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Abstract: Pterygium is a multifaceted pathology that displays apparent conflicting characteristics:
benign (e.g., self-limiting and superficial), bad (e.g., proliferative and potentially recurrent) and ugly
(e.g., signs of preneoplastic transformation). The natural successive question is: why are we lacking
reports showing that pterygium lesions become life-threatening through metastasis, especially since
pterygium has considerable similarities with UV-related malignancies on the molecular level? In this
review, we consider how our pathophysiological understanding of the benign pterygium pathology
overlaps with ocular surface squamous neoplasia and skin cancer. The three UV-related disorders
share the same initial insult (i.e., UV radiation) and responsive repair mechanisms to the ensuing
(in)direct DNA damage. Their downstream apoptotic regulators and other cellular adaptations
are remarkably alike. However, a complicating factor in understanding the fine line between the
self-limiting nature of pterygium and the malignant transformation in other UV-related diseases is the
prominent ambiguity in the pathological evaluation of pterygium biopsies. Features of preneoplastic
transformation (i.e., dysplasia) are used to define normal cellular reactions (i.e., atypia and metaplasia)
and vice versa. A uniform grading system could help in unraveling the true nature of this ancient
disease and potentially help in identifying the earliest intervention point possible regarding the
cellular switch that drives a cell’s fate towards cancer.

Keywords: pterygium; ocular surface squamous neoplasia; skin cancer; ultraviolet radiation; atypia;
dysplasia; preneoplasia

1. Introduction

Pterygium is a disease that dates back to antiquity. The name itself is derived from
the ancient Greek ‘pterygos’, or wing, and the first clinical descriptions date back to
1000 B.C.E. [1]. Despite centuries of experience, fundamental questions still exist regard-
ing the aetiology and nature of this common lesion. Clinically, pterygium appears as a
wing-shaped conjunctival thickening that migrates over the corneal limbus, typically from
the nasal side, which can encroach and cover the central cornea and visual axis (Figure 1).
While the development of pterygium may be slow, recurrence after excision occurs fre-
quent and rapidly in the absence of meticulous surgical resection [2]. It is important to
consider why an ostensibly benign lesion displays such a local proliferative and aggressive
phenotype.

The pathogenesis of pterygium remains elusive. It has been described as a degen-
erative disorder due to the prominent elastotic degeneration of the stroma [3], and as a
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localized region of stem cell deficiency. It has also been suggested that it could be a prema-
lignant condition based on histology [4–6]. The suggestion that it could be premalignant is
worth examining as, clinically, this does not appear to be the case. In this report, we present
common risk factors, pathways of damage induction, cytological and histological features
of pterygium and compare them to typical preneoplastic characteristics. We then con-
sider why pterygium is ultimately a local non-cancerous entity despite bearing so many
similarities to epidermal cancers and ocular surface squamous neoplasia (OSSN).
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Figure 1. Clinical representation of grade III (A) and grade IV (B) pterygium. Ocular surface
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2. Risk Factors for Pterygium Development

A wide range of intrinsic and extrinsic factors can cause cellular damage through-
out one’s life. Although their triggers are considerably diverse, they all disrupt cellular
homeostasis by one or more of four primary biochemical mechanisms: (I) ATP depletion,
(II) permeabilization of cell membranes, (III) disruption of biochemical pathways and (IV)
DNA damage [8]. When examining the extensive epidemiological data on pterygium, it
is clear that ultraviolet (UV) radiation is the key physical detrimental factor (Figure 2) [9].
The region 37◦ to the north and south of the equator was even named the pterygium
belt in 1965 [10]. Hence, pterygium—along with pinguecula, climatic keratopathy, actinic
granuloma, ocular surface and eyelid malignancies, cataract, etc.—has been classified as
an ‘ophthalmoheliose’; i.e., a pathogenesis in which UV radiation has been implicated,
with varying degrees of certainty [11]. To re-establish cellular homeostasis and withstand
UV-induced stress, the exposed tissue exploits several mechanisms. These include the
induction of cellular repair pathways, the activation of cellular adaptations (such as hy-
perplasia and metaplasia), the promotion of autophagy and the initiation of cell death
(Figure 2) [12,13].

