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Abstract

Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an
expert’s clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer
mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow
the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between
shiverer (C3Fe.SWV Mbpshi/Mbpshi, n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by
means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found
that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the
shiverer group, which presented significantly increased characteristic path length. These results are in line with previous
structural/functional complex brain networks analysis that have revealed topologic differences and brain network
randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial
representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each
subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical
classifier. The obtained correct predictions (e.g., around 91.6–100%) and clear spatial subdivisions between control and
shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders,
supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of
interpretable imaging biomarkers.
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Introduction

Complex brain network analysis, in which the brain is modeled

as a graph whose nodes (or vertices) represent structural/

functional regions and the links (or edges) between them represent

anatomical or functional connections, provide us with topological

measurements that could be interpreted in terms of the

management and integration of the nervous information flow

and physiological brain dynamics. Initial analyses of brain

networks in the graph framework were devoted to describe the

key organizational principles of the normal brain, reporting

certain brain topological features such as high clustering, small-

worldness, the presence of highly connected hubs, assortativity,

modularity or hierarchy, properties that are not typical of random

graph and regular lattices (for a review see [1]). However, current

trends in brain networks analyses are more focused to detect

differences in particular topologic measures associated to specific

human states of pathology, such as Multiple Sclerosis (MS) [2],

tumors [3], Alzheimer’s disease [4,5], Schizophrenia [6,7] and

Stroke [8,9], contributing to the understanding of pathophysio-

logical mechanisms, and supporting in general the hypothesis that

network randomization and subsequent loss of optimal organiza-

tion could be a common final result of the brain’s reaction to

lesions or neurodegenerative processes [8].

Among the diversity of techniques from which brain networks

could be extracted [10–21], DW-MRI techniques are promising in

particular to evaluate topological differences in those brain

disorders where the white matter is severely affected, like Multiple

Sclerosis [22,23] and Acute Disseminated Encephalomyelitis

[24,25]. Based in the non-invasive acquisition of structural

information about the intravoxel axons arrangement, DW-MRI

techniques allows the in vivo approximate mapping of the brain
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nervous fiber circuitry [17,26–31]. However, despite of the

demonstrated usefulness of DW-MRI techniques to detect anom-

alies [32–38], to date, brain network analyses based on DW-MRI

tractography techniques have been more devoted to describe the

brain organizational principles described above [15,17,18,39–42]

than to the study of specific brain pathologies [5,9,43], limiting its

potential applications to the quantitative description and under-

standing of specific brain disorders, something with a possible

practical outcome for clinical diagnosing.

Here, in line with previous pathophysiological brain studies in a

graph framework, we propose to search for altered topological

properties using fiber tractography DW-MRI applied to a brain

disease where the white matter is severely affected. We have the

further purpose of investigating whether possible brain structural

network differences reflect intrinsic individual brain properties that

allow the automatic discrimination between pathological and

normal subjects. More specifically, we search for altered

topological properties in six different basic parameters (i.e.

clustering, characteristic path length, modularity, global/local

efficiency and small-worldness) in the shiverer mouse, a mutant

model relevant to the study of myelin related diseases since it is

characterized by a deletion of the gene encoding myelin basic

protein (MBP), resembling white matter dysmyelinating and

demyelinating process that takes place in humans due to an

inflammatory process, for example, in those patients affected by

MS [22,23,44]. In addition, because a specific focus of clinical

diagnostic investigation is the anatomic discrimination between

normal and pathological states, we perform an automatic

discrimination between shiverer and control subjects based on

these complex network characteristics. In order to perform the

automatic subject classification, the concept of network measure

spatial representation is introduced. In this, for each network measure,

each subject is spatially represented and determined by a unique

point whose coordinates are assigned according to individual

network metrics. Then using classification techniques the original

space is subdivided into two subspaces, separating subjects that

present similar topological characteristics, and obtaining also an

individual probability value of being from one or the other group

as an anatomical classifier.

Finally, some comments are made concerning the relationship

between the obtained findings and some previously reported

human pathological state studies (e.g. MS reports), as well as the

possible implications that these complex networks analyses and

representations might have on clinical diagnostic investigation, for

either, the anatomic classification between normal and patholog-

ical states, and the creation of interpretable brain dynamical

imaging biomarkers.

Results

Anatomical connections between cortical and subcortical

regions for shiverer (C3Fe.SWV Mbpshi/Mbpshi, n = 6) and

background control (C3HeB.FeJ, n = 6) mice were estimated using

three different fiber tractography algorithms applied to data from

high resolution DW-MRI (see Materials and Methods). From the

obtained whole brain axonal trajectories (Figure 1b), weighted

networks were created for the whole brain (Figure 1c), in which

each node represents an anatomic brain region (150 gray matter

regions in total), arcs connecting nodes correspond to white matter

links, and arc weights correspond to the degree of evidence

supporting the existence of a effective white matter connection

between regions. In summary, for each subject we obtained a

whole brain network, each one replicated for each of three

different fiber tracking algorithms.

Normal/Shiverer network measures deviation
For these whole brain networks, six different topological

properties were evaluated: clustering (C, a measure of the inherent

tendency to cluster nodes into strictly connected neighbourhoods),

characteristic path length (L, the average number of region-region

direct connections that must be traversed to go from one region to

another), modularity (Q, the degree to which a network may be

subdivided into subnetwork modules with a maximum number of

internal links and a minimum number of external links), global

efficiency (Eglob, a measure of how much parallel information can

be potentially exchanged over a network), local efficiency (Eloc, the

average global efficiency of the local subnetworks) and small-

worldness (s, a measure of how optimally is organized a network)

(see Table 1).

