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Abstract
Gompertzian tumor growth can be reproduced by mitosis, related to nutrient supply, with local spatial cell correlations. The 
global energy constraint alone does not reproduce in vivo data by the observed values of the nutrient expenditure for the 
cell activities. The depletion of the exponential growth, described by the Gompertz law, is obtained by mean field spatial 
correlations or by a small word network among cells. The well-known interdependence between the two parameters of the 
Gompertz growth naturally emerges and depends on the cell volume and on the tumor density.
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Introduction

Tumor growth is a complex phenomenon which includes 
sustaining proliferative signaling, evading growth suppres-
sors, resisting cell death, inducing angiogenesis and activat-
ing invasion and metastasis (Hanahan and Weinberg 2011).

The tumor evolution (size, chemotherapy and radiother-
apy effects) can be described by macroscopic growth laws, 
coarse-grain approximations of complex cell dynamics at 
microscopic level.

In particular, the Gompertz law (GL) has been extensively 
applied after the seminal paper by Norton (1988) on breast 
cancer and confirmed by a recent analysis (Vaghi 2020) as 
a very useful tool for a quantitative understanding of the 
tumor growth.

The GL, originally formulated as an actuarial curve 
for the population of England almost two centuries ago 
(Gompertz 1825), describes the dynamics of a variety of 
natural phenomena : magnetic hysteresis (Stauffer and Stan-
ley 2017), kinetics of enzymatic reactions (Murray 1989), 
oxygenation of hemoglobin (Murray 1989), intensity of 

photosynthesis as a function of CO2 concentration (Murray 
1989), drug dose–response curve, dynamics of growth (e.g., 
bacteria, normal eukaryotic organisms and cancer) (Laird 
et al. 1965a, b; Calderon and Kwembe 1991; Waliszewski 
et al. 1998), spread of COVID-19 (Castorina et al. 2020).

For human mortality, a derivation of the GL can be 
obtained by the reliability theory designed for man-made 
machines (Gavrilov and Gavrilova 2001) and by a different 
model (Shklovskii 2005) which relates the human survival 
probability with an exponentially rare escape of abnormal 
cells from immunological response.

Possible theoretical bases of the Gompertz growth for 
biological systems have been addressed in the literature, 
since long time and from different points of view (Wheldon 
1988; Bajzer and Vuk-Pavlovic 1997; Savageau 1979; Wit-
ten 1985; Kendal 1985; Frenzen and Murray 1986; Gyllen-
berg and Webb 1989; Makany 1991; Ling and He 1993; Qi 
et al. 1993; Bajzer 1999; Afenya and Calderon 2000; Bajzer 
and Vuk-Pavlovic 2000; Mombach et al. 2002; Waliszewski 
and Konarski 2003). More recently, the GL has been dis-
cussed by a biochemical approach (Anguelov et al. 2017) 
and by statistical mechanics methods (Castorina and Zappala 
2006), where the energetic balance is considered as the key 
dynamical ingredient (for a recent review of tumor growth 
laws, see ref. Jarrett (2018)). Indeed, the idea that the GL 
dynamics can be considered as an optimization problem, as, 
for example, an “energy” budget problem (where “energy” 
can have many different meanings) could explain why it 
emerges at macroscopic level for so different systems.
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In the general classification of growth laws (Castorina 
et al. 2006), the GL is in the U2 universality class, i.e., it 
depends on two parameters, with a strong reduction with 
respect to the large number of dynamical variables of the 
microscopic models.

A crucial feature of the macroscopic evolution laws is that 
the feedback effect is global: It depends on the total popula-
tion N at time t, whereas the microscopic dynamics is local, 
due, for example, to competition for resource. This aspect 
becomes more tricky for the GL where the global depend-
ence has the typical nonlinear ln[N] behavior.

In this letter, we study cancer growth by considering 
mitosis with specific cell local spatial correlations which 
globally reproduce the GL. The purpose of the analysis is 
twofold. One shows the crucial role of cell spatial correla-
tions to reproduce in vivo data by GL with realistic values of 
the growth parameters. Indeed, the model based on the nutri-
ent supply balance, without the local dynamical competition 
for resources, is not able to describe the tumor progression 
with the observed cell metabolic activities. Moreover, it is 
well known that the two GL growth parameters are linearly 
correlated and this property naturally arises by the link 
between the spatial correlation effects and cell properties.

Although the language of a biological system is used, 
the results are more general and can be applied to any 
local bifurcation process with spatial correlation among 
participants.

In the next section, we recall the GL, and in Sect. 2, the 
models are proposed. Section 3 contains our comments and 
conclusions. “Appendices A and B” are devoted to math-
ematical details and to the time evolution based on the global 
nutrient supply constraint only.

