are of fundamental importance.

To illustrate the issues arising in phenotype definition, we focus here on a simulated dataset

generated for the Genetic Analysis Workshop 14 [16]. The aim of the simulation was to reflect

difficulties associated with defining a phenotype for a hypothetical psychiatric condition,

Kofendred Personality Disorder (KPD; see Table 4 of Greenberg et al. [16]). The disease has

three different phenotypes (P1, P2, P3) and the traits characteristic of each phenotype overlap

(see Fig 1). P3 has all the traits (symptoms) of P1 and P2; and P2 has nearly all the symptoms

of P1. A full description of each symptom is given in Table 1.

Given the extensive overlap among the traits of the three phenotypes, it is not surprising

that different statistical methods identify different clusters of individuals and symptoms. This

problem can be addressed by various methods, including model selection and model averag-

ing. In model selection, one chooses a single model, based on a criterion such as the Likelihood

Ratio (LR), Akaike Information Criterion (AIC), Bayesian information criterion (BIC), Bayes

Factor (BF) or posterior predictive probabilities (PPP). However, a number of researchers

have recognised that this practice ignores model uncertainty [17–22]. The term model uncer-
tainty refers to the unknown mathematical structure of the process generating the data; it is

typically used in contrast to parameter uncertainty, which refers to the unknown values of the

parameters of a fixed model. Ignoring model uncertainty can potentially result in underesti-

mation of the uncertainty in the quantities of interest [23] and overemphasis on interpretation

of results and association identified in the model at the expense of alternative explanations

provided by closely comparable models. Furthermore, the choice of criterion for model selec-

tion can often be arbitrary and sometimes debatable; see, for example, the discussion on the

validity of the Deviance Information Criterion (DIC) for different models by Spiegelhalter

et al. [24].

Bayesian model averaging (BMA) potentially provides a coherent mechanism to account

for model uncertainty [17, 25]. Bayesian methods quantify both model and parameter uncer-

tainty in terms of probability. The term posterior probability or posterior distribution is used to

describe the probabilities associated with parameters and models after (ie. posterior to) consid-

eration of relevant data. The term is used in contrast to prior probability, which describes the

probabilities associated with models before (prior to) consideration of data. The idea of BMA

is to average posterior distributions estimated using different models, where the weight for

each model depends on the posterior model probability. Madigan et al. [23] and Raftery et al.

[26] have noted that the use of BMA can improve predictive performance. Various works have

been published on methods of BMA [17, 18, 23, 26, 27]. Hoeting et al. [17] provides a thorough

overview of the history, implementation, challenges and solutions for BMA. Hoeting [28] also
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provides a summary of BMA methodologies and lists corresponding software for carrying out

the analyses.

Although the use of BMA in genetic research is not as common as in other areas of science,

some published papers have incorporated these ideas in analysis. For instance, Yeung et al.

[29] applied BMA for gene selection and classification of microarray data. Annest et al. [30]

extended earlier research by incorporating iterative BMA for survival analysis. The use of

BMA has also been implemented in the study of phylogenetics [31] and genome-wide associa-

tion studies for identifying subsets of SNPs [32].

We propose here a new method to define phenotype classes. The method allows for the

integration of estimated phenotypes obtained from multiple models both within and across

phenotype classification approaches. Our approach to integration is similar to the “M-open

perspective” discussed in Bernado and Smith [33] and Hoeting et al. [17].

The models used for illustration of the method are latent class analysis (LCA) and grade of

membership (GoM). Both of these are commonly implemented in genetic research for deriv-

ing phenotypic traits of complex diseases prior to linkage or association studies, as described

Fig 1. The overlapping of the traits for each of the true phenotypes. Letters b, c, d, e, f, g and h

correspond to the symptoms listed in Table 4 of Greenberg [16] (also in Table 1).

https://doi.org/10.1371/journal.pone.0176136.g001
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below. Implications for subsequent linkage analyses are assessed. Although linkage analysis

has to a large extent been superseded by genome-wide association analysis, it retains some

advantages over that technique, and continues to have a place in modern genetics [34].