As all cells contain general basic mechanisms to regain homeostasis after insults, it is
reasonable to assume that there is a common pathway linking pterygium to other prolifer-
ative UV-related diseases, such as epidermal cancer and OSSN. Using epidermal cancer
as an example, UV radiation contributes to its development by interacting with signal
transduction pathways (e.g., protein kinase C signaling and the c-Jun N-terminal kinase
pathway), leading to an altered gene expression pattern (Figure 2) [14]. Furthermore, UV
affects the integrity of DNA both directly and indirectly through oxidative stress-induced
cascades. Such unrepaired DNA damage leads to mutagenesis [14]. Both mechanisms
also play a significant role in pterygium initiation and formation (Figure 2) [15–19]. Yet,
pterygium only slowly evolves and remains superficial, while UV-related cancers can
metastasize and become life-threatening.
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Figure 2. Schematic representation of the similarities between pterygium, ocular surface squamous neoplasia and epidermal
cancer, starting from the initial insult (i.e., UV radiation) to the damage shared between the UV-related lesions and their
uniform cellular reactions. The difference between pterygium and true malignant cancers lies within the final step. EMT,
epithelial-to-mesenchymal transition; ERK-MAPK, extracellular-signal-regulated kinase–mitogen-activated protein kinase;
MMP, matrix metalloproteinases.
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3. UV-Induced Damage
3.1. Biochemical Pathway Disruption

The impact of one specific UV-activated signaling pathway is already well-established
in pterygium—the extracellular-signal-regulated kinase (ERK), a mitogen-activated protein
kinase (MAPK) pathway. This pathway connects signals from the extracellular milieu with
the intracellular machinery, thereby controlling several fundamental processes such as
proliferation, differentiation, apoptosis and migration [20]. Due to its broad influence on
cellular fate, it is not surprising that one-third of all human cancers are characterized by
a dysregulated ERK pathway, including non-melanoma skin cancer [20,21]. Despite an
established role in one-third of all cancers and pterygium, it is currently unclear whether
this is also the case for UV-related ocular lesions. ERK signaling has only been demonstrated
to contribute towards a hyperproliferative cellular status in an OSSN mouse model [22].

UV radiation is known to be involved in the ligand-independent autophosphorylation
of the epidermal growth factor receptor, thereby triggering the ERK pathway in ptery-
gium [15,16]. The activation of this pathway contributes to the expression of prominent
players, such as matrix metalloproteinase-1 (MMP-1), interleukin (IL)-6, IL-8 and vascular
endothelial growth factor (VEGF) [15–17]. MMP-1 is one of six MMPs found in the limbal
basal cells affected by pterygium, which are also present in invasive tumors [23]. As MMP-
1 is localized in pterygium-diseased cells that invade the cornea, it is hypothesized that
MMP-1 is involved in the pathogenesis by facilitating Bowman’s membrane dissolvement,
thereby enabling the migration and local infiltration of pterygial cells [23]. Furthermore,
tear films of patients surgically treated for pterygium show a clear change and decrease
in VEGF and IL-6/8 levels one year after surgery, emphasizing their role in pterygium
pathology [24].

Despite being less described than the ERK-MAPK pathway, it seems that the aberrant
activation of the NF-κβ pathway also contributes to the alteration of signaling switches
associated with both pterygium and tumorigenic processes. Starting with the original UV
radiation trigger, it is known that the 280–320 nm wavelength range (i.e., predominantly
UVB spectrum) is able to stimulate the NF-κβ pathway in keratocytes and ocular surface
epithelia [25,26]. The corresponding influence of its activation is considerably compre-
hensive, as NF-κβ targets genes that intervene in proliferation, apoptosis, angiogenesis
and epithelial-to-mesenchymal transition (EMT) [27]. It is therefore not surprising that
NF-κβ has an active role in cancer initiation and development, including the maintenance
of cancer stem-like cells [28] and metastasis [27]. The NF-κβ pathway and related cytokines
are also believed to represent a cross talk route between pterygium and dry eye disease [29].