In order to evaluate significant (dis)similarities between the

control and shiverer group, for each network measure a

multivariate permutation test was performed, testing the null

hypothesis of equal means between groups (see Statistical Analysis on

Materials and Methods). We found significant differences for C

(P = 0.0015), L (P = 0.0495), Q (P = 0.0324), Eglob (P = 0.0045), Eloc

(P = 0.0005) and s (P,0.0004). For C, Q, Eglob, Eloc and s the mean

values of shiverer subjects were lowers than the corresponding

mean values of control subjects. This indicates a significant

reduction of these structural network attributes in the pathological

subjects, which in conjunction with the observed significant

increase of corresponding L values, might be interpreted as a

considerable decline in the amount of possible nervous informa-

tion that can be exchanged over the shiverer’s brain, and how

deficiently and no optimally it can be managed.

Subjects classification
Figure 2 shows locations of controls and shiverer subjects in the

3-dimensional Euclidian spaces corresponding to the network

measure representation spaces of C, L, Q, Eglob, Eloc and smetrics. In

each representation space, subjects are represented and determined by

a unique spatial point, with ‘‘length’’, ‘‘width’’ and ‘‘depth’’

coordinates assigned according to values obtained from three

different fiber tracking algorithms (see Network Measures Spatial

representations on Materials and Methods). To assess the competences of

these network topological features to discriminate between groups,

linear discriminator analysis (LDA) was used [45](see Subjects

Classification on Materials and Methods). Then for each considered

network measure we obtained the mean boundary hyperplane that

separated the original representation space into two subspaces, to which

belongs respectively the subjects that presented similar spatial

positions (topological properties; see Figure 2). In addition, for

each network measure and the combination of all of them we

obtained the conditional probabilities of belonging to the identified

groups (see Table 2).

Note the clear spatial subdivisions between control and shiverer

subjects obtained for C, Eglob, Eloc and s, and the corresponding

high values of correct predictions (i.e. 100, 91.66, 100 and 100

percent respectively; Table 2), which supports the hypothesis of a

possible discrimination between control and pathological (shiverer)

subjects based on their brain structural network descriptors. The

representation space of the L and Q measures were keep it only for

illustrative purposes because, although we previously found a

significant difference for these measures, they were not practical to

predict between normal and pathological subjects (i.e. providing a

low prediction accuracy value of 66.67%, equivalent to predict

correctly only 8 of the 12 subjects); as figure 2b and 2c shows the

corresponding mean hyperplanes were not able to correctly

separate the two groups.

Discrimination of Brain Pathological State
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It should be noted also that subject classification based on the

combination of the six considered network measures, by means of

a forward sequential feature selection in a wrapper fashion (see

Subjects Classification on Materials and Methods), provided 100%

prediction accuracy (Table 2). This result it is not surprising when

is considered the previously obtained perfect predictions without

the combination of all network measures (i.e. aforementioned

100% prediction accuracies for C, Eloc and s individual measures).

However, should be noted that in this case (classification based on

the combination of the six considered network measures) the

contrast between the obtained individual conditioned probability

values of control and shiverer subjects is considerably more

Figure 1. Schematic representation of the connectivity estimation and network construction procedure. Depicted example
corresponds to one control subject and FACT tractography algorithm. a) Axial map representing intravoxel mean fiber orientation (dyadic vectors).
Inset figure provides detail of the high fiber orientation coherence around the corpus callosum and olfactory areas. b) Obtained whole brain axonal
trajectories. c) Whole brain structural network derived as described in Materials and Methods; points (nodes) represent anatomic regions, lines (arcs)
correspond to connections between them and line widths reflect the corresponding arc weights. In a), b) and c) voxels, fiber trajectories and lines
colors were assigned according to the RGB code (i.e. red, green and blue colors indicates rostrocaudal, mediolateral and dorsoventral orientations
respectively).
doi:10.1371/journal.pone.0019071.g001
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accentuated (in the sense of the correct prediction) than when is

used only any of the previous measures as a single predictor

(Table 2). Thus, the selection of most prominent features [46]

allows us to reduce redundant network features information (see

Table S6, where is evidenced the characteristic high correlations

among almost all the studied network metrics) in order to obtain a

final quantitative subject discrimination based on different

complementary aspects of the structural brain network.

Discussion

We performed a structural network analysis based on high

resolution DW-MRI techniques and graph theory, to search for

altered topological properties in the shiverer mouse using matched

healthy mice as controls. We found significant differences for

specific network measures such as C, L, Q, Eglob, Eloc and s,

indicating that these metrics (mainly related to the potential

amount of nervous information that can be exchanged over the

brain, and how efficiently and optimally it could be managed) are

significantly altered in the shiverer subjects. In addition, we

showed that control and shiverer subjects can be automatically

classified by means of network measures representation spaces and

discriminant analysis (LDA).

Structural network alterations, correspondence with
human pathological studies

The significant reduction on small-worldness parameter that we

found here for shiverer subjects is in line with similar reductions

reported for human patients of Multiple Sclerosis (MS) [2], which

tend to have a smaller number of significant regional cortical

thickness correlations and a more randomized structural cortical

network organization as the white matter lesion load increases.

These results are also in line with changes found in graph

theoretical studies of other brain disorders such as tumors [3],

Alzheimer’s disease [4], Schizophrenia [6,7] and Stroke [8], which

together reinforce the point of view that network randomization

and subsequent loss of optimal organization could be a common

final result of the brain’s reaction to lesions or neurodegenerative

processes [8]. In addition, observed significant decreases for

global/local structural efficiencies and modularity in the shiverer

subjects suggest a lower brain capacity to establish parallel

interactions between distant regions as well as a lower tendency

to have communities of different anatomical regions that deal with

common neural information. As the network extraction method-

ology used in this study was based on DW-MRI techniques, we

can consider that in general these structural differences are directly

reflecting variations in the white matter integrity that in the

specific case of the shiverer mutant mouse are provoked by

dysmyelinating and demyelinating process.

Subject’s classification
The results indicate that is possible to discriminate with high

reliability between control and shiverer mice using complex brain

structural network properties, providing also a probability of belong

to one or the other group as an individual anatomical classifier. Our

approach is based on the quantitative differences between network

measures (e.g. C, Eglob, Eloc and s) that could be interpreted as

reflecting the absence of compact myelin in the central nervous

system of shiverer mice. This approach should therefore provide

useful information on human brain disorders characterized by

dysmyelinating and demyelinating process, like MS.