Data: Genetic Analysis Workshop 14

A complicated underlying genetic structure was constructed for KPD, with the involvement of

four loci, denoted D1, D2, D3 and D4. Four different phenotypes are simulated: three subtypes

of KPD labelled P1, P2 and P3, and an unaffected subtype. Table 2 shows the number of indi-

viduals with each phenotype (note that incidence rates of the three disease phenotypes are

similar).

The causal loci for each phenotype strongly overlap. The interaction of D1 and D2 results

in phenotype P1; the combinations of D2 + D3 and D3 + D4 result in phenotype P2, and the

combinations of D1 + D4 and D2 + D3 result in phenotype P3. The disease related loci, D1,

D2, D3 and D4 are located on Chromosomes 1, 4, 5 and 9 respectively. Further details of the

exact location and other genetic parameters are shown in Tables 1, 2 and 3 of Greenberg et al.

[16].

Four populations were generated in the original simulation study in order to test the effect

of different ascertainment schemes. Only one of the populations is included here, namely

Aipotu. We included Aipotu families in our analysis when at least two of the offspring have

Table 1. Clinical characteristics of KPD. This is the Kofendred Research Assessment Protocol for testing

affected/unaffected status. Note that only symptoms b, c, d, e, f, g and h are actually associated with the disor-

der; the other symptoms are included to test the ability of phenotyping methods to distinguish relevant

symptoms.

Indices Description

a Joining/founding cult

b Fear/discomfort with strangers

c Dislike of jokes told face to face

d Obsession with entertainers

e Humor impairment

f Fascination with automobiles

g Aversion to walking

h Uncommunicative, contentless speech pattern

i Fiscal irresponsibility

j Morbid anger/fear/terror concerning rain/snow

k Reluctance to wear clothing appropriate for subjective temperature

l Body-image concerns/mild body dysmorphic disorder

https://doi.org/10.1371/journal.pone.0176136.t001

Table 2. Number of individuals with each phenotype.

Phenotype and Symptoms Number of Individuals

P1 (b, e, f and h) 184

P2 (c, d, e, f, g and h) 193

P3 (b, c, d, e, f, g and h) 178

unaffected 853

https://doi.org/10.1371/journal.pone.0176136.t002
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any of the true phenotypes. There are 100 replicates and each replicate contains 100 families

(approximately 700 individuals). A subset of 210 families were randomly selected from the

entire simulated dataset for this demonstration.

The Genetic Analysis Workshop 14 study contained other interesting elements, such as sin-

gle nucleotide polymorphism data and linkage equilibrium. However, only the microsatellite

data are considered here. On average, the microsatellite markers are 7.5 centimorgan (cM)

apart and there are 416 markers available without missing data.

Materials and methods

Let Δ be a binary random variable that takes the value 1 if an individual has a particular pheno-

type (for example KPD phenotype P1) and takes the value 0 if not, where the individual is

selected uniformly at random from a given population. Suppose clinical data can be obtained

for that same individual regarding J symptoms. In our example J = 12, since we consider the 12

symptoms shown in Table 1. Let yj denote a binary response to symptom j (j = 1, . . ., J) such

that yj = 1 indicates symptom j is present in the selected individual and yj = 0 indicates the

symptom is absent. Given a data set Y ¼ ðyjÞ
J
j¼1

, the model-averaged posterior distribution of

Δ is given by:

pðDjYÞ ¼
XS

s¼1

pðDjMs;YÞpðMsjYÞ ð1Þ

where Ms denotes one of S proposed models (s = 1, . . ., S). Using Bayes’ theorem, the probabil-

ity of Ms given Y is

pðMsjYÞ ¼
pðYjMsÞpðMsÞP
lpðYjMlÞpðMlÞ

ð2Þ

where

pðYjMsÞ ¼

Z

pðYjys;MsÞpðysjMsÞdys; ð3Þ

which is called the marginal likelihood for model Ms. Here θs denotes the model parameters of

model s. In the context of this paper, as described in the section on Models and Settings below,

S = 2, M1 is the LCA model and M2 is the GoM model.