Gompertz growth laws

General macroscopic growth laws for a population N(t) are 
solutions of the differential equation (for a classification see 
Castorina et al. (2006))

where f(N) is the specific growth rate and its N dependence 
describes the feedback effects during the time evolution. If 
f (N) =constant, the growth follows an exponential pattern, 
with no limit for t → ∞ . On the other hand, a saturation is 
obtained by the Gompertz equation, i.e.,

where �g and kg are constants and N0 is the initial value. By 
defining

(1)
1

N(t)

dN(t)

dt
= f [N(t)],

(2)
1

N(t)

dN(t)

dt
= �g − kg ln

N(t)

N0

Gompertz ,

one gets

where N∞ is the carrying capacity, i.e., the steady state is 
reached for dN∕dt = 0 , when N is equal to N∞.

A different, equivalent, formulation of the Gompertz 
equation is

Indeed, the solution of the previous equation turns out to be

which gives

By Eqs. (6, 7), one easily obtains Eq. (2) from Eq. (5) and 
identifies kg with � and � = �g.

In the next sections, n(t) refers to the number of cells at 
time t, since we study the tumor mass progression.

Nutrient supply and cell spatial correlations

A common feature of cancer cell metabolism is the ability to 
acquire necessary nutrients from a frequently nutrient-poor 
environment and utilize these nutrients to both maintain via-
bility and build new biomass (Pavlova and Thompson 2016; 
Fernandez-de-Cossio-Diaz and Vazquez 2017; DeBerardinis 
et al. 2008).

After the initial phase, the total amount of nutrients is not 
able to sustain the exponential trend of the complete popula-
tion of mitotic cells and angiogenic stimulator controls are 
crucial ingredients to increase the energetic balance. The 
extremely large nutrient consumption of tumor cells origi-
nates a competition for resources which is local and spatially 
correlated. Different spatial correlations give macroscopic 
laws with various global and nonlinear feedback effects.

Let us assume, without loss of generality, that t = 0 is the 
end of the exponential phase with n0 cells and let us call �D 
the average duplication time of the total number of mitotic 
cells (which is different from the duplication times of a sin-
gle cell and of the whole tumor). Let us call t = k�D with 
k = 1, 2,… the time intervals and n(k) the cell population at 
the beginning of interval k.

(3)�g + kg lnN0 = kg lnN∞,

(4)
1

N(t)

dN(t)

dt
= −kg ln

N(t)

N∞

,

(5)
1

N(t)

dN(t)

dt
= �e−�t.

(6)ln[N(t)∕N0] =
�

�
(1 − e−�t)

(7)ln[N∞∕N0] =
�

�
.
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After the exponential phase, only a number of cells smaller 
than n(k) can replicate and, according to the previous defini-
tion, t = 0 is the time when this condition starts. Apoptosis 
is initially neglected, and its role in increasing the available 
nutrients for cell mitosis will be discussed later (see “Appen-
dices A and B”).

Since a limited number of mitosis are possible, let us call 
n(k)q the number of quiescent cells and n̄(k) the number of 
duplicating cells during the interval k, that is

The average number of cells at the beginning of k + 1 inter-
val is therefore:

The local competition for growth implies a spatial correla-
tion, which decreases with the distance between pairs of 
cells and plays a crucial role. In fact, in Appendices A and 
B one shows that a model of the tumor evolution, based on 
the nutrient budget without spatial correlations, is not able to 
reproduce by GL the, in vivo, breast cancer data with realis-
tic values of the growth parameters. In the next subsections, 
two different spatial correlation models are discussed from 
which the GL emerges at global level.

Mean field approximation

According to previous discussion, let us write the number of 
mitotic cells as a fraction of the total number and a depletion 
due to spatial correlation effects:

where � ≤ 1 describes the exponential phase (see “Appen-
dix A”), F(dij) is a function of the distance between cell 
pairs (i, j),|r⃗i − r⃗j| = dij , �ij is the Kronecker delta, v0 is a 
dimensionfull constant related to cell size, and f0 is the cell 
fraction competing for nutrient supply.

A model with competition depending on a power law of the 
cell distance has been proposed in Ref. Mombach et al. (2002), 
where different growth laws are determined by the relation 
between the power � of spatial correlation, ≃ 1∕d�

i,j
 , and the, 

assumed, fractal dimension of the cellular structure. Here, we 
explicitly show the dimensionfull constants in Eq. (10), inter-
preted in terms of the typical cell size and exponential rate, 
with a clear understanding of the interrelation among growth 
parameters that is a crucial aspect of the tumor Gompertzian 
progression (Vaghi 2020). Moreover, no fractal dimension has 
been introduced since the GL is obtained, in the mean field 
approximation, without geometrical self-similar pattern in the 
branching process.