When examining pterygium, evidence of the NF-κβ signaling relies on the increased
levels of phosphorylated NF-κβ inhibitors in the cytoplasm and the expression of NF-
κβ-related genes [30–32]. The link between an active NF-κβ pathway and the resulting
angiogenesis and EMT is of importance, as both events are linked to a malignant trans-
formation. Active angiogenesis has, for example, been demonstrated in premalignant
lesions of cutaneous squamous cell carcinoma, indicating an early event in its development.
Angiogenesis further accelerates at each disease stage [33]. Furthermore, EMT increases the
malignant character of lesions as it enhances their invasiveness and metastatic activity [34].
The migratory capability of pterygium cells is believed to be enhanced through EMT as
well, and it is grounded in its histopathological and molecular identification in surgically
excised pterygia [35]. The role of EMT signaling in primary and recurrent pterygium
is still being explored [36–39]; however, both the ERK-MAPK and NF-κβ pathways are
recognized as engaged [36,37].

Several studies have already described (lymph)angiogenesis as a part of pterygium
pathology [40–42]. The pathological contribution of the NF-κβ pathway has been estab-
lished, as its downregulation in pterygium cells results in a significant decrease in the
expression of one of the angiogenic key contributors, i.e., VEGF [43]. However, the exact
role of VEGF in pterygium pathology needs to be further elucidated. Liu et al., found sig-
nificantly elevated tear film levels of VEGF in progressive pterygium compared to inactive
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pterygium, but failed to find a significant difference in tear film concentrations in pterygium
patients compared to healthy individuals [29]. The latter confirms our previous results and
strengthens our hypothesis that interindividual variability could play an important role, as
the VEGF levels are considered elevated with respect to patient-specific healthy values [24].
On the contrary, Uthaithammarat et al., did demonstrate higher VEGF concentrations in
pterygium patients compared to the healthy control group [44]. Although the exact players
and their corresponding contributions still need to be defined and/or further refined, it is
important to note that there is a difference in the organization of the vascular network when
it belongs to pterygium or a malignant transformed lesion. Tumor angiogenesis occurs
in an uneven, chaotic and serpentine manner that is characterized by irregular branches
and arterio-venous shunts [45]. On the other hand, despite the fact that vessel density
is greatly increased in pterygium, the vessels are less tortuous and even more organized
when compared to a healthy conjunctiva [42]. As these observations were made in early
stage primary pterygium [42], it would be interesting to know whether the vasculature
resembles tumor angiogenesis in more advanced stages or in recurrent pterygium.

3.2. DNA Damage

The nuclear content of pterygial cells also shows signs of direct and indirect dam-
age by UV radiation. Upon exposure to UV-light, pyrimidine dimers commonly arise in
DNA strands, facilitating mutagenesis [14]. The predominant cytosine to thymine base
substitution at pyrimidine sites is unique to UV-insults, and is therefore known as the
‘UV-signature’ [46]. OSSN and squamous cell carcinoma of the skin exhibit this molecular
signature, especially in the TP53 gene [46–48]. One study defined the mutation spectrum of
the TP53 gene in pterygium, and one out of six missense mutations encompassed a cytosine
to thymine transversion (exon 5, codon 179, CAT) [49]. As codon 178 of exon 5 consists
of a CAC combination, we can conclude that this substitution arise at a pyrimidine site.
Nevertheless, another type of pyrimidine dimers, i.e., thymine dimers, has been found
abundantly in pterygium, notably in the epithelial, stromal and even vascular compart-
ment [18]. The presence of thymine dimers is also considered as a hallmark of UV-induced
DNA damage and is characterized by a complex mutation spectrum [50,51]. Furthermore,
UV is capable of inducing DNA damage indirectly through the formation of free radi-
cals, i.e., superoxide anions, hydrogen peroxide and peroxynitrite, that lead to oxidative
stress [52]. Entering the nucleus, these agents form DNA 8-hydroxydeoxyguanosine in
UV-exposed epidermis in a corneal mouse model and in pterygium patients [19,53,54].
DNA 8-hydroxydeoxyguanosine is highly mutagenic, promoting guanine to thymine
transversion [55].