In the model-averaging method proposed here, we assume that one can generate an esti-

mate ϕis of p(Δ = 1|Ms, Yi) for each model Ms and for an individual i with symptoms indicated

by Yi. This is the probability that individual i has the phenotype of interest, here KPD pheno-

type P1, given the symptoms and model Ms. In practice, we generate a sequence of estimates

�
t
is of this probability at each iteration t of a Markov chain Monte Carlo (MCMC) technique,

and then define ϕis to be the unweighted average of �
t
is over post-burn-in iterations.

Eq (1) then generates a ‘model-averaged’ estimate ϕi of p(Δ = 1|Y):

�i ¼
XS

s¼1

�ispðMsjYÞ ð4Þ

The ‘weights’ on the right-hand side are estimated using Eqs (2) and (3). This value can be

used as the phenotype of individual i in subsequent linkage analysis. In our past experience

with migraine data [15], we observed that it makes no difference whether the phenotype used

in linkage analysis is a binary variable indicating the status of a patient (affected/not affected)

Accurate phenotyping: Reconciling approaches through Bayesian model averaging
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or a continuous variable representing the probability of an individual having the disease or dis-

order, considering all symptoms. Here it will be convenient to use the latter representation.

In practice, it may be difficult to evaluate the marginal likelihood of a model Ms, because

the integral in Eq (3) is intractable. Various methods have therefore been proposed for approx-

imating the marginal likelihood [18, 35–37]. Here we use the Laplace-Gibbs approximation

[38], a variant of the Laplace-Metropolis algorithm.

The Laplace-Metropolis algorithm is based on Laplace’s asymptotic approximation

Z

e log ðpðYjy;MsÞpðyjMsÞÞdy � ð2pÞ
d
2jH�j

1
2pðYjy�;MsÞpðy

�
jMsÞ ð5Þ

where d is the dimension of the parameter vector θ, θ� is the posterior mean value of θ and H�

is the minus inverse of the Hessian matrix, which is evaluated at θ�. Due to the difficulties in

analytical estimation of θ� and H�, Raftery [39] suggests the use of the posterior simulation out-

puts to estimate the quantities required for Eq (5), and called it a Laplace-Metropolis algo-

rithm. The Laplace-Gibbs approximation is similar, but estimates are derived from Gibbs

rather than Metropolis-Hastings samples. Lewis and Raftery [38] provide four methods for

estimating θ�, which are simple to implement.

Models and settings

We chose two statistical models, namely latent class analysis and grade of membership, to

demonstrate the model-averaging method proposed in the previous section. These two models

are commonly used for deriving phenotypes of complex diseases. Both are mixture models

and likelihood-based approaches. In this study, both models are considered in a Bayesian

framework.

For LCA, following McCutcheon [8], suppose that there are n individuals and J symptoms

(i = 1, . . ., n; j = 1, . . ., J). Let yij denote a binary response of individual i to symptom j, such

that yij = 1 indicates symptom j is present in person i. Let K denote the number of symptom

clusters, that is, the number of distinct phenotypes. Then LCA is a mixture of Bernoulli distri-

butions,

pðYijl; pÞ ¼
XK

k¼1

pkf ðYijyÞ ¼
XK

k¼1

pk

YJ

j

ðlkjÞ
yijð1 � lkjÞ

1� yij ð6Þ

where pk is the proportion of individuals in the population with phenotype k, Yi = {yi1, yi2, . . .,

yik} is a vector of symptom indicators for individual i and λkj is the probability of a positive

response on symptom j for a subject with phenotype k. Non-informative priors were adopted,

namely

ðpkÞ
K
k¼1
� Dirichletð1; :::1Þk; lkj � Betað1; 1Þ: ð7Þ

(The term non-informative prior is used to describe a prior distribution that represents a state

of minimal knowledge about a parameter, here the values pk and λkj.)
It is convenient to define indicator variables zik which take the value 1 if individual i has

phenotype k, and 0 otherwise. The advantage of this is that the conditional posterior
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distributions of p and λ take a simple form—they are Dirichlet and Beta distributions.

pk � Dirichlet
X

i

zi1 þ 1; ::
X

i

ziK þ 1

 !

lkj � Beta
X

i

ðzikyijÞ þ 1;
X

i

ðzik � zikyijÞ þ 1

 ! ð8Þ

where

zik � multinomialðdi1; :::diKÞ; dik ¼
pkf ðYijyÞP
kpkf ðYijyÞ

More detail regarding the derivation of these conditional posterior distributions is provided as

supplementary material.