In the specific case of the MS, in which structural affectations

are frequently located in the periventricular and juxtacortical

white matter regions, the corpus callosum and infratentorial areas

[22,23], many of traditional diagnostic approaches, as the

McDonald criteria [47], needs an expert’s intervention as well as

subjective tuning parameters, as the required number of T2 lesions

(i.e., nine lesions), which makes the diagnostic more difficult and

unspecific. However, recent advantages of non conventional MRI

techniques such as magnetization transfer, DW-MRI, proton MRI

spectroscopy, and functional MRI, have been contributing to

overcome the limitations of conventional MRI and associated

diagnostic criteria (for a review see [23]). In this sense, possible

advantages of novel network analyses as the here proposed is that

theoretically allows a deeper understanding of the alterations

provoked to the physiological brain dynamics in terms of the

management and integration of the nervous information flow. The

introduced network measures representation spaces concept constitutes an

Table 1. Clustering (C), characteristic path length (L), modularity (Q), global efficiency (Eglob), local efficiency (Eloc) and small-
worldness (s) parameters obtained for the brain anatomical networks of control and shiverer mice groups.

Group

Brain network measures
(Mean ± SEM)

C L Q Eglob Eloc s

Control FACT 45.5061.73 0.0660.01 0.6160.00 39.1760.62 83.4963.67 5.5660.23

TL 46.3361.28 0.0760.00 0.6560.00 37.7360.37 84.6962.52 6.3160.27

TEND 60.2762.04 0.0660.00 0.6260.00 36.6960.64 124.2265.05 5.9260.22

Shiverer FACT 32.2361.92 0.0760.01 0.5960.01 29.5861.52 58.7864.35 5.4760.38

TL 32.7161.64 0.0960.01 0.6560.01 30.0161.08 62.7763.85 3.9960.30

TEND 47.2761.41 0.0860.00 0.6060.01 29.4661.14 93.4462.91 5.0760.31

P-value 0.0025 0.0455 0.0324 0.0025 0.0015 0.0005

For each measure and fiber tracking algorithm, mean values are reported with their corresponding standard errors (i.e. the uncertainty of how the sample mean
represents the underlying population mean). For each measure, the multivariate permutation P-value corresponds to the null hypothesis that means of obtained group
values are equal (a P-value near to zero, i.e. P,0.05, indicates a significant difference between groups). The small P-values obtained for measures C, Q, Eglob, Eloc and s (all
P,0.0324) indicates a significant decreases on the shiverer subjects of these structural network attributes, which in conjunction with the significant increase of measure
L (P,0.05) reflects a considerable reduction in the amount of possible nervous information that can be exchanged over the brain and how deficiently and no optimally
it can be managed. For obtained gamma (c) and lambda (l) parameters, and their influence on the s index, please see Table S2. Significant P values are depicted in bold
type.
doi:10.1371/journal.pone.0019071.t001
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alternative to combine and summarize network topological

properties estimated by different modalities (e.g. different fiber

tracking algorithms or even different network extraction modal-

ities, like DW-MRI, electroencelography, magnetoencelography

and functional MRI). In addition, and although not performed in

this study, it is possible to analyze specific nodal properties as an

alternative to evaluate problems in specific brain regions and their

influence on the whole brain network. Thus, in general the

presented approach has potential clinical applications, which in

combination with existing criteria might contribute to the future

creation of specific brain dynamical imaging biomarkers.

Methodological issues and future work
Previous methodological studies have provided evidence about

how deterministic fiber tracking algorithms can fail on those

regions where fibers cross, merge or diverge [48–50]. However,

our selection of deterministic fiber tracking algorithms was

motivated mainly on the fact that the use of high resolution

DW-MRI images (80 mm isotropic voxel size) allows a more

detailed characterization of the intravoxel anisotropy as well as a

considerable reduction of partial volume effects, decreased

significantly compared with the high characteristic levels of DW-

MRI images acquired at the typical resolutions for which

deterministic methods have been traditionally evaluated, e.g.

around 26262 mm3 (15625 times bigger than the voxel size used

here), which even using deterministic tractography algorithms can

be translated into a more accurate description of the brain

structure. Nevertheless, beyond the statistical nature of the used

methods, we emphasize the use of three different tractography

algorithms, making the results robust to choice of tracking

algorithm, which is potentially a significant source of bias. In

addition, the use of network measures representation spaces in which

results from the different tractography algorithms are represented

in the N-dimensional Euclidean space (with an axis corresponding

to each tractography algorithm) instead that in a 1-dimensional

space (where all tractography algorithms’ results are inevitable

mixed), allows to apply the discrimination procedure in a way that

algorithm interaction effects are reduced, and thus providing a

valuable assessment of the relative detail of network information

across these methods and a robust set of results with which to

assess brain network alterations. Finally, in order to explore

quantitatively the performance of the different fiber tracking

algorithms with regard the presented discrimination approach, we

repeated the subject’s classification analysis for each fiber tracking

algorithm (see Table S7). As expected, the results confirmed that

combination of various fiber tracking algorithms contributed

considerably to the stabilization and consistency of the classifica-

tion results.

