Article

Cembranolides and Related Constituents from the Soft Coral Sarcophyton cinereum

Chih-Hua Chao ${ }^{1,2,+\oplus}$, Yi-Ju Chen ${ }^{3,+}$, Chiung-Yao Huang ${ }^{3}$, Fang-Rong Chang ${ }^{4} \oplus{ }^{\bullet}$, Chang-Feng Dai ${ }^{5}$ and Jyh-Horng Sheu ${ }^{3,4,6, *}$
1 School of Pharmacy, China Medical University, Taichung 406040, Taiwan; chchao@mail.cmu.edu.tw
2 Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404332, Taiwan
3 Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; yijuvivian@gmail.com (Y.-J.C.); betty8575@yahoo.com.tw (C.-Y.H.)
4 Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; aaronfrc@kmu.edu.tw
5 Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan; corallab@ntu.edu.tw
6 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
* Correspondence: sheu@mail.nsysu.edu.tw; Tel.: +886-7-5252000 (ext. 5030); Fax: +886-7-5255020
\dagger These authors contributed equally to this work.

Citation: Chao, C.-H.; Chen, Y.-J. Huang, C.-Y.; Chang, F.-R.; Dai, C.-F. Sheu, J.-H. Cembranolides and Related Constituents from the Soft Coral Sarcophyton cinereum. Molecules 2022, 27, 1760. https://doi.org/ 10.3390/molecules27061760

Academic Editors: Sérgio Sousa, Ana Gomes and Ana P. Carvalho

Received: 11 February 2022
Accepted: 3 March 2022
Published: 8 March 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In an attempt to explore the bioactive metabolites of the soft coral Sarcophyton cinereum, three new cembranolides, cinerenolides A-C (1-3), and 16 known compounds were isolated and identified from the EtOAc extract. The structures of the new cembranolides were elucidated on the basis of spectroscopic analysis, and the NOE analysis of cinerenolide A (1) was performed with the assistance of the calculated lowest-energy molecular model. The relative configuration of cinerenolide C (3) was determined by the quantum chemical NMR calculation, followed by applying DP4+ analysis. In addition, the cytotoxic assays disclosed that some compounds exhibited moderate to potent activities in the proliferation of P388, DLD-1, HuCCT-1, and CCD966SK cell lines.

Keywords: Sarcophyton cinereum; cinerenolides A-D; cytotoxity; α, β-unsaturated ε-lactone

1. Introduction

Soft corals of the genus Sarcophyton are a dominant species in many coral reef areas [1-3]. This species is well known to be a prolific producer of structurally unique diterpenes, especially cembranoids. Some of the cembranoid-type compounds have been found to be associated with coral reproduction [4,5]. Previous investigation of the Sarcophyton species has produced metabolites with diverse bioactivities, including anti-viral [6], anti-inflammatory [7-11], and cytotoxic activities [8-10,12]. As marine soft corals are a prolific source of bioactive cembranoids, investigations of promising structures with potent bioactivities have been persistently conducted in our laboratory. As part of our continuing search for bioactive structures from marine soft corals [7-12], the chemical constituents from the soft coral Sarcophyton cinereum are investigated in this study. Herein, we report the isolation and structural elucidation of three new cembranolides with an α, β-unsaturated ε-lactone (1-3), as well as 16 related cembranoids (4-19). Additionally, their cytotoxicities against a limited panel of cancer cell lines are reported.

2. Results

The EtOAc extract from S. cinereum was separated repeatedly by column chromatography and HPLC to afford three new diterpenoids (1-3) and 16 known compounds, which were identified as sarcophytonoxide E (4) [13], sarcomililatins A and B (5 and 6) [14], 2$\left[(E, E, E)-7^{\prime}, 8^{\prime}\right.$-epoxy- $4^{\prime}, 8^{\prime}, 12^{\prime}$-trimethylcyclotetradeca- $1^{\prime}, 3^{\prime}, 11^{\prime}$-trienyl]propan-2-ol (7) [15],
sarcophytonolide F (8) [16], cherbonolide L (9) [17], (+)-(2S)-isosarcophine (10) [18], (-)-(2R)isosarcophine (11) [19], sarcophytonoxide A (12) [13], sartrolide C (13) [20], ketoemblide (14) [21], isosarcophytonolide D (15) [22], glaucumolides A and B (16 and 17) [23,24], and bistrochelides A and B (18 and 19) [24].

The molecular formula of compound 1 was established as $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$ by the analysis of its NMR data and HRESIMS. Its NMR data indicated that it is quite similar to the reduction products of sarcophytolide [21,25] (Tables 1 and 2); however, a secondary hydroxyl group is observed at $\delta_{\mathrm{C}} 73.0(\mathrm{CH})$ and $\delta_{\mathrm{H}} 4.19(1 \mathrm{H}$, ddd, $J=11.0,8.0,4.0 \mathrm{~Hz}, \mathrm{H}-5)$ for 1, revealing that one of the CH_{2} group in the cembranolide scaffold should be replaced by a hydroxycontaining methine. The HMBC correlations from $\mathrm{H}_{3}-18$ to $\mathrm{C}-3, \mathrm{C}-4$, and $\mathrm{C}-5$ and from $\mathrm{H}_{2}-6$ to C-4, C-5, and C-7 indicated that the hydroxyl group was attached at C-5, as shown in Figure 1. Furthermore, two hydroxyl protons at $\delta_{\mathrm{H}} 1.38(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$ and 1.24 $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$ also supported the presence of two hydroxyl groups. The E geometry for the Δ^{1} and Δ^{3} double bonds was determined by the observation of NOE correlations (NOEs) of $\mathrm{H}-2$ with both $\mathrm{H}_{3}-18$ and $\mathrm{H}_{3}-16$, and H -14a with $\mathrm{H}-3$. The $7 S^{*}, 8 R^{*}$-configuration was deduced from the NOEs of $\mathrm{H}_{3}-19 / \mathrm{H}_{2}-9, \mathrm{H}_{3}-19 / \mathrm{H}_{2}-6$, and H-7/H-10a (Figure 2). H-3 showed NOEs with both H-7 and H-6a, and H-5 had NOEs with both $\mathrm{H}_{3}-18$ and H-6, revealing a $5 R^{*}, 7 S^{*}$-configuration for C-5 and C-7 stereogenic centers (Supplementary Materials, Figures S1-S9).