These conditional distributions can then be used as the basis of an MCMC approach [40],

specifically a Gibbs sampler, to generate estimates of pk and λkj. Note that the term δik defined

above is the posterior probability that individual i has phenotype k, and thus provides the esti-

mate ϕi1 of P(Δ = 1|M1, Yi) required for model averaging, where Δ is an indicator variable for

phenotype k, and M1 is LCA.

For GoM, following Erosheva [41], let gik be a latent variable of membership score, repre-

senting the probability that individual i belongs to cluster k. This immediately provides the

estimate ϕi2 of P(Δ = 1|M2, Yi), where M2 is GoM. Constraining the number of levels of

responses in symptom j to 2, GoM is similar to a mixture of Bernoulli distributions,

PrðYijg; gÞ ¼
YJ

j¼1

X

k

gikgkj

 !yij

1 �
X

k

gikgkj

 !ð1� yijÞ
8
<

:

9
=

;
ð9Þ

where γkj is similar to λkj of the LCA model, and is the probability of having symptom j for an

individual in cluster k. Again, non-informative priors are used here,

gik � Dirichletð1; :::1Þk; gkj � Betað1; 1Þ ð10Þ

We introduce a vector of J categorical variables ωi = (ωi1, . . ., ωiJ) for each individual i. Each

ωij can take on K values from {1, . . ., K}. The latent class is then defined as ωi 2 O = {1, 2, . . .,

K}J. It is also convenient to define ωijk = 1 if ωij = k and ωijk = 0 otherwise.

A Gibbs sampler is again used to estimate the model parameters based on the conditional

posterior distributions,

gik � Dirichlet
X

j

oij1 þ 1; . . . ;
X

j

oijK þ 1

 !

gkj � Beta
X

i

ðoijkyijÞ þ 1;
X

i

ðoijk � oijkyijÞ þ 1

 ! ð11Þ

where

oijk � multinomialðkij1; . . . ; kijKÞ; kik / gikg
xij
kj ð1 � gkjÞ

1� xij

The model averaging method we describe in this paper is in principle able to cope with a

large number of clusters, (i.e. large K). However, this can be computationally burdensome.

Accurate phenotyping: Reconciling approaches through Bayesian model averaging
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Therefore we suggest limiting K to small values. In the simulated dataset, the known true num-

ber of clusters is four (three subtypes of KPD and an unaffected subtype)

We used R poLCA and sirt packages to fit LCA and GoM to the simulated dataset, and

found BIC was lowest when K = 3 in both models (Table 3). Note BIC is a common criterion

for comparing models, with lower scoring models typically preferred. For demonstration pur-

poses, the number of clusters is limited to three for both models in what follows.

One challenge of averaging over clustering models is the comparability of clusters between

models. In our experience, when K = 2, most clustering methods tend to identify groups with

extreme characteristics, that is, one group of individuals with all or most symptoms and a sec-

ond group with limited or no symptoms. Consequently, clusters are typically comparable

between models. However, when K� 3, clusters are potentially not comparable between

models.

One way to assess cluster comparability is to use a similarity matrix. Various ensemble

methods are proposed in the clustering literature [42–45] with the focus on the similarity

between observations. In our study, the main interest is to estimate the probability of each

individual belonging to a specific cluster; it is therefore more important to compare the simi-

larity between clusters than the similarity between observations. When it is clear that a cluster

identified using one model is not comparable to any of the clusters identified by another

model, we recommend that such clusters not be merged, but remain distinct for the purpose

of model averaging. We demonstrate below how this can be done.

As noted above, when K = 2 most clustering methods tend to identify one cluster represent-

ing affected individuals and one representing those not affected; therefore it is natural to see

the probability of belonging to the affected cluster as the phenotypic trait. However, the defini-

tion of phenotypic trait is less straightforward when K� 3, which may indicate there are sub-

types of the disease/disorder. Therefore, when K� 3, we propose defining up to K phenotypic

traits; corresponding to the probability of belonging to each of the affected clusters (subtypes).