4. UV-Induced Cellular Reactions
4.1. Nuclear Repair Mechanisms

In health, DNA damage at the ocular surface is restored by nucleotide and base ex-
cision repair mechanisms [14,56,57]. The crucial role of these protection mechanisms is
particularly evident in patients with xeroderma pigmentosum (XP). These patients are
hypersensitive to UV-light due to genetic alterations in genes responsible for DNA re-
pair [58]. The lack of DNA repair after UV radiation results in a 10,000-fold increased
risk of developing basal and squamous cell carcinomas [59]. Furthermore, both ptery-
gium and ocular neoplasia formation are frequently reported in XP patients, showing
a fourfold to 100,000-fold incidence increase, respectively [60–65]. While the exact in-
volvement of nuclear excision repair in pterygium initiation has not yet been explored,
the accumulation of the highly mutagenic 8-hydroxydeoxyguanosine in pterygial cells
can induce the expression of 8-oxyguanine glycosylase, the enzyme responsible for its
removal [19]. The importance of this base excision repair mechanism is further emphasized
by genetic polymorphisms being identified in the OGG1 gene, as well as in the XRCC1
gene, which renders patients more prone to developing pterygium [66,67].
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Alongside the aforementioned DNA damage, UV radiation itself can cause dsDNA
breaks [68]. If not repaired correctly, they can lead to deletions, translocation and fusions
in the DNA [69]. When focusing on pterygium, the relevance of repairing dsDNA breaks is
seen in polymorphisms in corresponding repair genes that are associated with a genetic
predisposition to pterygium. The T-991C polymorphism in the promotor of the XRCC6
gene, for example, is active in nonhomologous end-joining repair of dsDNA-breaks [70].
Furthermore, expression patterns of the homologous repair genes RAD50 and RAD54 seem
altered as increased and decreased levels are found in pterygial tissue compared to unaf-
fected tissue, respectively [71]. The analogy continues, as similar polymorphisms linked
to epidermal cancer susceptibility are also involved in other nonhomologous end-joining
repair (i.e., LIG4) and homologous recombination (i.e., XRCC2 and XRCC3) genes [72].

4.2. Autophagy

Autophagy is a self-digesting cellular process responsible for removing long-lived pro-
teins, damaged organelles and malformed proteins through a strictly regulated lysosomal
pathway [73]. This degradation pathway maintains homeostasis and thereby orchestrates
growth, differentiation, response to oxidative stress and nutrient deficit, macromolecule
and organelle turnover and, finally, cell death [73]. Autophagy is, however, a complex pro-
cess that plays a context-dependent role in UV response, harboring both tumor-promoting
and tumor-suppressing characteristics [74]. Similarly, during tumor development and
at the tumor–immune interface, autophagy can be a suppressor or driver of tumorigene-
sis, depending on the features of the heterogenous and multifaced tumor microenviron-
ment [75–77]. While only one report has described a considerable inhibition so far [78], it is
likely that disturbances in normal autophagic processes are involved in the inappropriate
proliferative capacity of pterygium.

4.3. Apoptosis

While less studied than DNA damage, altered expression patterns of the apoptotic
regulators p53, Bcl-2 and Bax have been shown in pterygium [79,80]. To emphasize the role
of programmed cell death as cellular reaction, we take p53 by way of an example. The TP53
suppressor gene is a well-characterized protector against UV-induced carcinogenesis,
both in the epidermis and at the ocular surface [81]. Depending on the amount of DNA
damage, p53 allows the cell to repair the UV-induced damage through cell cycle arrest or
activates the apoptosis pathway [82]. Unfortunately, TP53 mutations occur early in the
course of UV-irradiation and represent a corresponding early event in carcinogenesis [81,83].
The consequent inactivation of the TP53 tumor suppressor gene results in an unretained
cell proliferation, impeded cell death and genomic instability [84].