Table 1. 1H NMR spectroscopic data of compounds 1-3.

	$1^{\text {a }}$	$2^{\text {b }}$	$2^{\text {c }}$	$3^{\text {b }}$
No.	$\delta_{\mathrm{H}}(\mathrm{J}$ in Hz$)$	$\delta_{\mathrm{H}}(\mathrm{J}$ in Hz$)$	$\delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\mathrm{H}}(J$ in Hz$)$
2	6.13 d (11.6)	5.40 d (16.4)	5.37 d (16.4)	5.44 d (16.0)
3	$5.82 \mathrm{~d}(11.6)$	$5.53 \mathrm{~d}(16.4)$	5.52 d (16.4)	5.43 d (16.0)
5	4.19 (11.0, 8.0, 4.0)	1.84 m	1.98 m	1.74 m
		1.73 m	1.82 m	
6	2.30 m	1.66 m	1.66 m	1.82 m
	1.89 m	1.46 m	1.66 m	1.37 m
7	$4.11 \mathrm{dd}(9.2,8.4)$	3.92 d (10.8)	3.75 d (10.0)	3.79 d
9	2.21 m	2.24 m	2.23 m	2.20 m
	2.06 m	1.95 m	2.00 m	1.89 m
10	2.58 m	2.69 m	2.53 m	2.67 m
	2.40 m	2.52 m	2.50 m	2.45 m
11	6.08 t (3.6)	6.55 t (3.9)	6.51 t (5.0)	6.49 s
13	3.17 t (12.2)	2.90 td (12.0, 4.0)	3.09 m	2.72 m
	1.84 m	2.22 m	2.50 m	2.38 m
14	2.57 td (12.2, 8.0)	1.92 m	1.90 m	2.27 m
	2.13 m	1.79 m	1.81 m	1.67 m
15	2.33 m	1.70 m	1.80 m	1.60 m
16	$1.10 \mathrm{~d}(6.8)$	0.89 d (6.8)	0.85 d (6.8)	0.87 d (6.4)
17	1.06 d (6.8)	0.81 d (6.8)	0.80 d (6.8)	0.83 d (6.4)
18	1.92 s	1.26 s	1.30 s	1.25 s
19	1.41 s	1.29 s	1.31 s	1.26 s
$5-\mathrm{OH}$	1.38 d (8.0)			
7-OH	1.24 d (8.4)			

${ }^{\text {a }}$ Spectra recorded at 400 MHz in CDCl_{3}; ${ }^{\text {b }}$ spectra recorded at 400 MHz in $\mathrm{CD}_{3} \mathrm{OD}$; ${ }^{\mathrm{c}}$ spectra recorded at 500 MHz in CDCl_{3}.

Table 2. ${ }^{13} \mathrm{C}$ NMR spectroscopic data of compounds 1-3.

	$1^{\text {a }}$	$2^{\text {b }}$	$2^{\text {c }}$	$3^{\text {b }}$
No.	$\delta_{\text {C }}$ (mult.)	δ_{C} (mult.)	$\delta_{\text {C }}$ (mult.)	δ_{C} (mult.)
1	149.9 (C)	77.0 (C)	74.5 (C)	77.1 (C)
2	118.5 (CH)	135.1(CH)	134.8 (CH)	132.4 (CH)
3	123.0 (CH)	135.1(CH)	133.4 (CH)	135.1(CH)
4	133.3 (C)	74.9 (C)	73.8 (C)	74.0 (C)
5	73.0 (CH)	$37.5\left(\mathrm{CH}_{2}\right)$	$34.0\left(\mathrm{CH}_{2}\right)$	$36.9\left(\mathrm{CH}_{2}\right)$
6	$36.0\left(\mathrm{CH}_{2}\right)$	$25.6\left(\mathrm{CH}_{2}\right)$	$25.6\left(\mathrm{CH}_{2}\right)$	$25.2\left(\mathrm{CH}_{2}\right)$
7	67.5 (CH)	71.7 (CH)	72.2 (CH)	70.2 (CH)
8	83.0 (C)	86.1 (C)	83.9 (C)	85.7 (C)
9	$34.1\left(\mathrm{CH}_{2}\right)$	$35.3\left(\mathrm{CH}_{2}\right)$	$36.6\left(\mathrm{CH}_{2}\right)$	$35.8\left(\mathrm{CH}_{2}\right)$
10	$27.3\left(\mathrm{CH}_{2}\right)$	$28.4\left(\mathrm{CH}_{2}\right)$	$27.9\left(\mathrm{CH}_{2}\right)$	$28.3\left(\mathrm{CH}_{2}\right)$
11	140.5 (CH)	144.8 (CH)	144.0 (CH)	145.2 (CH)
12	133.2 (C)	134.8 (C)	134.2 (C)	132.6 (C)
13	$37.4\left(\mathrm{CH}_{2}\right)$	$32.9\left(\mathrm{CH}_{2}\right)$	$32.0\left(\mathrm{CH}_{2}\right)$	$35.6\left(\mathrm{CH}_{2}\right)$
14	$27.2\left(\mathrm{CH}_{2}\right)$	$39.0\left(\mathrm{CH}_{2}\right)$	$38.0\left(\mathrm{CH}_{2}\right)$	$36.8\left(\mathrm{CH}_{2}\right)$
15	35.7 (CH)	38.4 (CH)	40.1 (CH)	43.4 (CH)
16	$22.1\left(\mathrm{CH}_{3}\right)$	$16.8\left(\mathrm{CH}_{3}\right)$	$16.7\left(\mathrm{CH}_{3}\right)$	$17.1\left(\mathrm{CH}_{3}\right)$
17	$22.8\left(\mathrm{CH}_{3}\right)$	$17.4\left(\mathrm{CH}_{3}\right)$	$16.9\left(\mathrm{CH}_{3}\right)$	18.0 ($\left.\mathrm{CH}_{3}\right)$
18	$17.2\left(\mathrm{CH}_{3}\right)$	$31.9\left(\mathrm{CH}_{3}\right)$	$32.0\left(\mathrm{CH}_{3}\right)$	$32.5\left(\mathrm{CH}_{3}\right)$
19	$22.0\left(\mathrm{CH}_{3}\right)$	$22.5\left(\mathrm{CH}_{3}\right)$	$21.7\left(\mathrm{CH}_{3}\right)$	$22.7\left(\mathrm{CH}_{3}\right)$
20	166.5 (C)	170.4 (C)	168.7 (C)	169.3 (C)