(8)n(k)q = n(k) − n̄(k)

(9)n(k + 1) = n(k)q + 2n̄(k) = n(k) + n̄(k)

(10)n̄(k) = 𝜆n(k) − v0f0Σ
n(k)

i=1
Σ
n(k)

j=1
(1 − 𝛿ij)F(dij)

For a spherical and homogeneous system in 3D, let us 
assume

and let us identify v0 with the cell volume.
For large n, it turns out (Mombach et al. 2002)

where �0 is the constant density, R is the time-dependent 
maximum size of the system, and r0 is a minimum charac-
teristic length (of order of cell size, v0 = (4∕3)�r3

0
).

For the considered system, one has

and, by Eqs. (9–12), in the mean field approximation (Mom-
bach et al. 2002), one gets

with

and

in �D time unit.
The comparison with the GL immediately identifies 

(taking into account the correct time units, �D ) bmf = kg , 
amf = kgln(n∞) . Moreover, by Eq. (14) one gets

The consistent identification of the parameters can be 
checked by in vivo data. Indeed, for breast cancer (Norton 
1988) the parameter kg turns out to follow a log-normal 
distribution function with average ln(kg) = −2.9 and vari-
ance 0.71 (with time in month unit) and then < kg >≃ 0.17 
(month −1) . Moreover, n∞ ≃ 1012 cells (in 1 liter), corre-
sponding to the density �0 = 106 mm−3 cells and the typical 
average cell radius is ≃ 7�m . By Eqs. (14–17), one gets 
( v0�0 ≃ 1.43):

a) linear correlation between amf  and bmf

(11)F(dij) ≃
1

d3
ij

(12)v0f0Σ
n(k)

i=1
Σ
n(k)

j=1
(1 − �ij)F(dij) = 4�n(k)f0v0�0ln

(
R

r0

)

(13)R =

(
3n(k)

4��0

)1∕3

(14)
n(k + 1) − n(k)

n(k)
= amf − bmf ln[n(k)]

(15)amf = � −
4

3
�f0v0�0ln[1∕(v0�0)]

(16)bmf =
4

3
�f0v0�0,

(17)ln n∞ = amf∕bmf =
� − bmf ln[1∕(v0�0)]

bmf

(18)amf = � − bmf |ln(1∕v0�0)|.
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This is a crucial aspect of the application of GL to cancer 
growth: The two parameters turn out to be linearly corre-
lated for different tumor phenotypes (Wheldon 1988; Vaghi 
2020);

(b) f0 ≃ 3 ∗ 10−2 ( �D∕month), ranging from 10−3 for �D = 1 
day to 3 ∗ 10−3 for �D = 3 days. For the initial value n0 ≃ 109 
(Norton 1988), the number of mitosis in �D is about 106.

Finally, let us notice that the dependence of F(dij) ≃ 1∕d2
ij
 

leads to a generalized logistic growth law.

A small world network correlation

The function and behavior of any given tumor cell are affected 
by interactions with its neighboring cells which send and 
receive messages in the form of direct contacts and secreted 
signaling molecules. This dynamics is limited to small dis-
tances from the cell position, and in this sense, a solid tumor 
can be considered a system of groups of interacting cells with 
global effects transmitted by cell to cell. According to this 
point of view, an advanced solid cancer can be qualitatively 
seen as a cell system with clustering and small correlation 
length.

In network analysis (Latora 2017), those properties identify 
the, so called, small world (SM) network (Watts and Strogatz 
1998), where the clustering coefficient and the correlation 
length, L, have a precise quantitative definition in terms of 
number of nodes and links. In this respect, the suggestion is 
that, analogously to other biological systems, the cell spatial 
correlation can be described in terms of small world network, 
i.e., local connections and a small number of steps to reach 
distant cells. The average spatial correlation among cells is, 
accordingly, related to the average geodesic (i.e., shortest path) 
length L in the SM network, defined by

where gij is the shortest geodesic distance between nodes 
(cells) i and j. In SM, for n > n∗ >> 1 , one has (Watts and 
Strogatz 1998; Latora 2017)

By taking into account the maximum volume V for a finite, 
homogeneous, system, let us write the number of mitotic 
cells as a fraction of n(t) with a decreasing contribution due 
to SM network:

where � is a dimensionfull constant. By Eqs. (19, 20) and 
1∕V = �0∕n(k) , for large n, one gets

(19)L =
1

n(k)[n(k) − 1]
Σ
n(k)

i=1
Σ
n(k)

j=1
gij

(20)L ≃ ln[n(k)∕n∗].

