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Editorial on the Research Topic

Oxidative Stress in Cardiovascular Diseases and Pulmonary Hypertension

Cardiovascular and pulmonary diseases are the leading causes of death worldwide (1, 2). Various
pathogenic risk factors, including oxidative stress have detrimental effects on the heart and
lung tissues, thereafter, causing changes to various disease states (3, 4). In general, oxidative
stress leads to an imbalance between the production of reactive oxygen species (ROS) and
antioxidant defenses. The production of ROS is dependent on various enzymes, including the
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOXs), xanthine oxidase, and
the mitochondrial electron transport chain (5). Under physiological conditions, the concentrations
of ROS are subtlety regulated by numerous antioxidant enzymes such as catalase, peroxiredoxins,
thioredoxins, glutaredoxins, glutathione peroxidases, and glutathione (6, 7). Apart from ROS,
another free radical of reactive nitrogen species, e.g., peroxynitrite, forms from the binding of nitric
oxide (NO) to superoxide and plays a complex role in the pathophysiology of various cardiovascular
and pulmonary diseases (8, 9). The NO production involves a nitric oxide synthase (NOS) enzyme
that consists of two constitutive neuronal and endothelial NOS as well as another inducible one.
Generally, the reactive peroxynitrite uncouples eNOS and switches to superoxide production from
NO (10). The physiological interplay of NO or superoxide is indispensable for modulating vascular
tone, airway tone, metabolism, and immune responses. Despite this importance, any derailment
of NO or superoxide generation may play a pivotal role in the development and establishment of
numerous cardiac and pulmonary disease conditions (4, 11). Based on the importance of oxidative
stress, our contributors provided their foremost current scientific update by review and research
articles describing molecular crosstalk as well as preclinical findings.

Over the years, various studies suggest that a sedentary lifestyle increases vascular NOXs
and enhances vascular ROS production (12–14). Additionally, this lifestyle accumulates visceral
fat that activates several inflammatory pathways (15). Conversely, regular physical exercise
may counteract metabolic disorder and provides cardiorespiratory benefit by lowering oxidative
stress (16, 17). To examine this, some studies identified that physical exercise enhances the
activities of numerous transcription factors (TF) including nuclear factor kappa B (NF-κB),
activator protein 1 and peroxisome proliferator-activated receptor-gamma coactivator-1α. These
activities provide antioxidant defense by upregulating antioxidant enzymes and decreasing NOXs
functions for eventual reduction of oxidative stress (7). Despite the advantage of exercise,
prolonged intense aerobic training can result in decreased NO bioavailability, which may impair
endothelial-dependent vasodilation through decrease antioxidants and increase ROS, thereby
mediating cardiovascular abnormalities (18–20). Given the aforementioned role of NO in exercise,
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Parshukova et al. analyzed the NO production in professional
cross-country skiers during physical activity at maximum load
and their results suggest that decreased NO in plasma may
become a potential avenue to diagnose endothelial dysfunction
for professional athletes. It is well-established that decreased
endothelial NO production may link to increased oxidative
stress, endothelial dysfunction in pulmonary vascular bed,
pulmonary vascular remodeling, and loss of precapillary
vessels (10, 21, 22). Moreover, these changes occur with the
infiltration of macrophages that lead to the production of
numerous inflammatory markers for aggravating pulmonary
artery remodeling and pulmonary arterial hypertension
(PAH) (23). In addition, sympathetic and parasympathetic
abnormalities have been well-documented in PAH (14, 15).
The enhanced activation of parasympathetic and reduced
sympathetic activities can help against PAH progression
(14, 15). The activation of parasympathetic nervous system
may exert protective effects in cardiopulmonary diseases
through cholinergic anti-inflammatory pathway by controlling
innate immune responses (24). To better understand the
involvement of the parasympathetic in pulmonary diseases,
Qiu et al. demonstrated that donepezil, an oral cholinesterase
inhibitor therapy, attenuates pulmonary vascular and right
ventricular remodeling by enhancing parasympathetic activity
in a monocrotaline-induced PAH rat model. Additionally,
these authors demonstrated that donepezil mediated effects for
reducing hyper-proliferation and apoptosis-resistant phenotype
of pulmonary arterial smoothmuscle cells in PAH by suppressing
the activation of M2-macrophage immune cells.