${ }^{\text {a }}$ Spectra recorded at 100 MHz in $\mathrm{CDCl}_{3} ;{ }^{\text {b }}$ spectra recorded at 100 MHz in $\mathrm{CD}_{3} \mathrm{OD}^{\text {; }}$, spectra recorded at 125 MHz in CDCl_{3}.

1

2. $\mathrm{R}=\beta-\mathrm{OH}$
3. $\mathrm{R}=\alpha-\mathrm{OH}$

- ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \cos \mathrm{Y}$
\longrightarrow HMBC correlation
Figure 1. Selected ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H} \operatorname{COSY}(-)$ and $\mathrm{HMBC}(\rightarrow)$ correlations of 1-3.

Figure 2. Selected NOE correlations of 1-3.
As the known synthetic analogues possessing $7 S, 8 R$ and $7 R, 8 R$ configurations, which are derived from ketoemblide and sarcophytolide, have similar coupling patterns at H-7 (br d, $J=9.5-10.0 \mathrm{~Hz}$ for $7 S^{*}, 8 R^{*}$ and dd, $J=11.0,2.5 \mathrm{~Hz}$ for $7 R^{*}, 8 R^{*}$) [21], a detailed comparison between two computational models of $\mathbf{1}\left(7 S^{*}, 8 R^{*}-\mathbf{1}\right.$ and $\left.7 R^{*}, 8 R^{*}-\mathbf{1}\right)$ derived from DFT calculations was performed. A conformational search for both diastereomers of 1
was performed using the Merk Molecular Force Field (MMFF) calculation in Spartan'16 software. The resulting conformers within $5 \mathrm{kcal} / \mathrm{mol}$ were further subjected for geometry optimization and frequency calculation at the CAM-B3LYP/6-31+G(d,p) level with the integral equation formalism polarizable continuum model (IEFPCM)/CHCl ${ }_{3}$ in Gaussian 09 software [26], which generated seven conformers for $7 S^{*}, 8 R^{*}-\mathbf{1}$ (Figure 3) and four for $7 R^{*}, 8 R^{*} \mathbf{- 1}$ (Figure 4) with Boltzmann populations over 1%. The conformers $\mathbf{1 a}-\mathbf{1 g}$ of $7 S^{*}$, $8 R^{*}-\mathbf{1}$ (Figure 3) have almost the same conformation in the 14 -membering carbon fragment, and differences were observed at the rotations of hydroxyl and isopropyl groups, which were quite similar to the model generated by the analysis of NOEs (Figure 2). On the other hand, four lower-energy conformers (epi-1a-1d) were obtained for another possible diastereomer, $7 R^{*}, 8 R^{*} \mathbf{- 1}$ (epi-1) (Figure 4). It is interesting that epi-1a-1c, accounting for 95.37% of the overall population, also possess an almost identical conformation for the 14-membering-ring skeleton. Although $7 S^{*}, 8 R^{*}-1$ and $7 R^{*}, 8 R^{*}-1$ have different arrangement neighboring the C-7 stereogenic center, the dihedral angles (Φ) of $\mathrm{H}-7$ to $\mathrm{H}_{2}-6$ in the two possible diastereomers ($7 R^{*}, 8 R^{*}-1$ and $7 S^{*}, 8 R^{*}-\mathbf{1}$) were quite similar, which could be the reason that the aforementioned $7 S, 8 R$ and $7 R, 8 R$ analogues derived from ketoemblide and sarcophytolide possess similar coupling patterns [21]. Similar to that of $7 S^{*}, 8 R^{*} \mathbf{- 1}$, the distance of H-7/H-10 in epi-1a-1c ($7 R^{*}, 8 R^{*}-\mathbf{1}$, Figure 4) is lower than $3 \AA$, revealing that H-7 should have NOE enhancement with H-10 in both $7 S^{*}, 8 R^{*}-\mathbf{1}$ and $7 R^{*}, 8 R^{*}-\mathbf{1}$; thus, this correlation could not be used as crucial NOEs to determine the C-7 configuration. In addition, the distances of $\mathrm{H}-6 / \mathrm{H}-9, \mathrm{H}-6 / \mathrm{H}-10$, and $\mathrm{H}-7 / \mathrm{H}-14$ in $7 R^{*}, 8 R^{*}-1$ are also lower than $3 \AA$ (Figure 4), implying that these protons are expected to have NOEs; however, these correlations were not found in compound 1, which further supports the $7 S^{*}, 8 R^{*}$ configuration for 1 . A comparison of the proton chemical shift of $\mathrm{H}_{3}-19$ ($\delta_{\mathrm{H}} 1.41 \mathrm{~s}$) in 1 to the literature data (1.38-1.41 ppm for $7 S, 8 R$ analogues; $1.13-1.16 \mathrm{ppm}$ for $7 R, 8 R$ analogues) [21] also confirmed the relative configurations of C-7 and C-8 to be $7 S^{*}$ and $8 R^{*}$, respectively. Accordingly, the structure of $\mathbf{1}$ was determined as shown (Scheme 1).