(21)n̄(k) = n(k)𝜆 −
𝛾

V
Σ
n(k)

i=1
Σ
n(k)

j=1
gij

(22)n̄(k) ≃ n(k)𝜆 − n(k)𝛾𝜌0ln[n(k)∕n
∗]

and the specific rate turns out to be

The comparison with the Gompertz equation gives

and

completely consistent with the condition � ≤ 1 for 
n∞ ≃ 1012 , n∗ ≃ 109 (Norton 1988) and the previous value 
of �g = �SM.

Apoptosis

Cell death, in the form of apoptosis, and cell proliferation 
are linked by biochemical effects. Moreover, in the energetic 
balance, apoptosis permits to transfer some nutrient from 
metabolic activity to mitosis as quantitatively expressed in 
“Appendices A and B.”

However, without spatial correlations, the effect of apop-
tosis on the global nutrient balance does not solve the prob-
lem of the consistency of the GL growth parameters to fit 
in vivo data with the observed values of the metabolic tumor 
cell activities (see “Appendices A and B” ).

Comments and Conclusions

The success of macroscopic growth laws in describing the 
time evolution of dynamical systems in many different sec-
tors is astonishing. Indeed, with a small number of param-
eters one can fit large sets of data. Even more surprising 
is that they contain global and nonlinear feedback effects, 
although the microscopic dynamics is, in general, local. In 
other terms, the coarse-grain patterns catch the most impor-
tant aspects of the underlying phenomena, strongly reducing 
the large number of parameters typical of the microscopic 
models.

The proposed results suggest that a branching process 
with global constraint on the energy budget is not able to 
reproduce breast cancer in vivo data by GL if the compe-
tition for resources is not included: The local spatial cor-
relation among cells is a crucial ingredient to obtain the 
observed progression.

The linear interdependence of the two GL growth param-
eters emerges by comparison between the average spatial 
correlation distances and the typical cell size.

(23)
n(k + 1) − n(k)

n(k)
= � − ��0ln[n(k)∕n

∗].

(24)�SM =� + ��0ln(n
∗),

(25)�SM =��0,

(26)�SM = �SMln[n∞]
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The results are based on a spherical and homogeneous sys-
tem. On the other hand, heterogeneity is a well-known feature 
of tumor growth, in particular under radiochemotherapy. This 
important aspect can be included in the proposed framework 
by considering different subpopulations with various GL spe-
cific rates (Castorina et al. 2009). On the other hand, without 
spatial correlations, the unique parameter which drives the 
tumor progression is related to nutrient expenditures for mito-
sis and for the other metabolic activities (i.e., the parameter � 
in Eq. (32), “Appendix A”). Therefore, also if different strains 
characterize the tumor evolution, it is difficult to obtain a GL 
description of in vivo data with the observed values of �.

Appendix A

In this appendix, a model of the time evolution, based on 
mitosis with a global constraint on the nutrient supply and 
without cell spatial correlations, is discussed. Apoptosis will 
be included in “Appendix B.”

The exponential phase corresponds to a fixed ratio 
between total and mitotic cells during any time interval k, i.e., 
n̄(k) = n(k)𝜆 with 0 < 𝜆 ≤ 1 . At each step, the number of qui-
escent cells is n(k) − n̄(k) and at the end of any single time 
iteration (in unit �D ) n(k + 1) = [n(k) − n̄(k)] + 2n̄(k) . The 
specific rate turns out to be [n(k + 1) − n(k)]∕n(k) = � .

Let us consider the global constraint by defining the total 
amount of nutrients, E, and rM , rD the resources for the cell 
metabolic activity and mitosis, respectively (time unit �D).

If rDn(t) > E, only a smaller number of cells can replicate. 
According to the previous definition, t = 0 is the time when 
this condition starts (i.e., after the exponential growth phase) 
and since a limited number of mitosis are possible, let us call 
n0 the cell number and n̄0 the maximum number of duplicat-
ing cells. Therefore, n0 − n̄0 is the initial number of quiescent 
cells and for the maximum number of mitotic cells, one gets

Due to biochemical inhibitor factors, the effective number of 
mitotic cell �0 is a fraction f0 ≤ 1 of the maximum number 
n̄0 , i.e., 𝜈0 = f0n̄0 , and therefore, at the end of the first inter-
val, k = 1 , the number of cells is given by

By the “energy” constraint , the maximum number of dupli-
cating cells in the interval 1 → 2 is given by

(27)E =rM(n0 − n̄0) + rDn̄0

(28)n̄0 =
E − rMn0

rD − rM
.