A special analysis requires the performed network comparison

on a standard brain template. Although individual subjects

transformation to the standard template space could introduce

propagation of error from normalization procedures, it could be

considered that results obtained in a standard space should

corresponds mainly to variations on fiber structure and integrity,

diminishing possible intersubject fiber tracking variability effects

due to technical tracking algorithm limitations, such as the

undesired decrease in probability of connection with distance,

caused by the progressive dispersion of fiber pathways from voxel

Figure 2. Three-dimensional brain network measure representation space for: (a) clustering, (b) characteristic path length, (c)
modularity, (d) local efficiency, (e) global efficiency, and (f) small-worldness indices. Control and shiverer subjects are represented by the
symbols %and D, respectively. For each measure space, the green surface constitutes the mean boundary plane between groups obtained by means
of a LDA cross-validation approach (see Subjects Classification on Material and Methods section). Note the correct predictions and clear spatial
subdivisions between control and shiverer mice for some of the evaluated network measures (panels a, d, e and f), which suggest that might exist
specific network subspaces corresponding to specific brain disorders.
doi:10.1371/journal.pone.0019071.g002
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to voxel as a consequence of the intrinsic noise and artifacts in the

diffusion data. However, in order to explore for differences in

subjects classification accuracy with and without transformation to

a standard template, we repeated the structural networks

construction and subjects classification analysis in the native space

(see Table S3). The results indicated a considerable decrease in the

prediction accuracy of each network measure and the unification

of all them in comparison with previous results obtained on the

standard space (Table 2), supporting the point of view that in the

case of DW-MRI techniques, subjects transformation to a

standard space might allows the improvement of statistical brain

network comparisons by reducing variability on networks

estimations resultant from technical limitations.

Another consideration for our study is the selection of the mean

diffusivity (MD) measure as an indirect measure of changes in

potential fiber pathway efficacy in the mouse brain. Other studies

have selected with this purpose the fractional anisotropy (FA)

measure, the number of connecting fiber paths, the MD measure

or/and the tensor’s three eigenvalues [5,19,40,43]. Our selection

was motivated on the fact that MD is a measure of the local

average molecular motion, independent of any tissue directional-

ity, which is expected to reflect cellular size and thus fiber integrity

[51–53]. In that sense, significant decreases of MD (or the diffusion

tensor’s three eigenvalues) has being reported for many regions of

pathological brains characterized by myelin-deficit, at the same

time that only a small variation (practically no informative) of

other diffusion tensor invariant scalars like FA has being found

[44,54]. However, in order to explore more the arc weight

definition used here in comparison to other alternatives, we

repeated the structural networks construction and subjects

classification analysis firstly using mean FA as a measure of fiber

integrity and latter taking arc weight only as the number of fiber

connecting paths between any two regions (see Tables S4 and S5,

respectively). As expected, the results indicated lower classification

accuracies in both cases when compared it to those obtained with

the use of MD, although in fact predictions based on mean FA

values can be considered as high, particularly for the combination

of the 6 considered network measures (i.e. 91.66% of prediction

accuracy), supporting the usefulness of define arc weights not only

taking into account the basic white matter structure but also the

potential efficacy/integrity of each nervous fiber pathway.

Finally, before a potential clinical application can be consider,

further studies need to explore mainly two major points: 1)

competence of the classification procedure to reflect different levels

of lesion profiles and disease states (the pathological subjects that

we analyzed here were theoretically at the same brain disorder

state, genetically equivalent, and had a mean age at fixation of

6.960.2 weeks. This makes it impossible to analyze other factors

like temporal progressions or different white matter lesion

affectations). Also, 2) reproducibility in human data, which

presents different properties referring to images resolution and

contrast due to the lower magnetic field strengths that are usually

employed in human protocols, i.e. around 1.5–3 Tesla.

Materials and Methods

Data acquisition
High-resolution (80 mm isotropic) contrast-enhanced diffusion

tensor data was acquired from six background control (C3HeB)

and six dysmyelinating shiverer (C3Fe.SWV shi/shi) mouse brains.

The data consists of nominally unweighted and diffusion weighted

images with optimized icosahedral sampling. This dataset is

available as part of the Biomedical Informatics Research Network

(BIRN) initiative, accession number TBD, and was downloaded

from URL http://www.birncommunity.org/data-catalog/mouse-

shiverer-dti-high-resolution-contrast-enhanced-data/(for a related

publication see [44]). All experiments were performed in

accordance with protocols approved by the Institutional Animal

Table 2. Individual conditioned probabilities of being a control subject with regard to clustering (C), characteristic path length (L),
modularity (Q), global efficiency (Eglob), local efficiency (Eloc) or small-worldness (s) measures obtained for the brain anatomical
networks of control and shiverer mice subjects (preceded by the prefixes Wt and Shi, respectively).

Subjects P(Cs|C) P(Cs|L) P(Cs|Q) P(Cs|Eglob) P(Cs|Eloc) P(Cs|s)
P(Cs|C,L,Q,
Eglob,Eloc,s)

Wt 1 0.9999 0.0093 0.8056 0.9999 0.9999 0.9999 0.9999

Wt 2 0.9999 0.6524 0.4438 0.9999 0.9998 0.9560 0.9999

Wt 3 0.9999 0.9724 0.5079 0.9999 0.9999 0.9990 1

Wt 4 0.9999 0.9725 0.9162 0.9999 0.9998 0.9724 0.9999

Wt 5 0.9838 0.7499 0.8080 0.9999 0.8183 0.9722 0.9963

Wt 6 0.9999 0.4841 0.8383 0.9999 0.9999 0.9928 1.0000

Shi 1 0.0179 0.9710 0.7829 0.9889 0.3150 0.0891 0.0083

Shi 2 7.58e-10 0.0163 0.3956 1.97e-10 6.07e-7 2.00e-06 4.44e-16

Shi 3 0.0075 0.1708 0.1862 0.0019 0.1116 0.0327 0.0009

Shi 4 2.30e-10 0.6477 3.2287 2.30e-07 3.31e-06 0.1507 6.66e-16

Shi 5 2.97e-12 0.0339 0.6757 0 7.10e-11 6.93e-05 0

Shi 6 4.46e-07 0.1015 0.6455 5.15e-11 4.19e-06 0.0063 1.87e-12

Predicted (%) 100 66.67 66.67 91.66 100 100 100

For each subject, a P(Cs|Ii) value near to one, e.g. P.0.95, indicates a high probability of belonging to the control group according to the structural network measure Ii;
whereas a P(Cs|Ii) value near to zero, e.g. P,0.05, indicates a high probability of belonging to the shiverer group. For comparison, corresponding conditioned
probability of being a shiverer subject according to Ii can be obtained similarly as 1-P(Cs|Ii). For each measure, or the combination of all them, the Correct Prediction
value indicates the % of subjects that were correctly classified. Note the perfect predictions, i.e. 100 %, obtained from the clustering, local efficiency and small-worldness
measures, as well as from the unification of the six considered network measures.
doi:10.1371/journal.pone.0019071.t002
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Care and Use Committee of the California Institute of

Technology.