Note this assumes that one or more of the clusters can be identified as representing individuals

that are clearly not affected.

Given no information to support an alternative decision, we gave equal prior probability to

each model. It is known that H� is asymptotically equal to the posterior covariance matrix

when sample size tends to infinity [46], so we approximated H� by the estimated covariance

matrix of the posterior simulation.

Given the familial pedigree and microsatellite data in the case study, QTL linkage was used

to identify important markers [47]. This identifies the linkage between the markers and disease

loci by regressing the squared trait differences of sib-pairs on identity-by-descent allele-shar-

ing. A sib-pair that shares more alleles is expected to show a similar phenotype, that is, a

smaller difference in trait value. A separate linkage analysis was performed for each of the

Table 3. Bayesian information criteria for LCA and GoM with number of components varying from 2 to

6.

Number of components LCA GoM

2 13711.18 13735.82

3 12176.3 12275.69

4 12187.76 12428.85

5 12205.95 12688.61

6 12320.34 13180.32

https://doi.org/10.1371/journal.pone.0176136.t003
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affected clusters. Note that there is no ‘correct’ choice of cluster: each affected cluster may rep-

resent a distinct sub-type and may be associated with distinct loci, though sub-types may also

have loci in common. The linkage analysis was carried out using MERLIN-qtl [48].

The algorithms were implemented using the C++ programming language. Three MCMC

chains were generated for each model with 500,000 iterations. The first 490,000 iterations were

treated as burn-in samples and were removed from analysis. Only 10,000 samples were

retained because the large number of parameters in the models, especially GoM, made storage

of samples expensive in terms of memory requirements. It was not necessary to discard

490000 samples as burn-in, as convergence was apparent from time series plots of the deviance

well within the first half of the run. This very long burn-in does, however, provide strong con-

fidence that convergence has occurred. An alternative would have been to draw 10,000 sub-

samples uniformly at random or evenly spaced from the second half of the chain, a practice

known as ‘thinning’.

Results

Considering that the KPD data was simulated with epistasis effects, and given that when test-

ing for interactions QTL linkage analysis is usually limited to detecting deviance for an addi-

tive model at a single locus (dominance) rather than testing for dependence between loci

(epistasis), it is important to first evaluate the capability of MERLIN to identify the actual loci

when the true phenotypes of individuals are known. Fig 2 shows the LOD scores of phenotypes

for each of the microsatellite markers across ten chromosomes. The solid, dashed and dotted

lines represent the LOD scores of Phenotypes 1, 2 and 3, respectively. MERLIN was able to

clearly identify the two correct disease loci of Phenotype 1, with LOD scores above 2.4. For P3,

MERLIN was able to identify two of the three major loci. It was also able to identify two of the

three disease loci for P2. One possible explanation for failing to detect some loci is that individ-

ual genotypes were simulated based on each symptom instead of phenotype classes, therefore

when only a small sample is included in the study (one tenth of all simulations) conducting

linkage analysis on a binary scheme is unable to detect some important loci.

Using the 210-families KPD data set and a Gibbs sampler, MCMC chains converged for

both the LCA and GoM models within 500,000 iterations (top of Fig 3) and marginal distribu-

tions were estimated using the last 10,000 iterations. At the bottom of Fig 3 are posterior mean

values of λjk for LCA and posterior mean values of γjk for GoM. Estimates of the phenotypes

ϕis under LCA, GoM and the combined phenotypes are available at https://github.com/cewels/

PlosOne_BMA_paper.

These figures illustrate the ability of both LCA and GoM to identify true phenotype classes.