As discussed previously, mutations in the TP53 gene can be found in UV-related
lesions. The TP53 mutation database of the International Agency for Research on Cancer
(Version R20, https://p53.iarc.fr, accessed on 4 January 2021) reports more than 29,900 so-
matic mutations, which can lead to an aberrant or abolished protein production. Early on, it
was discovered that missense mutations in the TP53 DNA-binding core cause the predomi-
nant loss of function [85]. Mutant p53 proteins have a prolonged half-life, the extension of
which is mutation-dependent [86]. Such accumulation enables pathologists to identify p53-
affected cells immunohistologically and for it to be proposed as an adjunct to the routine
diagnosis of preneoplastic lesions, especially in questionable cases [87,88]. Considering
that TP53 mutations are an early sign of carcinogenesis, it is remarkable that several studies
report p53 positivity in pterygium [89]. However, p53 positivity still needs to be cautiously
interpreted, as it perfectly demonstrates the dual character of pterygium. Mutations in
the TP53 gene can correlate with the protein levels, as deletion mutations corresponding
with a stop codon or truncated proteins and missense mutations indeed result in negative
and positive p53 staining, respectively [49]. This correlation did, however, not apply to
all specimens [49,90]. Hence, an early indication of carcinogenesis is one of the possible
interpretations of a positive p53 staining in pterygium. Another explanation for the sup-

https://p53.iarc.fr
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pressed p53 transcriptional activity, despite abundant p53 levels, can be attributed to the
actions of an inhibitory p53 binding protein known as mouse double minute 2 (MDM2).
This protein is responsible for the p53 translocation from the nucleus to the cytoplasm and
its consequent degradation through ubiquitination [91]. Through the administration of an
MDM2 antagonist, transcriptional activity could be restored in primary pterygium cells
and the viability was consequently reduced [92,93]. Lastly, it is remarkable that the ‘hot
spot’ of the TP53 gene mutations in pterygium correspond to the ‘hot spot’ of malignant
melanoma rather than cutaneous squamous and basal cell carcinoma [49].

4.4. Cellular Adaptations

When cells are exposed to repetitive or continuous stress, they respond through vari-
ous cellular adaptative reactions: hypertrophy, hyperplasia, metaplasia and atrophy [8].
However, based on the complex interaction between the exposure pattern and other factors
such as gender, age, genetic background and lifestyle, an individual can develop preneo-
plastic lesions (i.e., dysplasia) or even malignancies (Figure 2) [94]. In oral squamous
cell carcinoma, hyperplasia progresses over an increasing degree of dysplasia towards
carcinoma in response to either continued tobacco exposure, chronic inflammation, al-
cohol and/or viral infections [95,96]. Similarly, a metaplasia-dysplasia-cancer sequence
occurs in the lung airway, cervix, stomach and pancreas [97]. The most likely adaptive
mechanism to chronic UV radiation is hyperplasia, as it protects the epidermis against UV-
penetration (Figure 3D) [98]. Indeed, the presence of hyperplasia, dysplasia and squamous
cell carcinoma has been shown in mouse epidermis following a long-term UV radiation
period [99].

Routine hematoxylin and eosin staining of resected pterygia shows clear signs of reac-
tive atypia (Figure 3B), solar elastosis (Figure 3B), dysplasia (Figure 3C) and inflammation.
The identification of solar elastosis, i.e., degeneration of elastic tissue due to UV-irradiation,
is not surprising, as prolonged sun exposure is one of the principal risk factors for devel-
oping pterygium. Pathologists define reactive atypia based on an increased cellular size,
alterations in nuclear-to-cytoplasmic ratio and the presence of small nucleoli (Figure 3B,D).
Dysplasia is identified through cytological atypia, along with signs of mitosis, nuclear
polymorphisms and architectural changes such as hypercellularity, loss of polarization
and nuclear crowding (Figure 3C,D). Both epithelial and goblet cell hyperplasia have also
been identified in pterygium [4,100–102]. To evaluate the staining correctly, it is important
to keep in mind that the ocular surface is continuously exposed to environmental chal-
lenges. Isolated reactive atypia can therefore occasionally be found in clinically normal
conjunctiva [100].