1b, 13.61\% $\begin{aligned} & \Phi_{1}:-75^{\circ} \\ & \Phi_{2}: 168^{\circ}\end{aligned}$

1c, $29.02 \% \quad \begin{aligned} & \Phi_{1}:-76^{\circ} \\ & \Phi_{2}: 167^{\circ}\end{aligned}$

$1 d, 5.09 \%$ $\begin{aligned} & \Phi_{1}:-75 \\ & \Phi_{2}: 168^{\circ}\end{aligned}$

1e, $5.77 \%{ }^{\Phi_{1}:-75^{\circ}} \begin{aligned} & \Phi_{2}: 169^{\circ}\end{aligned}$

1f, $1.16 \% \quad \begin{aligned} & \Phi_{1}:-75^{\circ} \\ & \Phi_{2}: 168^{\circ}\end{aligned}$

1g, $1.83 \%{ }_{\Phi_{1}:-75^{\circ}}^{\Phi_{2}: 168^{\circ}}$

Figure 3. Low-energy conformers, populations, and dihedral angles (Φ_{1} (H7-C7-C6-H6 pro-s) and Φ_{2} (H7-C7-C6-H6 pro-R)) of $7 S^{*}, 8 R^{*}-\mathbf{1}$ at CAM-B3LYP $/ 6-31+G(\mathrm{~d}, \mathrm{p})$ IEFPCM $\left(\mathrm{CHCl}_{3}\right)$ level of theory.

epi-1a, 55.15\%

epi-1c, 5.02%

epi-1b, 35.20\%

epi-1d, 4.26%

Figure 4. Low-energy conformers, populations, key proton-proton distances, and dihedral angles ($\Phi_{1}\left(\mathrm{H} 7-\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6_{\text {pro-S }}\right)$ and $\Phi_{2}\left(\mathrm{H} 7-\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6_{\text {pro-R }}\right)$) of $7 \mathrm{R}^{*}, 8 R^{*}-\mathbf{1}($ epi-1 $)$ at CAM-B3LYP $/ 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ IEFPCM $\left(\mathrm{CHCl}_{3}\right)$ level of theory.

Compound 2 was obtained as a white powder and suggested a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$ based on the molecular ion peak $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 375.2141$ in the (+)-HR-ESI-MS (calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}, 375.2142$). Inspection of the overall ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data revealed signals characteristic of an α, β-conjugated carboxylate system ($\delta_{\mathrm{C}} 144.8(\mathrm{CH}$, $\mathrm{C}-11), 134.8(\mathrm{C}, \mathrm{C}-12)$, and $170.4(\mathrm{C}, \mathrm{C}-20) ; \delta_{\mathrm{H}} 6.55 \mathrm{t}(\mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{H}-11)$), and a disubstituted double bond ($\delta_{\mathrm{C}} 135.1(\mathrm{CH} \times 2, \mathrm{C}-2)$; $\delta_{\mathrm{H}} 5.40$ and 5.53 (both $1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-3)$). The former was evidenced by the IR absorption band at $1653 \mathrm{~cm}^{-1}$. Additionally, two hydroxy-containing quaternary carbons ($\delta_{\mathrm{C}} 77.0$ (C, C-1); 74.9 (C, C-4)), one hydroxycontaining methine ($\delta_{\mathrm{C}} 71.7(\mathrm{CH}, \mathrm{C}-7)$; $\delta_{\mathrm{H}} 3.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{H}-7)$), and a down-field shifted quaternary carbon ($\delta_{\mathrm{C}} 86.1(\mathrm{C}, \mathrm{C}-8)$) were evidenced. Considering the molecular formula and the above functionality, the structure of 2 should be bicyclic.

In an extensive analysis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, and HMBC spectra (Figure 1), the planar structure of 2 was established and found to be quite similar to sartrolide D (Supplementary Materials, Table S1) [20]. A large coupling constant of 16.4 Hz indicated the E geometry for the Δ^{1} double bond. The same $7 S^{*}, 8 R^{*}$-configuration as $\mathbf{1}$ was assigned for 2, as they showed similar NOEs neighboring the C-7 and C-8 stereogenic centers (Figure 2). Furthermore, the NOEs of $\mathrm{H}-7 / \mathrm{H}_{3}-18$ and $\mathrm{H}-11 / \mathrm{H}-15$ indicated that $\mathrm{H}_{3}-18$ and the isopropyl group were cofacial (Supplementary Materials, Figures S10-S17). Accordingly, the structure of 2 was determined as shown (Scheme 1).