Animal protocol. The brains of congenic male homozygous

shiverer mutants (C3Fe.SWV Mbpshi/Mbpshi, Jackson Labo-

ratories, mean age at fixation = 6.060.2 weeks, n = 6) and

control males with the same background as the shiverers (C3HeB/

FeJ, Jackson Laboratories, mean age at fixation 6.960.2 weeks,

n = 6) were studied using diffusion tensor imaging. Mice were

anesthetized deeply using 2.5% Avertin (0.017 ml/g body weight).

The mouse was then fixed by transcardiac perfusion using 30 ml

of room temperature heparinized phosphate buffered saline

followed by 30 ml of room temperature 4% paraformaldehyde

(PFA). After death, the head was removed and rocked in 4% PFA

overnight at 4C. The skin, lower jaw, ears and cartilaginous nose

tip were removed and the head rocked in 50 ml 0.01% sodium

azide in PBS for 7.060.1 days (mean 6 sd) at 4C. The head was

then transferred to a 5 mM solution of gadoteridol (Prohance,

Bracco Diagnostics Inc, Princeton NJ) and 0.01% sodium azide in

PBS and rocked for 13.561.9 days at 4C prior to MR imaging. All

brains were brought to room temperature for 8.563.0 hours

immediately prior to imaging at 20C. In four control and four

shiverer brains, DTI acquisitions were repeated to address B1

homogeneity concerns and the second dataset used in the results

analysis. The additional time spent by these brains in 5 mM

gadoteridol is included in the quoted time intervals above. The

repeated brains also spent an additional 6.860.1 hours

equilibrating to room temperature prior to imaging.

Image acquisition. All images were acquired using a vertical

bore 11.7 Tesla Bruker Avance DRX500 system (Bruker Biospin,

Germany) equipped with a Micro2.5 imaging gradient set capable

of a peak gradient strength of 1 T/m and a maximum slew rate of

12.5 kT/m/s. The intact head was secured in a Teflon holder and

submerged in a perfluoropolyether (Fomblin, Solvay Solexis, Inc,

Thorofare, NJ) within a 50 ml vial and imaged using a 35 mm

birdcage transmit/receive volume resonator. The ambient bore

temperature was maintained at 20C by thermostatically controlled

airflow. Optimized second order shimming was achieved across the

whole sample using the Bruker implementation of Fastmap 1.

Diffusion weighted images were acquired using a conventional

pulsed-gradient spin echo (PGSE) sequence (TR/TE = 150 ms/

11.6 ms, 25661506130 matrix, 19.2 mm 615 mm 612 mm

FOV, 80 mm isotropic voxel size, 1 average, d= 3 ms, D= 5 ms,

Gd = 750 mT/m, nominal b-factor = 1450 s/mm2). An optimized

six point icosahedral encoding scheme [55] was used for diffusion

weighted acquisitions with a single un-weighted reference image for

a total imaging time of 6 hours.

Image preprocessing. Individual diffusion tensors maps

were estimated [52]. Then, using the Segmentation tools in

SPMMOUSE (available at http://www.wbic.cam.ac.uk/,sjs80/

spmmouse.html) and SPM5 (available at http://www.fil.ion.ucl.

ac.uk/spm/software/spm5/), individual b0 images were non-

linearly segmentated into white/gray matter and cerebral spinal

fluid probabilistic tissue maps and individual non-linear warping

transformation parameters obtained were applied to the

corresponding individual diffusion tensors maps [56] in order to

transforms them finally into the standard template space of the

SPMMOUSE toolbox (a representative atlas of 90 brains scanned

at 70 mm isotropic). The previous transformation to the template

space was done with the purpose of reduce possible intersubject

fiber tracking variability effects on posterior networks estimation

and comparison due to technical algorithm limitations, such as the

undesired decrease in probability of connection with distance (i.e.

the progressive dispersion of fiber pathways with distance that

reflects the propagation of uncertainty from voxel to voxel, mainly

caused by noise and artifacts in the diffusion data). We comment

more about this point in the Discussion section.

In addition, we took the image volumes representing the

canonical Waxholm Space (WHS) mouse brain [57], which

include T1-, T2*-, and T2-Weighted MR volumes, Nissl-stained

optical histology, and a label volume describing 37 structures (all

volumes are represented at 21.5m isotropic resolution and are

available at http://software.incf.org/software/waxholm-space).

From the defined 37 structures we selected 26 gray matter

regions. We separated left and right hemispheres, and because in

this parcellation scheme the cerebral cortex is originally denoted as

only one region, we reparcellated both hemispheric cerebral

cortex into 50 small regions of approximately the same volume

(1.6660.23 mm3). The previous number of new small cortical

regions (i.e., 50 for each hemispheric cortex) was defined trying to

ensure on these regions a volume size around the mean volume

size of the other considered non-cortical gray matter regions,

keeping consequently a minimum volume variation across all

considered brain gray matter regions. Then, in order to carry out

the hemispheric cerebral cortex parcellation into 50 coherent

regions (i.e. non-overlapped regions with a coherent and continue

structure), we used the spatial kmeans clusterization algorithm,

which allows to minimizes the sum, over all clusters (small regions),

of the within-cluster sums of point-to-cluster-centroid Euclidean

distances. In fact, we selected this relative simple clusterization

algorithm motivated on the fact that the mouse cerebral cortex

presents a clear smoothed convexity (without the presence of

pronounced sulcus and gyrus structures like for the brain of other

species), which allows to reach a smooth parcellation over each

hemispheric cerebral cortex’s surface. Finally, the parcellation

procedure resulted on a modified WHS parcellation scheme of 75

cortical and subcortical gray matter regions for each hemisphere

(for a list of region labels see Table S1). Then, the WHS T2-

Weighted MR image was segmentated using SPMMOUSE and

SPM5 toolboxes, and resulting non-linear warping transformation

parameters obtained were applied to the modified WHS

parcellation scheme in order to transforms it into the standard

template space of the SPMMOUSE toolbox, similarly as done

with the individual background control and shiverer diffusion

tensor maps as mentioned above.