(29)n1 = (n0 − 𝜈0) + 2𝜈0 = n0 + f0n̄0.

(30)n̄1 =
E − rMn1

rD − rM

which by Eqs. (27–29) turns out to be

where

since two cells are produced by a single cell, i.e., 
rD = 2rM + rR > 2rM , where rR is the nutrient expenditure 
during the cell cycle. The effective number of mitotic cells 
is now 𝜈1 = f1n̄1, and when the k = 2 interval has been com-
pleted, the number of cells is given by

By iteration, the final formulas are :

where fj−1 = 0 if j − 1 < 0.
Let us first consider the case fi = f0 = 1 , i = 1, 2,… . 

Equations (34–36) give

and

The specific rate turns out to be

and (by Eq. (38) for k → ∞)

The continuum limit of Eq. (39) is

and the comparison with the GL fit for breast cancer data 
requires a very small value of � , because the average value 
�g ≃ 0.17 in month −1 (Norton 1988).Therefore, � ≃ 0.0057 
for �D = 1 day, which is an unrealistic value of the ratio 
� = rM∕(rD − rM) , with typical range 0.6 − 0.9 (Fernan-
dez-de-Cossio-Diaz and Vazquez (2017), supplementary 
materials).

(31)n̄1 = n̄0(1 − f0𝛿)

(32)𝛿 =
rM

rD − rM
< 1

(33)n2 = n1 + 𝜈1 = n0 + n̄0[f0 + f1(1 − f0𝛿)]

(34)𝜈k =fkn̄k

(35)n̄k =n̄0Π
k−1
i=0

(1 − fi𝛿)

(36)nk =n0 + n̄0Σ
k−1
i=0

fiΠ
i
j=0

(1 − fj−1𝛿)

(37)n̄k = n̄0(1 − 𝛿)k−1

(38)nk = n0 + n̄0[1 − (1 − 𝛿)k]∕𝛿

(39)
nk+1 − nk

nk
=

n̄0(1 − 𝛿)k

n0 + n̄0[1 − (1 − 𝛿)k]∕𝛿

(40)n∞ = n0 + n̄0∕𝛿.

(41)
dn(t)

n(t)dt
=

1

𝜏D

n̄0e
(t∕𝜏D)ln(1−𝛿)

n0 + (n̄0∕𝛿)[1 − e(t∕𝜏D)ln(1−𝛿)]
,
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One can easily verify that the condition fi = f0 < 1 , 
i = 1, 2,… , does not solve the previous problem.

Let us now assume fi+1 = cfi with c ≤ 1 . Therefore,

and

where Λi = 1 for i = 0 and

for i ≥ 1.
However, since c ≤ 1 , the final result is still in disagree-

ment with the GL fit of breast cancer data for realistic values 
of the parameters.

Appendix B: Including apoptosis

The analysis in “Appendix A” can be generalized by taking 
into account the number of apoptotic cells. The case fi = 1 , 
i = 1, 2,… is considered.

Let us, respectively, call nA
0
,n0 , n̄0 the number of apoptotic, 

total and maximum mitotic cells at the time t = 0 (end of 
exponential phase). The number of quiescent cells is there-
fore nq

0
= n0 − nA

0
− n̄0, and therefore,

i.e.,

At the end on the first interval, k = 1 , the total number of 
cells is

In the interval k = 1 → 2, only a fraction n̄1 of n1 can dupli-
cate and by including the corresponding number of apoptotic 
cells, nA

1
 , the number of quiescent cells is

and

By analogous steps of Appendix A, after simple algebra, 
one gets

(42)n̄k = n̄0Π
k−1
i=0

(1 − cif0𝛿)

(43)nk = n0 + n̄0f0Σ
k−1
i=0

ciΛi

(44)Λi = Πi
j=1

(1 − cj−1f0�)

(45)rM(n0 − nA
0
− n̄0) + rDn̄0 = E,

(46)n̄0 =
E + nA

0
rM − n0rM

rD − rM
.

(47)n1 = n
q

0
+ 2n̄0 = n0 − nA

0
+ n̄0.

(48)n
q

1
= n1 − nA

1
− n̄1,

(49)n̄1 =
E + nA

1
rM − n1rM

rD − rM
.

with � in Eq. (32), and the total number of cell at the end of 
the second interval turns out to be

By interaction, after k intervals,

where

and

The saturation value n∞ is defined by nk+1 − nk = 0, and by 
Eqs. (52–54), one obtains

The value n∞ ≃ 1012 requires again a very small � , incon-
sistent with the observed values of rD and rM.
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i
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nA
i
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0
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