Compound 3 was also obtained as a white powder with the same molecular formula, determined to be $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$ from HRESIMS, as that of 2. Their NMR data were quite similar; however, differences were observed for the chemical shifts around C-1 and C-4. Its planar structure was confirmed by an analysis of the 1D and 2D NMR data (Figure 1). Compound 3 has the same $7 S^{*}, 8 R^{*}$ configuration based on similar NOEs neighboring C-7 and C-8; however, the relative configurations of C-1 and C-4 remained unclear in an analysis of the NOEs (Figure 2) (Supplementary Materials, Figures S18-S25). Thus, the computational NMR data with DP4+ analysis $[27,28]$ was applied for the establishment of the relative configuration of 3 . The four possible isomers with two hydroxyl groups at C-1 and C-4, respectively, $1 \alpha 4 \beta, 1 \beta 4 \alpha, 1 \alpha 4 \alpha$, and $1 \beta 4 \beta$, were subjected for chemical shift calculations at the MPW1PW91/6-31+G(d,p)//B3LYP/6-31G(d) level with the polarizable continuum model (PCM). Then, the calculated NMR chemical shifts for the four possible isomers were compared with the experimental data of 3 and statistically analyzed using the DP4+ method, as shown in the Supplementary Materials. As a result, the conformer
$1 \alpha 4 \beta$ was found to have a probability of 100% (Table 3) (Supplementary Materials, Tables S2-S6), suggesting a $1 S^{*}, 4 R^{*}$ configuration for 3 .

1

2

3

4

5

6

7

8. $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\alpha-\mathrm{OH}$
15. $R_{1}=\alpha-O A c, R 2==0$

13

14

16

17

18

19

Scheme 1. Structures of compounds 1-19.

Table 3. DP4+ probabilities for possible isomers of compound 3.

	DP4+ (\%)			
	$1 \alpha 4 \beta-3$	$1 \beta 4 \alpha-\mathbf{3}$	$1 \alpha 4 \alpha-3$	$1 \beta 4 \beta-3$
H	100.00%	0%	0%	0%
C	100.00%	0%	0%	0%
All data	100.00%	0%	0%	0%

As marine cembranoids have been proven to show a broad spectrum of biological activities, including anti-inflammatory [29], anti-oxidant [30], and cytotoxicity activities [30,31], compounds 2-19 were evaluated for their proliferation activities toward the P388, DLD-1, HuCCT-1, and CCD966SK cell lines (Table 4). Among the tested compounds, 18 exhibited the most potent activity to inhibit the proliferation of the HuCCT-1 cell with an IC_{50} value of $2.0 \mu \mathrm{M}$, which is comparable to the positive control, doxorubicin (HuCCT-1, $\mathrm{IC}_{50}=1.9 \mu \mathrm{M}$), whereas compound 18 showed moderate anti-proliferation activity to P388 and DLD-1, with $\mathrm{IC}_{50} \mathrm{~s}$ of 10.6 and $9.9 \mu \mathrm{M}$, respectively. In addition, compounds 5 and 6 were also found to show moderate activities toward P388 cells with $\mathrm{IC}_{50} \mathrm{~s}$ of 15.2 and $11.8 \mu \mathrm{M}$, respectively. The other compounds, as shown in Table 4, were found to possess weak activities toward the above four cancer cell lines. In a comparison of the biological data between biscembranolids (16-19), we found that the Δ^{22} double bond with a Z geometry in compound 18 dramatically and selectively increased the anti-proliferation activity toward HuCCT-1 cell line.

Table 4. Anti-proliferation activities $\left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$ of 2-19.

Compound	P388 $^{\mathbf{a}}$	DLD-1 $^{\mathbf{b}}$	HuCCT-1 $^{\mathbf{c}}$	CCD966SK $^{\mathbf{d}}$
$\mathbf{2}$	>30	>30	>30	>30
$\mathbf{3}$	>30	>30	>30	>30
$\mathbf{4}$	>30	>30	>30	>30
$\mathbf{5}$	15.2 ± 3.2	>30	>30	>30
$\mathbf{6}$	11.8 ± 4.6	>30	>30	>30
$\mathbf{7}$	>30	>30	>30	>30
$\mathbf{8}$	>30	>30	>30	>30
$\mathbf{9}$	>30	>30	>30	>30
$\mathbf{1 0}$	>30	>30	>30	>30
$\mathbf{1 1}$	>30	>30	>30	>30
$\mathbf{1 2}$	>30	>30	>30	>30
$\mathbf{1 3}$	>30	>30	>30	>30
$\mathbf{1 4}$	>30	>30	$>30.1 \pm 6.4$	27.6 ± 7.8
$\mathbf{1 5}$	>30	>30	>30	21.3 ± 5.8
$\mathbf{1 6}$	16.7 ± 5.8	>30	$2.0 \pm 0.1 \pm 10.3$	
$\mathbf{1 7}$	22.8 ± 9.7	9.9 ± 1.0	>30	18.8 ± 6.9
$\mathbf{1 8}$	10.6 ± 1.9	>30	4.1 ± 0.7	1.9 ± 0.1

 skin fibroblast.

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotations were determined with a JASCO P1020 digital polarimeter. IR spectra were taken on a JASCO FT/IR-4100 spectrometer. The NMR spectra were recorded on a Varian 400MR FT-NMR instrument at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, and on a Varian Unity INOVA 500 FT-NMR spectrometer at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$ in CDCl_{3}. LR- and HR-ESIMS were measured with a Bruker APEX II mass spectrometer. Silica gel 60 (230-400 mesh, Merck, Darmstadt, Germany) and SiliaBond C18 silica gel ($40-63 \mu \mathrm{~m}, 60 \AA$, 17% carbon loading, SiliCycle, Québec, QC, Canada) were used for column chromatography.

Precoated silica gel plates (Kieselgel 60 F254, Merck, Darmstadt, Germany) and precoated silica gel RP-18 plates (Kieselgel 60 F254S, Merck, Darmstadt, Germany) were used for TLC analysis.

3.2. Animal Material

The animal material, S. cinereum, was collected from the coral reef of Xiaoliuqiu island of Taiwan in 2012. The specimen was identified by Prof. C.-F. Dai. A voucher specimen (specimen no. sheuCYJ-001) was deposited in the Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.