Comparing these results with symptom combinations of true phenotypes (Fig 1), the clusters

identified by LCA are more aligned with true phenotypes than those identified by GoM. Clus-

ters 3 and 1 found by LCA correspond to true phenotypes 3 and 1 respectively, and cluster 2

corresponds to the non-KPD cluster. In contrast, GoM is only effective in separating the

extreme classes. Cluster 3 of GoM is equivalent to true phenotype 3, however clusters 1 and 2

of GoM both correspond to the non-KPD cluster and have nearly identical characteristics. It is

unlikely that this can be attributed to lack of convergence considering the results remained

unchanged when the number of MCMC iterations was doubled. It might be asked whether

there is any advantage in model averaging when the phenotypes obtained using LCA are so

close to the true phenotypes. However, we know this only because we are using simulated data;

it is not known whether LCA always gives more accurate phenotypes than GoM, or whether

LCA always gives results that so closely approximate true phenotypes.
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Fig 2. LOD scores of the phenotypes for each of the microsatellite markers across ten chromosomes. P1, P2 and P3 indicate Phenotype 1, 2 and

3. The dotted line is the LOD score of Phenotype 1 estimated using MERLIN-qtl; the dashed-line is the LOD score of Phenotype 2 and the solid line is the

LOD score of Phenotype 3. This is used as a benchmark for comparing the results of proposed methods.

https://doi.org/10.1371/journal.pone.0176136.g002
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In general, if one method produces superior phenotypes to the other, then the model-aver-

aged phenotypes will be intermediate. But which method is superior will not be known, and

model-averaged phenotypes thus reflect model uncertainty. Nevertheless, we show below that

model-averaged phenotypes can sometimes result in higher LOD scores than can be obtained

using either LCA or GoM separately.

For each phenotype, the sensitivities and specificities of LCA and GoM can also be esti-

mated using this simulated data. Both models produce phenotypes in the interval (0, 1), specif-

ically �
ð1Þ

i , �
ð2Þ

i and �
ð3Þ

i , representing probabilities of belonging to subgroups 1, 2 and 3. We

used a threshold of 0.5 and when �
ðkÞ
i � 0:5, we assigned individual i to phenotype k. Table 4

shows the sensitivities and specificities of LCA, GoM and their combination for phenotypes 1

and 3. As neither LCA nor GoM can identify phenotype 2, sensitivity and specificity for this

phenotype are not available. All models achieved perfect sensitivity and reasonable specificity

for phenotype 3, with GoM having the lowest specificity of 0.75. (However, in fairness it should

be noted that the specificity of GoM was the same as for LCA for the combined method when

Fig 3. The characteristics of clusters derived from different statistical models. Plots on the left are deviance and posterior means of symptom

prevalence in clusters of LCA and plots on the right are deviance and symptom prevalence in clusters of GoM.

https://doi.org/10.1371/journal.pone.0176136.g003
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a threshold value of 0.7 was used.) Note that LCA achieves near perfect sensitivity and specific-

ity for both phenotypes, but again it should be stressed that we can know this only because the

data is simulated. In practice, this would not be known; hence the need for model averaging to

account for model uncertainty. The sensitivity and specificity obtained with the combined

models was identical to those obtained for LCA only due to the choice of threshold value and

weight distributions.

Using Eqs (2) and (3) with Laplace-Gibbs to estimate the marginal likelihood of each

model, we obtained model weights of 0.82 for LCA and 0.18 for GoM. This confirms our

expectation that LCA is the more appropriate model for this data set, and is consistent with the

lower BIC value of this model. However, it also demonstrates that the GoM model still contrib-

utes to the phenotype value.

Clusters 1 and 2 of GoM and Cluster 2 of LCA have the lowest symptom prevalences; these

are excluded in the following linkage analysis. According to Fig 3, the symptoms characteristic

of cluster 3 of LCA and cluster 3 of GoM are nearly identical, therefore these two clusters were

averaged prior to subsequent analyses (we label this model averaged cluster K2). Note that

cluster 3 of LCA and cluster 3 of GoM correspond to high incidence of symptoms c, d, e, f, g, h

and to some extent b and k. Cluster K2 therefore corresponds to true phenotype 3, which

involves all of these symptoms except k (Fig 1). Cluster 1 of LCA does not correspond to any

of the GoM clusters, therefore we retained this cluster as distinct (we re-labelled this cluster

K1). According to Fig 3, the symptoms characteristic of this cluster are b, e, f, h and to some

degree k. Apart from k, these are precisely the symptoms of true phenotype 1 (Fig 1). We then

carried out two independent linkage analyses to identify loci associated with each of K1 and

K2.