Immune cells, including macrophages, express both
adrenergic and nicotinic receptors that bind with
neurotransmitters such as acetylcholine released by sympathetic
and parasympathetic nerve endings in order to initiate
immune-modulatory responses (25). Both the sympathetic and
parasympathetic nervous systems are influential in producing
neuro-immune processes (25). It is well-established that
macrophages are effector cells during an innate immune
response. The innate immune response calls the adaptive
immune response into play. Both immune systems work
together to make antibodies that act independently against
extracellular pathogens and toxins (26). Although sometimes
an overactive immune system can generate antibodies that
are specific to self-molecules or tissues which are referred to
as autoantibodies (27). Formation of these autoantibodies has
now been recognized as a key factor for the high prevalence of
PAH patients (28, 29). In line with previously published data,
Shu et al. summarized the importance of the lung based cell
specific immune response, the potential auto-antigens and the
modulating role of local immunoglobulin in pathogenesis of
PAH including the development of precise therapy in PAH
patients. Most intriguingly, recent studies have indicated
that patients with common lung diseases, including chronic
obstructive pulmonary disease (COPD) are more likely to
develop pulmonary hypertension (PH) and other cardiovascular
diseases (30, 31). To increase the understanding about COPD,
Karnati et al. summarized the role of oxidative stress in
COPD and PH by describing a detailed description on the

pathogenesis of pulmonary vascular remodeling. Additionally,
authors have highlighted the oxidative/nitrosative stress
mediated abnormalities in pulmonary vascular bed and its
relationship to the inflammation, endothelial dysfunction,
dysregulated proliferation/apoptosis as well as the potential
therapeutic measure.

Next, published evidence indicates that COPD patients are at
increased risk of suffering from various cardiovascular diseases
including heart failure, ischemic heart, and hypertension (31,
32). Interestingly, about one third of patients with COPD
are obese (32, 33). To better understand the role of obesity
in vascular dysfunction, Zhou et al. summarized the current
understanding of the relationship between oxidative stress in
obesity and vascular endothelial dysfunction. In this review,
they described the possible risk factors of oxidative stress in
obesity, and the impact of obesity-induced oxidative stress on
adipose tissue function. Additionally, their review highlights the
crosstalk between adipose tissue and vasculature mediated by
adipocytokines as well as the potential target mediating adipose
tissue oxidative stress.

With the significant increase of understanding about obesity
in scientific research, adipose tissue is now considered as a
central metabolic organ in the regulation of whole-body energy
homeostasis by lipid metabolism (34, 35). It has been well-
characterized that excessive alcohol consumption, also known
as binge drinking results in dysregulated lipid metabolism
within adipose tissue (36). To better understand this process,
Seidel et al. focussed their research work on the role of binge
drinking on specific S-glutathionylation in the aorta, liver, and
brain by using an ApoE deficient mouse model. Their findings
reported that binge drinking led to aorta- and liver-specific
regulation of the glutathionylation regulatory enzyme system,
eliciting decreased glutaredoxin-1 and increased glutathione
S-transferase. Precisely, they suggested that the activation of
aorta- and liver-based S-glutathionylation compromises aortic
endothelial dysfunction and fatty liver, whichmight be a potential
underlying mechanism of increased risk factor for cardiovascular
diseases among binge drinkers. Understanding the complexity
of oxidative stress, Wang et al. summarized the mechanistic
role of ROS on various intracellular signaling such as toll
like receptor-4, nuclear factor kappa B cells, mitogen-activated
protein kinase, CD26, heme oxygenase-1, transient receptor
potential ion channels and L-type voltage-gated calcium channel
in numerous diseases such as diabetesmellitus, hypertension, and
ischemia-reperfusion injury.

In conclusion, the above-cited articles for this Research Topic
indicate the current ideas and perspectives on the clinical impact
from bench side research on the role of oxidative stress that
plays in cardiovascular and pulmonary diseases. We believe that
these articles provide a significant contribution of new ideas
and advancements in the medical fields. We are grateful to
our all contributors for sharing their important work for this
Research Topic.
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