3.3. Extraction and Isolation

The animal tissues (107.4 g) were freeze-dried, minced, and extracted exhaustively with 700 mL of EtOAc for 2 h at room temperature, and the extraction was repeated 12 times. The concentrated EtOAc layer (14.6 g) was fractionated using silica gel column chromatography (CC) with a gradient system, comprising mixtures of hexane-EtOAc (100:1 to $1: 100$) and EtOAc-MeOH (100:1 to 80:20), to yield 22 fractions. Fraction 8 was fractionated by silica gel CC (eluent, hexane-acetone, 4:1) and semipreparative RP-18 HPLC (eluent, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 4: 1$) to give $4(1.5 \mathrm{mg})$ and $7(5.1 \mathrm{mg})$. Compounds $5(2.3 \mathrm{mg})$, $\mathbf{6}(1.4 \mathrm{mg}), \mathbf{1 2}(0.8 \mathrm{mg})$, and $\mathbf{1 5}(2.5 \mathrm{mg})$ were yielded from fraction 10 by silica gel CC (eluent, hexane-acetone, $5: 1$), and by semipreparative RP-18 HPLC (eluent, $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}$, 1:1). Fraction 11 was purified by semipreparative RP-18 HPLC (eluent, ACN-H ${ }_{2} \mathrm{O}, 1.25: 1$) to yield compounds $\mathbf{9}(1.0 \mathrm{mg}), \mathbf{1 0}(67.1 \mathrm{mg})$, and $\mathbf{1 1}(0.7 \mathrm{mg})$. Fraction 13 was subjected to silica gel CC (hexane-acetone, 4.5:1), followed by RP-18 HPLC (eluent, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, $2.5: 1)$, to obtain $8(1.0 \mathrm{mg})$ and $14(2.0 \mathrm{mg})$. Fraction 15 was separated with silica gel CC (eluent, hexane-acetone, 5:1) to yield two subfractions (F15-1 and F15-2). The F15-1 fraction was subjected for semipreparative RP-18 HPLC (eluent, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 5.5: 1$) to obtain 16 $(2.0 \mathrm{mg}), \mathbf{1 7}(57.0 \mathrm{mg}), \mathbf{1 8}(1.0 \mathrm{mg})$, and $19(15.0 \mathrm{mg})$. Two subfractions (F17-1 and F17-2) were obtained using silica gel CC (hexane-acetone, $2.5: 1$), and fraction 17-1 was separated by semipreparative RP-18 HPLC (eluent, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 1: 1$) to yield $2(3.4 \mathrm{mg})$ and $3(2.1 \mathrm{mg})$. In addition, compound $\mathbf{1}(1.0 \mathrm{mg})$ was purified by semipreparative RP-18 HPLC (eluent, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 2: 1$) from subfraction $\mathrm{F} 17-2$.

Cinerenolide A (1): white powder; $[\alpha]^{25}{ }_{\mathrm{D}}+4.4\left(c 0.97, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3416$, 2960, 2926, 1653, 1452, 1236, $1070 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data, see Table 1; ESIMS $\mathrm{m} / \mathrm{z} 375$ $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRESIMS $m / z 375.2141[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}, 375.2142$).

Cinerenolide B (2): white powder; $[\alpha]^{25}{ }_{\mathrm{D}}+24.3\left(c 0.60, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3434$, 2917, 2859, 1660, 1376, $1018 \mathrm{~cm}^{-1}$; ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data, see Table 1; ESIMS m/z $375[\mathrm{M}+$ $\mathrm{Na}]^{+}$; HRESIMS $m / z 375.2139[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}, 375.2142$).

Cinerenolide C (3): colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}+71.4\left(c 0.37, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3416,2960$, 2926, 1653, 1452, 1235, $1070 \mathrm{~cm}^{-1}$; ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data, see Table 1; ESIMS m/z 357 [M + $\mathrm{Na}]^{+}$; HRESIMS m/z $357.2034[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}, 357.2036$).

3.4. Computational Method

The conformers found at the MMFF force field using Spartan'16 were selected within a $5 \mathrm{kcal} / \mathrm{mol}$ energy window. Twelve conformers were selected for $\mathbf{1}$ and subjected for geometry optimizations and frequency calculations at the CAM-B3LYP/6-31+G(d,p) level of theory with IEFPCM in CHCl_{3}. The populations were calculated based on the Gibbs free energy obtained in the aforementioned frequency calculation. For DP4+ analysis, systematic conformational searches were performed for the possible isomers $1 \alpha 4 \beta, 1 \beta 4 \alpha$, $1 \alpha 4 \alpha$, and $1 \beta 4 \beta$ of 3 , using the MMFF force field in gas phase. All conformers within a $5 \mathrm{kcal} / \mathrm{mol}$ energy window were subjected for geometry optimizations and frequency calculations at the B3LYP $/ 6-31+G(d)$ level in gas phase. The conformers within $2 \mathrm{kcal} / \mathrm{mol}$ from the global minimum were subjected to chemical shift calculations using the gaugeindependent atomic orbital (GIAO) method at the mPW1PW91/6-31G+(d,p)/ /B3LYP /631G(d) level with PCM/MeOH. The Boltzmann-weighted NMR data of the four isomers
and the experimental data of 3 were used for DP4+ probability analysis using the Excel sheet provided by Grimblat et al. [27,28].

3.5. Cytotoxicity Assay

The assay was implemented according to the published protocols [32,33]. In brief, the Alamar Blue assay was performed for compounds 2-19 by treating them with P388, DLD-1, HuCC-T1, and CCD966SK cancer cells, which were commercially available from the American Type Culture Collection (ATCC). The test was performed in triplicate, and doxorubicin was used as a positive control.