Axonal connectivity estimation
For each subject, axonal trajectories between each pair of gray

matter regions (defined by the normalized modified WHS

parcellation scheme) were estimated using 3 fully automated fiber

tractography algorithms: 1) traditional streamline [26], 2) tensor-

line [58] and 3) tensor deflection [59]. In the text we refer to these

algorithms as: ‘‘FACT’’, ‘‘TL’’ and ‘‘TEND’’, respectively.

Tracking parameters used were: 25 mm as step size, 200 mm as

maximum trace length, 680u as curvature threshold over voxel,

and 0.12 as FA threshold. Seed points were selected as all white

matter brain voxels with an FA value greater than 0.12 (the so-

called brute-force approach). The previous selection of a relative

low FA threshold was carried out with the purpose of do not

impose in the experiment an initial difference between the two

groups with the selection of a higher FA threshold value (e.g. 0.2),

which had provoked an early groups difference on the number of

seed points, and subsequently on connectivity density and brain

network properties. In this sense, we verified a non-significant

groups difference (P = 0.9712) between the number of seed points

that satisfied the here imposed condition (FA.0.12), while on the

contrary a significant difference (P = 0.0068) was found for the

more typically used FA threshold value of 0.2.
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Network construction
For each subject, whole brain undirected weighted networks

were created for each of the tracking algorithms as follows: 1) a

node was defined to represent each considered anatomic region, 2)

an undirected arc aij between any nodes i and j was established

with a corresponding arc weight w(aij), defined as the effective

number of connecting fiber trajectories relative to the number of

voxels over the surface of regions i and j, where each fiber path

was quantified according to the arithmetic mean of the inverse of

its mean diffusivity values. Mathematically:

w aij

� �
:w aji

� �
~

1

DNs
i DzDNs

j D

X

Vf [Fij

1

Nf

XNf

step~1

1

MD stepð Þ; ð1Þ

where DNs
i D and DNs

j D are the number of elements (superficial nodes)

of regions i and j respectively, Fij is the set of fiber trajectories

connecting regions i an j, Nf is the number of steps of fiber trajectory

f [Fij , and MD(step) the local mean diffusivity of fiber trajectory f in

each step. Note that region-region connection arc weights are

defined not only taking into account the basic white matter structure

but also an indirect measure of the potential efficacy of each nervous

fiber pathway (for similar arc weight definitions see [60], where the

mean of the inverse of the ADC measure was used for a brain

maturation analysis, as well as [5], where the FA measure was used

to define arc weight in an Alzheimer’s Disease study). In the

Discussion section (Methodological Issues and Future Work subsection) we

comment more about this point.

Finally, for each created brain structural network its connectiv-

ity backbone was estimated [19]: first, a maximum spanning tree,

which connects all nodes of the network such that the sum of its

weights is maximal, was extracted; then, additional edges were

added in order of their weight until the average node degree was 4.

All posterior network analysis and visual representations were

based on the resultant networks (connectivity backbones).

Graph analysis
Each structural whole brain network obtained was character-

ized attending to six basic metrics:

Clustering index (C). A measure of the inherent tendency to

cluster nodes into strictly connected neighborhoods. In a weighted

graph G, the clustering around a node i can be calculated as the

geometric average of subgraph node weights [61]:

Ci~
1

ki ki{1ð Þ
X

j,k[G
j,k=i

~wwij
:~wwjk

:~wwki

� �1
3; ð2Þ

where ki is the number of arcs connecting node i and the weights

are scaled by the largest weight in the network, ~wwij~
wij

max wij

� �.

The clustering coefficient for the whole graph G is defined as the

average of clustering around each one of the n nodes:

C~
1

n

X

i[G

Ci ð3Þ

Characteristic path length (L). A measure of the typical

separation between any two nodes i and j, and it is defined as the

mean of geodesic lengths dij over all pairs of nodes:

L~
1

n n{1ð Þ
X

i,j[G
i=j

dij ð4Þ

In the unweighted network context wij~½0,1�
� �

, the geodesic

length dij is defined as the number of arcs along the shortest path

connecting nodes i and j. In the case of weighted networks wij[<
� �

,

the path with the minimum number of nodes is not necessarily the

optimal dij and in some cases it is necessary to define a physical

length associated to each arc (this should be a function of the

characteristics of the hypothetical link among any nodes i and j). In

this work, we assumed that the physical length of an arc

connecting nodes i and j is inversely proportional to the strength

of the analyzed connection [18], i.e. lij~
1

wij

. Thus, the shortest

path length dij is finally computed as the smallest sum of the arc

lengths throughout all the possible paths from node i to node j.

Note that for the particular case of unweighted graphs, lij~1 for

all arcs and the geodesic lengths dij reduces to the minimum

number of arcs traversed to get from i to j.

Modularity (Q). A measure of the degree to which a network

may be subdivided into modules or communities, reflecting the

inherent tendency to the appearance of densely connected groups

of vertices with sparser connections between groups [62,63]. The

modularity for a given partition of a network G is defined as [63]:

Q~
X

i[Nmod

eii{a2
i

� �
ð5Þ

where Nmod is the number of modules, eii is the fraction of edges in

the network that connect vertices within the community i, and ai

represents the fraction of edges that connect vertices of community

i with other communities (i.e., ai~
P

i[Nmod

eij ). This quantity

measures the fraction of the edges in the network that connect

vertices of the same type (i.e., within community edges) minus the

expected value of the same quantity in a network with the same

community divisions but random connections between the

vertices. If the number of within-community edges is no better

than random, we will get Q = 0. Values approaching Q = 1, which

is the maximum, indicate networks with strong community

structure [63].