The presence of squamous metaplasia is, however, a problematic area, as the classical
pathological knowledge conflicts with the current pterygium state-of-the-art. Multiple re-
ports uniformly describe squamous metaplasia in pterygium [102–110]. Squamous metapla-
sia is known as the process by which a mature, non-squamous epithelium is replaced by a
stratified, squamous epithelium (Figure 3D) [111]. Based on this definition, squamous meta-
plasia cannot take place in pterygium, as the epithelium of the bulbar conjunctiva is already
a squamous epithelium (Figure 3A) [112]. Pterygium biopsies have also been ascribed
with squamous metaplasia without well-defined criteria, adding to the confusion [10]. It is
therefore clear that different definitions of metaplasia are at the root of this ambiguity.
The ‘metaplastic’ transformation is defined using three different methods: grading systems
for impression cytology, morphological characteristics and cellular processes.

Grading systems for impression cytology—Four different systems have been pub-
lished to evaluate the severity of metaplasia in impression cytology samples of pterygium:
Murube and Rivas’s grading system [103,104], Nelson’s classification [106], Tseng’s grading
system [110] and Wittpen’s grading system [109]. The criteria used for assessment are
related to the nuclear/cellular morphology, epithelial cell size, nucleus-to-cytoplasmic
ratio, cytoplasmic staining characteristics, goblet cell density, cellular organization and ker-
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atinization. These characteristics are, however, not squamous metaplasia-specific, as they
are also used to define atypia (see above) and dysplasia (see above and below).
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the cellular adaptations and transformation from one another, definitions and characteristic features are included in the
schematic representation (D).

Morphological characteristics—Despite the availability of aforementioned grading
systems, some researchers only use a combination of morphological parameters to define
squamous metaplasia in epithelial impression cytology samples: goblet cell density [108],
nucleus-cytoplasmic ratio [102,108], cell size and shape (i.e., cellular enlargement and elon-
gation) [102,108] and morphological nuclear changes [102,108]. Again, these (combinations
of) morphological criteria are not characteristic solely for squamous metaplasia.

Cellular processes—Li et al. identified squamous metaplasia in resected pterygium
tissue itself [107], and provided molecular evidence for two criteria, i.e., hyperproliferation
and abnormal differentiation [107]. Firstly, hyperproliferation is assessed through the ex-
pression of p63, a protein involved in both maintaining cell proliferation in basal progenitor
cells and initiating stratification and differentiation [113]. A strong p63 expression has
also been demonstrated throughout the pterygium epithelium, confirming the presence of
metaplasia based on the first criteria [107]. Secondly, abnormal differentiation was seen
through changes in cytokeratin (CK) pairs, given that each cell type within a particular
epithelial tissue has a unique profile of CK pairs, isoforms and modification state [114].
Terminal keratinocyte differentiation and keratinization are characterized with a distinctive
expression of CK1, and subsequently CK10 [115]. As anticipated, CK10 cannot be detected
throughout the nonkeratinized corneal, limbal and conjunctival epithelium, while the
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superficial layers in pterygium samples are indeed CK10-positive, indicating abnormal
differentiation [107,116]. Interestingly, the change in differentiation pattern elucidated by
abnormal CK10 expression may also occur without its association with the term ‘squamous
metaplasia’ [117]. It could be argued that the first and second criteria are more accurate for
describing hyperplasia and keratinization, respectively.