4. Conclusions

In total, 3 new and 16 known compounds were isolated from the soft coral S. cinereum. In the cytotoxicity assay, compound 18 was found to show potent and selective activity toward HuCCT-1 cell line, which is close to the control group, doxorubicin. The relative configuration of 1 was determined by an analysis of NOEs and by comparing the computational conformers with those of its possible epimer. The assignment of the relative configurations of 3 , with the lack of crucial NOEs, was successfully attained by the assistance of quantum chemical NMR calculation and the DP4+ method. In this work, it was also found that some cembranolides were not so flexible, and they could be readily assigned the relative configurations by a careful analysis of NOEs based on a computational model. In contrast to the flexible molecules, the assignment of relative configuration was hindered by a lack of useful NOE data neighboring the stereogenic center. For this case, the computational NMR data coupled with the DP4+ approach could provide an alternative to elucidate the relative configurations of stereogenic centers.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10 .3390/molecules27061760/s1, Figures S1-S25: NMR (1D and 2D) and MS spectra of compounds 1-3, Table S1: Comparison of NMR data between 2 and sartrolide D, Table S2: DP4+ analysis table for compound 3, Tables S3-S6: Conformers and Boltzmann populations of isomers of 3.
Author Contributions: J.-H.S. conceptualized, designed and guided the whole experiment and contributed to manuscript preparation. C.-H.C. and Y.-J.C. performed the structure elucidation and manuscript preparation. C.-Y.H. performed the bioassays. F.-R.C. contributed technical support for computational software and method. C.-F.D. identified the soft coral. All authors have read and agreed to the published version of the manuscript.
Funding: The authors are grateful for financial support from the Ministry of Science and Technology of Taiwan (MOST104-2113-M-110-006 and MOST107-2320-B-110-001) and the National Sun Yat-sen University-Kaohsiung Medical University Joint Research Project (NSYSUKMU 110-P016).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data used to support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dinesen, Z.D. Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1983,1, 229-236. [CrossRef]
2. Fabricius, K.E. Soft coral abundance on the central Great Barrier Reef: Effects of Acanthaster planci, space availability, and aspects of the physical environment. Coral Reefs 1997, 16, 159-167. [CrossRef]
3. Tursch, B.; Tursch, A. The soft coral community on a sheltered reef quadrat at Laing Island (Papua New Gunea). Mar. Biol. 1982, 68, 321-332. [CrossRef]
4. Pass, M.A.; Capra, M.F.; Carlisle, C.H.; Lawn, I.; Coll, J.C. Stimulation of contractions in the polyps of the soft coral Xenia elongata by compounds extracted from other Alcyonacean soft corals. Comp. Biochem. Physiol. 1989, 94, 677-681. [CrossRef]
5. Fleury, B.G.; Coll, J.C.; Sammarco, P.W. Complementary (secondary) metabolites in a soft coral: Sex-specific variability, inter-clonal variability, and competition. Mar. Ecol. 2006, 27, 204-218. [CrossRef]
6. Cheng, S.Y.; Wang, S.K.; Hsieh, M.K.; Duh, C.Y. Polyoxygenated cembrane diterpenoids from the soft coral Sarcophyton ehrenbergi. Int. J. Mol. Sci. 2015, 16, 6140-6152. [CrossRef]
7. Ahmed, A.F.; Chen, Y.W.; Huang, C.Y.; Tseng, Y.J.; Lin, C.C.; Dai, C.F.; Wu, Y.C.; Sheu, J.H. Isolation and structure elucidation of cembranoids from a Dongsha Atoll soft coral Sarcophyton stellatum. Mar. Drugs 2018, 16, 210. [CrossRef]
8. Huang, T.Y.; Huang, C.Y.; Chen, S.R.; Weng, J.R.; Tu, T.H.; Cheng, Y.B.; Wu, S.H.; Sheu, J.H. New hydroquinone monoterpenoid and cembranoid-related metabolites from the soft coral Sarcophyton tenuispiculatum. Mar. Drugs 2021, 19, 8. [CrossRef]
9. Peng, C.C.; Huang, T.Y.; Huang, C.Y.; Hwang, T.L.; Sheu, J.H. Cherbonolides M and N from a Formosan soft coral Sarcophyton cherbonnieri. Mar. Drugs 2021, 19, 260. [CrossRef]
10. Huang, T.Y.; Huang, C.Y.; Chao, C.H.; Lin, C.C.; Dai, C.F.; Su, J.H.; Sung, P.J.; Wu, S.H.; Sheu, J.H. New biscembranoids sardigitolides A-D and known cembranoid-related compounds from Sarcophyton digitatum: Isolation, structure elucidation, and bioactivities. Mar. Drugs 2020, 18, 452. [CrossRef]
11. Lin, K.H.; Lin, Y.C.; Huang, C.Y.; Tseng, Y.J.; Chen, S.R.; Cheng, Y.B.; Hwang, T.L.; Wang, S.Y.; Chen, H.Y.; Dai, C.F.; et al. Cembranoid-related diterpenes, novel secoditerpenes, and an unusual bisditerpene from a Formosan soft coral Sarcophyton Tortuosum. Bull. Chem. Soc. Jpn. 2021, 94, 2774-2783. [CrossRef]