Fig 4 shows the LOD score of quantitative trait linkage analysis for cluster K1, which is

nearly identical to the LOD scores of true phenotype 1 (Fig 2). This is not surprising given the

high sensitivity and specificity of K1 relative to true phenotype 1. Hence the results of the sub-

sequent analysis identified the same disease loci: markers in the region from D01S0020 to

D01S0025 (with the highest LOD score of 6.35 at D01S0023) and a second disease locus

around marker D03S0127.

Unlike K1, phenotype K2 is derived from averaging �
ð3Þ

i over two independent models with

heavier weight placed on LCA. Linkage analysis of K2 successfully identified all four disease

loci (Fig 5) with LOD scores all above 2.0, compared to only three marker regions identified

using the phenotype estimated using LCA alone. That the model averaged cluster identified

more of the relevant loci can be attributed to the fact that LCA must definitely assign subjects

to classes whereas GoM allows fuzzy memberships (Fig 6). Incorrect assignments made using

LCA alone reduce the power of the subsequent genetic analysis. The linkage results obtained

using the K2 phenotype also identified disease loci that were not identified when the pheno-

type was derived using the actual criteria (i.e Chromosome 3, Fig 2).

Table 4. Sensitivities and specificities of the LCA, GoM and combined method for Phenotype 1 and Phenotype 3 of LCA. None of the models identi-

fied a class with structure similar to phenotype 2.

Phenotype Model Sensitivity (%) Specificity (%)

3 LCA 1.0 0.8431

GoM 1.0 0.7504

Combined 1.0 0.8431

1 LCA or Combined 1.0 0.9984

https://doi.org/10.1371/journal.pone.0176136.t004
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When using the phenotype derived from GoM alone, the number of marker regions associ-

ated with the disease tends to be overestimated. For instance, markers D10S0399 and

D03S0106 are not true disease markers but the LOD score for these two loci are around 1.5.

The LOD scores obtained for some of the true KPD-associated loci using the combined pheno-

types were actually higher than the LOD scores obtained using LCA or GoM derived pheno-

types. This may seem strange, as one might suppose that the LOD scores obtained using the

model-averaged phenotypes must lie between those obtained using each of the models

Fig 4. LOD scores at each satellite marker for phenotype K1.

https://doi.org/10.1371/journal.pone.0176136.g004
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separately. However, it is not the LOD scores, but the phenotypes, for which model averaging

is performed. What has happened is that the separation between affected and unaffected indi-

viduals has been improved by model averaging: cores of clusters corresponding to individuals

identified as affected or unaffected by both LCA and GoM have been consolidated, whereas

the periphery of clusters corresponding to individuals whose affectedness status differed

according to LCA and GoM have been shifted to moderate phenotype values.

Fig 5. LOD scores at each satellite marker for phenotypes estimated after model averaging. The black solid line shows the LOD scores obtained for

K2 estimated using model averaging, the red dashed line shows the LOD scores of cluster 3 of LCA and the green dotted line is the LOD score using

phenotype derived from GoM alone (cluster 3 of GoM).

https://doi.org/10.1371/journal.pone.0176136.g005
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Discussion

The study of diseases with complex etiology demands a clear, statistically relevant definition of

the phenotype prior to genetic analysis. Here we proposed a multi-model approach and pro-

vided an algorithm for integrating phenotypes using Bayesian model averaging as a founda-

tion. In the examples, we selected two models which have in common a latent class

framework, but are very different in terms of parameter spaces and identification of class

membership (probability of belonging to phenotype clusters).

An advantage of model averaging is the consolidation of the cores of the clusters commonly

identified under the different models and clearer reflection of the model uncertainty at the

boundaries of the clusters. Consequently, in the subsequent linkage analysis, loci which are

strongly differentiated at the cluster cores may have stronger LOD scores under the combined

model than under any individual model. Although other methods to consolidate clusters in

such a manner may be possible, it is clear that model selection, the main alternative to model

averaging, does not achieve this desirable effect.