In order to identify the modulus of the created structural brain

networks that optimize the previous modularity measure (equation

5), we used Newman’s spectral optimization method [62] that is

implemented as part of the Brain Connectivity Toolbox [64]

(available at http://www.brain-connectivity-toolbox.net).

Efficiency parameters (Eglob, Eloc). In terms of the

information flow, the global efficiency (Eglob) of a network G

reflects how efficiently information can be exchanged over G,

considering a parallel system in which each node sends

information concurrently along the network. It is defined as [65]:

Eglob~
1

n n{1ð Þ
X

i,j[G
i=j

1

dij

ð6Þ
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The local efficiency (Eloc) of G is defined as the average efficiency of

the local subgraphs [65]:

Eloc~
1

n

X

i[G

Eglob Gið Þ, ð7Þ

where Gi is the subgraph of the first neighbors of node i. This

measure has been used to reveal how much a system is fault

tolerant, indicating how efficient the communication is among the

first neighbors of i when i is removed.

In a physiological sense, the global efficiency of a structural

brain network reflects the potential parallel exchange of neural

information between the involved anatomic regions (a high global

efficiency value, i.e. Eglob<1, may indicate highly parallel

information transfer in the brain system, in which each element

node could efficiently send information concurrently along the

network). The local efficiency of a structural brain network reflects

its potential tendency to have communities or clusters of

anatomically and physiologically different regions that deal with

common neural information (where regions connected to a same

region tend also to link to each other). In addition, concurrent

higher values of global and local efficiency indicate a system with a

high balance between local necessities (fault tolerance) and wide-

scope interactions.
Small-world parameter (s). Small-world networks are

defined as those having small mean shortest path length, like

random networks (l:
Lreal

Lrand
&1), and high clustering coefficient,

much larger than random networks (c:
Creal

Crand
ww1) [66].

Additionally, the small-worldness condition lies in satisfying that

s:
c

l
w1 [67]. A network is said to shifts toward a random

network if is small-worldness parameter decreases due to gamma

(c) decreases and/or lambda (l) increases.

Network measures spatial representations
For each network measure we define here its characteristic

representation space, in which each subject is spatially represented

and determined by a unique point attending to its topological

properties. Formally, for a given network measure X, we define

the N available values of X obtained for each subject i as the

coordinates of the point that represents subject i in the N-

dimensional Euclidean space of measure X. Specifically, because

here we used three different fiber tracking algorithms, the three

values of any measure X obtained for each subject i are assumed

as the ‘‘length’’, ‘‘width’’ and ‘‘depth’’ respectively of a point

determining uniquely the position of subject i on the 3-

dimensional space of X. In summary, for each considered brain

network measure we obtained a 3-dimensional space in which

subjects are represented for unique points whose coordinates

corresponds to the obtained values for this measure (see for

example Figure 2).

Similarly, the representation space of a set of M network measures

can be created assuming a point for each subject but, as we have N

different values per network measure, now the resulting spatial

representation will be on the M*N-dimensional Euclidean space

(i.e. an abstract 18-dimensional Euclidean space representing the 6

network measures considered in this study, where to each measure

corresponds three coordinates).

Subjects classification
The potential prediction of structural network measures was

assessed using linear discriminant analysis (LDA) [45]. This is an

extended classification procedure that assumes a multivariate

normal distribution of classes around their means and a common

covariance matrix, resulting in a linear classification boundary.

In the context of the network measure spatial representations, for each

network measure the LDA procedure was employed according to

a cross-validation approach, in which all but one mouse (a control

or a shiverer) were used for training, and the left-out mouse was

used for testing. Then the train/test partition was rotated until all

subjects have been tested without being included in the training

sample. In summary, for each subject the LDA returned the

posterior probability of this subject to belong to each of the two

training subgroups (integrated by the rest of the control or shiverer

subjects respectively; see for example Table 2), as well as the

coefficients of the boundary curves between the groups (i.e. the

equations of the hyperplane that best separated the groups in the

corresponding 3-dimensional representation space).

Finally, for subjects classification based on the combination of

the considered 6 network measures, the LDA procedure was

similar employed according to a cross-validation approach but in

this case the number of features (dimensionality = 6) was

previously reduced by means of a forward sequential feature

selection in a wrapper fashion [46]. In general, the forward

sequential feature selection in a wrapper fashion selects a subset of

features by sequentially adding a new feature (forward search) until

certain stopping conditions are satisfied. More specifically, the

feature selection procedure starts prediction using only the

network measure that resulted the best single predictor (usually

the clustering index or the small-worldness parameter), after this

initial prediction, the procedure adds as a new predictor (feature)

to the network measure that resulted the second best single

predictor, and continues in a similar way (the order of the network

measures inclusion can be easily deduced from Table 2, on Results

section) until the inclusion of a new network measure do not

implies an improvement in prediction. According to this

procedure, final discrimination results were based on the

interaction of the most relevant features, where redundant

information is considerable reduced.

Statistical analysis
In order to evaluate differences between two groups of subjects

for a same network measure we used a permutation test. This has

the following advantages: the test is distribution free, no

assumptions of an underlying correlation structure are required,

and provides exact p-values for any number of subjects and

estimation algorithms. Specifically, for each network the statistics t

and max t were calculated, where max t represent the maximum of

statistic t in each fiber tracking algorithm result. The distribution

estimated by permutation techniques for max t was then used to set

significance levels that control the experiment wise error for the

simultaneous univariate comparisons [68,69].

Supporting Information

Table S1 Mouse considered regions for each brain
hemisphere (modified WHS parcellation scheme).

(DOC)

Table S2 Gamma (c) and lambda (l) parameters
obtained for the brain anatomical networks of control
and shiverer mice groups. For each measure and fiber
tracking algorithm, mean values are reported with their
corresponding standard errors (i.e. the uncertainty of
how the sample mean represents the underlying popu-
lation mean). For each measure, the multivariate permutation

P-value corresponds to the null hypothesis that medians of
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obtained group values are equal (a P-value near to zero, i.e. P ,

0.05, indicates a significant difference between groups). The small

P-value obtained for l indicates a significant increase on the

shiverer subjects of this structural network attribute, whereas the c
parameter doesn’t show significant differences (although a non

significant decrease can be noted). This result, together with the

reported significant decrease for the s parameter, supports the

hypothesis of a structural brain network randomization in the

shiverer mutant mouse.