12. Chen, Y.J.; Chao, C.H.; Huang, C.Y.; Huang, C.Y.; Hwang, T.L.; Chang, F.R.; Dai, C.F.; Sheu, J.H. An unprecedented cembranoid with a novel tricyclo [9.3.0. $0^{2,12}$]tetradecane skeleton and related diterpenes from the soft coral Sarcophyton cinereum. Bull. Chem. Soc. Jpn. 2022, 95, 374-379. [CrossRef]
13. Li, S.; Ye, F.; Zhu, Z.; Huang, H.; Mao, S.; Guo, Y. Cembrane-type diterpenoids from the South China Sea soft coral Sarcophyton mililatensis. Acta Pharm. Sin. B 2018, 8, 944-955. [CrossRef] [PubMed]
14. Coll, J.C.; Hawes, G.B.; Liyanage, N.; Oberhasli, W.; Wells, R.J. A new cembranoid diterpene from a Sarcophyton species. Aust. J. Chem. 1977, 30, 1305-1309. [CrossRef]
15. Jia, R.; Guo, Y.W.; Mollo, E.; Gavagnin, M.; Cimino, G. Sarcophytonolides E-H, cembranolides from the Hainan soft coral Sarcophyton latum. J. Nat. Prod. 2006, 69, 819-822. [CrossRef]
16. Peng, C.C.; Huang, C.Y.; Ahmed, A.F.; Hwang, T.L.; Sheu, J.H. Anti-inflammatory cembranolides from a Formosa soft coral Sarcophyton cherbonnieri. Mar. Drugs 2020, 18, 573. [CrossRef]
17. Kusumi, T.; Yamada, K.; Ishitsuka, M.O.; Fujita, Y.; Kakisawa, H. New cembranoids from the Okinawan soft coral Sinularia mayi. Chem. Lett. 1990, 37, 1315-1318. [CrossRef]
18. Bogdanov, A.; Hertzer, C.; Kehraus, S.; Nietzer, S.; Rohde, S.; Schupp, P.J.; Wägele, H.; König, G.M. Secondary metabolome and its defensive role in the aeolidoidean Phyllodesmium longicirrum, (Gastropoda, Heterobranchia, Nudibranchia). Beilstein J. Org. Chem. 2017, 13, 502-519. [CrossRef]
19. Tang, G.H.; Sun, Z.H.; Zou, Y.H.; Yin, S. New cembrane-type diterpenoids from the South China Sea soft coral Sarcophyton ehrenbergi. Molecules 2016, 21, 587. [CrossRef]
20. Liang, L.F.; Lan, L.F.; Taglialatela-Scafati, O.; Guo, Y.W. Sartrolides A-G and bissartrolide, new cembranolides from the South China Sea soft coral Sarcophyton trocheliophorum Marenzeller. Tetrahedron 2013, 69, 7381-7386. [CrossRef]
21. Yasuto, U.; Masayoshi, N.; Mitsuru, N.; Tetsuo, I.; Tsunao, H. Ketoemblide and sarcophytolide, two new cembranolides with ε-lactone function from the soft coral Sarcophyta elegans. Chem. Lett. 1983, 12, 613-616.
22. Takamura, H.; Kikuchi, T.; Endo, N.; Fukuda, Y.; Kadota, I. Total synthesis of sarcophytonolide H and isosarcophytonolide D: Structural revision of isosarcophytonolide D and structure-antifouling activity relationship of sarcophytonolide H. Org. Lett. 2016, 18, 2110-2113. [CrossRef] [PubMed]
23. Huang, C.Y.; Sung, P.J.; Uvaranil, C.; Su, J.H.; Lu, M.C.; Hwang, T.L.; Dai, C.F.; Wu, S.L.; Sheu, J. Glaucumolides A and B, biscembranoids with new structural type from a cultured soft coral Sarcophyton glaucum. Sci. Rep. 2015, 5, 15624. [CrossRef] [PubMed]
24. Sun, P.; Cai, F.Y.; Lauro, G.; Tang, H.; Su, L.; Wang, H.L.; Li, H.H.; Mándi, M.; Kurtán, T.; Riccio, R.; et al. Immunomodulatory biscembranoids and assignment of their relative and absolute configurations: Data set modulation in the density functional theory/nuclear magnetic resonance approach. J. Nat. Prod. 2019, 82, 1264-1273. [CrossRef] [PubMed]
25. Gross, H.; Wright, A.D.; Beil, W.; König, G.M. Two new bicyclic cembranolides from a new Sarcophyton species and determination of absolute configuration of sarcoglaucol-16-one. Org. Biomol. Chem. 2004, 2, 1133-1138. [CrossRef]
26. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
27. Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526-12534. [CrossRef]
28. Zanardi, M.M.; Sarotti, A.M. Sensitivity analysis of DP4+ with the probability distribution terms: Development of a universal and customizable method. J. Org. Chem. 2021, 86, 8544-8548. [CrossRef]
29. Wei, W.C.; Sung, P.J.; Suh, C.Y.; Chen, B.W.; Sheu, J.H.; Yang, L.S. Anti-inflammatory activities of natural products isolated from soft corals of Taiwan between 2008 and 2012. Mar. Drugs 2013, 11, 4083-4126. [CrossRef]
30. Wang, S.C.; Li, R.N.; Lin, L.C.; Tang, J.Y.; Su, J.H.; Sheu, J.H.; Chang, H.W. Comparison of antioxidant and anticancer properties of soft coral-derived Sinularin and dihydrosinularin. Molecules 2021, 26, 3853. [CrossRef]
31. Cerri, F.; Saliu, F.; Maggioni, D.; Montano, S.; Seveso, D.; Lavorano, S.; Zoia, L.; Taglialatela-Scafati, O.; Galli, P. Cytotoxic compounds from Alcyoniidae: An overview of the last 30 years. Mar. Drugs 2022, 20, 134. [CrossRef]
32. Nakayama, G.R.; Caton, M.C.; Nova, M.P.; Parandoosh, Z. Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J. Immunol. Methods 1997, 204, 205-208. [CrossRef]
33. O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421-5426. [CrossRef] [PubMed]