Fig 6. Density of the estimated phenotypes K2. The black solid line represents the distribution (over individuals) of the

averaged phenotype weighted according to Laplace-Gibbs; dashed and dotted lines represent the distributions of the

posterior mean of the phenotype predicted by LCA and GoM.

https://doi.org/10.1371/journal.pone.0176136.g006
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Of course, other approaches to combining the results of phenotype and linkage analyses

may be considered. An example is running the linkage analyses for each of the separate pheno-

type models and combining the linkage results. This would result in a simple weighted averag-

ing of the LOD scores at each locus. Under this method, however, the LOD score of each locus

will necessarily lie within the range of the LOD scores obtained under the individual models.

While this may be appealing in one sense, it can be argued that the combination of methods

should allow for increased inferential capability. As demonstrated in our example, it is possible

by model averaging prior to linkage analysis to obtain LOD scores for the combined pheno-

type that are higher than would be obtained with either model used separately.

In our example, the number of clusters selected for each model was determined prior to the

phenotype and linkage analyses. Although the actual number of clusters is four (three subtypes

of KPD and an unaffected subtype), subtle distinctions between subtypes are difficult to detect.

Although the results are not shown here, we analysed the simulated KPD data with K = 4 using

the LCA model. Again three of the true clusters were identified (P1, P3, unaffected) but P2 did

not correspond to the remaining cluster. It is also interesting to note that even when the true

clusters are identifiable, the linkage analysis may not always identify the important genes for

each subtype (Fig 2). This is due to the complex genetic framework implemented in this data

simulation. The linkage analysis implemented here has limited capability to identify “modify-

ing” loci, which switch between phenotypes 1 and 2. This affects the penetrance of phenotype 2.

One challenge of implementing model averaging methods for three or more clusters is the

comparability of clusters found by different models. In this study, we propose to overcome this

challenge by first identifying the characteristics of clusters and then merging membership of the

clusters between models, if and only if the characteristics of clusters are highly compatible (e.g

Cluster 3 of LCA and GoM). This implies characteristics of the clusters remain little changed

after averaging. Similar approaches are proposed in other studies. Russell et al. [45] propose

constructing a similarity matrix based on the probabilities that any pair of observations belong

to the same cluster when averaging mixtures of Gaussian distributions; while Wei et al. [44] pro-

posed the use of adjusted Rand index to merge components based on a reference model.

Further research is also warranted into the impact of different model evaluation strategies

when the models are strongly contrasting with respect to number of parameters. Other

approaches may be more applicable, and other approximations to the marginal likelihoods

[18, 49–51] may be investigated. The methods proposed in this paper may be more applicable

when the number of parameters in the two models are more comparable, for example, item

response theory [52] and GoM or mixture models with different distributions.

There are other open questions about the methods proposed in this paper, such as the

choice of priors. The Bayes factor has been shown to be sensitive to the choice of priors [18];

thus it is important to validate the prior distribution with sensitivity analysis. Moreover, in the

examples of this paper, the subsequent analysis is restricted to genome-wide linkage analysis

implemented in MERLIN-qtl. The linkage analysis by Haseman and Elston [47] assumed that

the markers are independent, so lacks ability to detect an interaction effect. Although linkage

analysis shows great success in mapping the genes for Mendelian disorders, to detect the finer

resolution of the putative risk susceptibility loci through linkage analysis is only feasible with

the availability of large recombination events from large pedigrees. Therefore, the feasibility of

detecting variants with low penetrance using linkage methods is questionable [53]. Further-

more, the methods may also be suitable for genetic association studies and other methods that

rely on accurate phenotype calling.

Another possibility for further research is to perform simultaneous linkage analysis and

phenotype calling. An important advantage of this approach is that it would enable the geno-

type data to influence the phenotype classification, potentially enabling a clearer separation
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between phenotype groups than would be possible using phenotype data alone. However, link-

age analysis is only one type of genetic analysis that requires accurate phenotype calling, and

there may be an advantage in identifying phenotypes that are generally applicable, rather than

tailored to a specific genetic analysis technique.
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