5. Dysplasia and Ocular Surface Squamous Neoplasia

Despite the fact that pterygium behaves clinically as a non-cancerous lesion, signs of
dysplasia can be demonstrated in surgically resected pterygium (Figure 3C). The termi-
nology and basic characteristics of dysplasia have remained unchanged since 1987 [118].
Dysplasia is defined as a precancerous lesion, encompassing an abnormal cellular architec-
ture along with its irregular organization within a tissue. Grossniklaus et al., described a
severity spectrum ranging from mild to severe [118]. In the case of mild dysplasia, signs
of hyperchromasia, pleomorphism and loss of cell polarity can be found in one-third of
the epithelium. The same cytological features are found in moderate dysplasia; however,
they involve three quarters of the epithelium thickness. When only the top epithelial layer
is spared, the lesion is defined as severe dysplasia. As soon as the normal surface layer
of epithelial cells disappears, the affected tissue is categorized as carcinoma in situ. The
following state of squamous cell carcinoma is reached when the dysplastic cells break
through the basement membrane and invade the substantia propria [118]. Since 1995, the
spectrum of precancerous and cancerous epithelial lesions at the ocular surface have been
united and described as OSSN [119]. The histological identification of dysplastic cells has
also broadened throughout the years, and they are now recognized based on changes in
cell size and shape (e.g., loss of cell polarity and increased nuclear-to-cytoplasmic ratio)
and more specific nuclear deviations, such as pleomorphisms, overlap or crowding and
increased number and size of nucleoli [97,120,121]. Again, pathological evaluation is not
always straightforward, as some characteristics (e.g., increased nuclear-to-cytoplasmic
ratio) are used to describe both atypia and dysplasia.

The thin line and overlapping characteristics to describe cellular reactions (i.e., atypia),
cellular adaptations (i.e., hyperplasia and metaplasia) and preneoplastic lesions (i.e., dys-
plasia) complicates the molecular and histological classification of pterygium as a benign
or potentially preneoplastic lesion. Based on the characteristics of dysplasia, numerous re-
ports of unsuspected OSSN in patients with pterygium have appeared in the USA (Florida,
1% and 4.2%) [122,123], Thailand (1.8%) [124], Australia (New South Wales, 5%, mild to
severe dysplasia [4]; Queensland, 9.8% [125]) and Mexico (11.29%), among others [126].
The changes observed in impression cytology that correspond to dysplasia are also of the
utmost importance, as impression cytology removes the superficial layer of the ocular sur-
face epithelia [127]. Hence, the changes should correspond to severe dysplasia. The latter,
once again, emphasizes the need for a uniform classification system.

6. Conclusions

From a biological and cellular perspective, one would be tempted to consider ptery-
gium as a precancerous lesion. Despite the molecular similarities, the unexpected preva-
lence of OSSN in pterygium tissue and the higher risk for pterygium patients to develop
skin cancer [128], we are not aware of a convincing direct link between pterygium and
ocular surface cancer, except for a few case reports. Moreover, the molecular progression
of pterygia in untreated patients, covering several years, is unknown and awaited. Only
one report includes a bilateral pterygium patient that received medical intervention after
10 years [129]. Unfortunately, molecular characterization of the biopsy is lacking.

It is also important to keep in mind that cancer is characterized by a multistep devel-
opment, where cells gradually become malignant over time [130]. An important indication
is that most cancers develop later in life [130]. There are proliferative disorders such as
benign hemangioma that, only on very rare occasions, transform into a malignant counter-
part (i.e., angiosarcoma) [131,132], while other lesions, such as gastric mucosal intestinal
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metaplasia, have a higher risk of resulting in gastric cancer (i.e., 0.25% of the cases) [133].
For the latter, endoscopic surveillance every 1 to 2 years is needed as follow-up [134].
Overall, the challenge to predict malignant transformation is difficult for each lesion or
disorder, and often no straightforward binary criteria exist. The following questions re-
garding where pterygium as benign proliferative disorders with potential preneoplastic
changes lies in this broad range still need to be addressed: Why is pterygium not precan-
cerous? Is pterygium precancerous but does it harbor an additional protection mechanism
to hinder its transformation towards true malignancy? Does the gap in information lie
in our understanding of pterygium or in our definitions of cancerous cellular features?
We hope to raise awareness regarding the use of the same histological parameters to define
atypia, metaplasia and dysplasia. The importance of dysplasia and other types of OSSN in
pterygium should also be considered appropriately.

In closing, despite similar UV-related etiologies and the subsequent engagement of
cellular response mechanisms to neoplastic lesions, pterygium ultimately commits itself to
a non-cancerous, self-limiting and superficial course. Understanding exactly why this is
could help us finally unlock the nature of this ancient disease.
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