(DOC)

Table S3 Individual conditioned probabilities of being
a control subject with regard clustering (C), character-
istic path length (L), modularity (Q), global efficiency
(Eglob), local efficiency (Eloc) or small-worldness (s)
measures obtained for the brain anatomical networks
(estimated in individual native spaces) of control and
shiverer mice subjects (preceded by the prefixes Wt and
Shi, respectively). For each subject, a P(Cs|Ii) value near to

one, e.g. P . 0.95, indicates a high probability of belonging to the

control group according to the structural network measure Ii;

whereas a P(Cs|Ii) value near to zero, e.g. P , 0.05, indicates a

high probability of belonging to the shiverer group. For

comparison, corresponding conditioned probability of being a

shiverer subject according to Ii can be obtained similarly as 1-

P(Cs|Ii). For each measure, or the combination of all them, the

Correct Prediction value indicates the % of subjects that were

correctly classified. Note how predictions accuracy, for each

considered network measure or the combination of all them,

decreases considerably with regard the corresponding results

obtained in the standard template space (Table 2 on Results

section), which supports the point of view that in the case of DW-

MRI techniques, subjects transformation to a standard space

allows the improvement of statistical brain network comparisons

by reducing variability on networks estimations resultant from

technical limitations.

(DOC)

Table S4 Individual conditioned probabilities of being
a control subject with regard clustering (C), character-
istic path length (L), modularity (Q), global efficiency
(Eglob), local efficiency (Eloc) or small-worldness (s)
measures obtained for the brain anatomical networks
(using mean FA as an indicator of each fiber path’s
integrity) of control and shiverer mice subjects (preced-
ed by the prefixes Wt and Shi, respectively). For each

subject, a P(Cs|Ii) value near to one, e.g. P . 0.95, indicates a

high probability of belonging to the control group according to

the structural network measure Ii; whereas a P(Cs|Ii) value near

to zero, e.g. P , 0.05, indicates a high probability of belonging to

the shiverer group. For comparison, corresponding conditioned

probability of being a shiverer subject according to Ii can be

obtained similarly as 1-P(Cs|Ii). For each measure, or the

combination of all them, the Correct Prediction value indicates

the % of subjects that were correctly classified. Note that

although in general prediction accuracies are considerable high,

particularly for C, Eglob, Eloc and the combination of the 6

considered network measures (i.e. 91.66 % of prediction

accuracy), the obtained values are lower than those obtained

when the mean value of the inverse of MD was used to define

arcs weights (Table 2 on Results section).

(DOC)

Table S5 Individual conditioned probabilities of being
a control subject with regard clustering (C), character-
istic path length (L), modularity (Q), global efficiency

(Eglob), local efficiency (Eloc) or small-worldness (s)
measures obtained for the brain anatomical networks
(with arc weights between nodes [regions] defined only
as the number of connecting fiber paths, i.e., without
any indicator of fiber integrity) of control and shiverer
mice subjects (preceded by the prefixes Wt and Shi,
respectively). For each subject, a P(Cs|Ii) value near to one, e.g.

P . 0.95, indicates a high probability of belonging to the control

group according to the structural network measure Ii; whereas a

P(Cs|Ii) value near to zero, e.g. P , 0.05, indicates a high

probability of belonging to the shiverer group. For comparison,

corresponding conditioned probability of being a shiverer subject

according to Ii can be obtained similarly as 1-P(Cs|Ii). For each

measure, or the combination of all them, the Correct Prediction

value indicates the % of subjects that were correctly classified.

Note how predictions accuracy, for each considered network

measure or the combination of all them, decreases considerably

with regard the corresponding results obtained when the mean

value of the inverse of MD or the mean FA value were used as

measures of fiber integrity (see Table 2 and Table S5, respectively).

(DOC)

Table S6 Pearson correlations values between the six
topological measures obtained for brain anatomical
networks of mice subjects: clustering (C), characteristic
path length (L), modularity (Q), global efficiency (Eglob),
local efficiency (Eloc) and small-worldness (s). For the sake

of simplicity, here we present correlations only trough measures

(i.e. without taking into account differences between groups or

fiber tracking algorithms). Asterisks indicate significant correla-

tions (i.e. whit a corresponding P,0.05). Note that almost all pairs

of measures are significantly correlated (except pairs C-L, L-Q, L-

Eloc, Q- Eglob and Q-s), illustrating the need of reduce redundant

network features information when two o more measures are

combined with the purpose of obtain a final quantitative subject

discrimination.

(DOC)

Table S7 Prediction accuracies (%) obtained for control
and shiverer mice subjects according to results of each
fiber tracking algorithm and the combination of all
them, with regard clustering (C), characteristic path
length (L), modularity (Q), global efficiency (Eglob), local
efficiency (Eloc) or/and small-worldness (s) brain ana-
tomical network measures. For each network measure and

fiber tracking, or the combination of all them, the Prediction

accuracy indicates the % of subjects that were correctly classified.

Note that the combination of various fiber tracking algorithms

contributes to the stabilization and consistency of the classification

results, in other words, a high prediction for a given network

measure usually coincides with a high prediction for the other

measures, which do not happens always for the results corre-

sponding to only a given fiber tracking algorithm. For example, in

the case of the TL algorithm, although a high prediction accuracy

(around 91.66,100%) was obtained for C, Eglob, s and the

combination of the six network measures, the prediction accuracy

obtained for Eloc (i.e. 83.33%) was considerable lower than the

obtained for the others algorithms and the combination of the

three algorithms (around 91.66,100%); similarly happened with

predictions obtained from FACT and TEND algorithms for s and

the combination of the six network measures. These results

support the point of view that the use of different tractography

algorithms makes the results robust to choice of tracking

algorithm, which is potentially a significant source of bias.

(DOC)
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