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Abstract 
Cancer represents a broad spectrum of molecularly and morphologically diverse diseases. 
Individuals with the same clinical diagnosis can have tumors with drastically different molecular 
profiles and clinical response to treatment. It remains unclear when these differences arise during 
disease course and why some tumors are addicted to one oncogenic pathway over another. Somatic 
genomic aberrations occur within the context of an individual’s germline genome, which can vary 
across millions of polymorphic sites. An open question is whether germline differences influence 
somatic tumor evolution. Interrogating 3,855 breast cancer lesions, spanning pre-invasive to 
metastatic disease, we demonstrate that germline variants in highly expressed and amplified genes 
influence somatic evolution by modulating immunoediting at early stages of tumor development. 
Specifically, we show that the burden of germline-derived epitopes in recurrently amplified genes 
selects against somatic gene amplification in breast cancer. For example, individuals with a high 
burden of germline-derived epitopes in ERBB2, encoding human epidermal growth factor receptor 
2 (HER2), are significantly less likely to develop HER2-positive breast cancer compared to other 
subtypes. The same holds true for recurrent amplicons that define four subgroups of ER-positive 
breast cancers at high risk of distant relapse. High epitope burden in these recurrently amplified 
regions is associated with decreased likelihood of developing high risk ER-positive cancer. 
Tumors that overcome such immune-mediated negative selection are more aggressive and 
demonstrate an “immune cold” phenotype. These data show the germline genome plays a 
previously unappreciated role in dictating somatic evolution. Exploiting germline-mediated 
immunoediting may inform the development of biomarkers that refine risk stratification within 
breast cancer subtypes.  
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Introduction 
Malignancy is defined by a set of abnormal biological capacities, termed the hallmarks of cancer 
(1). Decades of histopathologic assessment and molecular profiling of human tumors have 
demonstrated there are multiple ways cells can acquire each hallmark (2, 3). As a result, tumors 
with the same clinical characteristics can vary dramatically across individuals and these distinct 
molecular vulnerabilities can have important prognostic and therapeutic implications. It is unclear 
when these differences originate. 
 
Oncogenic aberrations are acquired within the context of germline genomes which differ across 
individuals at millions of polymorphic sites (4), but the role of germline variants in somatic 
evolution remains poorly understood. The most compelling example is that deleterious germline 
variants in BRCA1 and, to a lesser extent, BRCA2 are preferentially associated with the 
development of triple negative breast cancer (TNBC) (5), implying germline variants sculpt 
specific subtypes of disease (6, 7). The mechanistic basis for this preference is incompletely 
characterized. Additionally, germline variants that upregulate the mTOR pathway are associated 
with further deregulation of mTOR via somatic PTEN loss-of-function (8). Moreover, pathogenic 
germline variants in cancer predisposition genes promote somatic bi-allelic inactivation in a 
lineage-dependent manner (9). In prostate cancer, germline variants can modulate genomic 
stability, tumor-specific DNA methylation and gene regulation at the transcriptional and 
translational levels (10, 11). Differences in breast cancer subtype frequencies across ancestral 
populations further suggest germline contributions (12, 13). These data point to an 
underappreciated role of the germline genome in somatic tumor evolution. 
 
Various lines of evidence suggest that avoidance of the adaptive immune system is another strong 
determinant of which somatic mutations persist within a tumor (14, 15). It remains less clear how 
germline differences influence immunoediting. Levels of interferon signaling and cytotoxic T-cell 
infiltration are estimated to be 15-20% heritable (16). Generally, germline variants have not been 
considered a good source of immunogenic epitopes as cytotoxic response should be dampened by 
central tolerance. However, non-mutated immunogenic epitopes have been identified in genes such 
as ERBB2/HER2 in breast and ovarian cancer  (17) and H4 histone in prostate cancer (18), amongst 
others (19, 20). Antigens with weak binding affinity for MHC receptors can escape central 
tolerance (21) and elicit an immune response (22). Tissue-restricted post-translational 
modifications can also circumvent central tolerance (23). Peripheral self-reactive T cells are 
present at similar frequencies to T cells specific to foreign antigens (24) but are held in an anergic 
state by regulatory T cells (Treg) (25). However, Treg depletion in healthy mouse models led to the 
natural occurrence of self-reactive CD4+ T cells (26). Further, there is mounting evidence for 
innate-like T-cell populations within mouse and tumor malignancies that have increased 
propensity for self-reactivity (27). Altogether, these data suggest that under specific circumstances 
and disruptions to immune homeostasis, a subset of T-cells may respond to germline-derived 
epitopes during tumorigenesis. 
 
Building on these observations, we sought to investigate whether germline variants sculpt somatic 
evolution by mediating immunoediting. Specifically, we hypothesize that the burden of germline-
derived epitopes in recurrently amplified driver genes may select against gene amplification. This 
is because amplification of a gene with a high burden of germline-derived epitopes would increase 
epitope availability, likelihood of epitope presentation and immune-mediated cell death. Instead, 
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immune pressures may select for amplification of an alternate driver gene with a lower germline-
mediated epitope burden. We addressed this question in breast cancer for three reasons. First, the 
well-characterized link between BRCA1 and TNBC susceptibility (5), along with high heritability 
estimates (~31%) (28), suggests the germline genome plays a role in shaping breast cancer 
evolution. Second, breast cancer is one of the most extensively sequenced cancer types with 
sizeable cohorts spanning the full continuum of disease, from pre-invasive lesions to primary 
tumors and metastatic disease (2, 3, 29–31). Finally, oncogenic amplifications define five 
prognostic breast cancer subtypes, including the ERBB2/HER2-positive (HER2+) subgroup and 
four estrogen receptor (ER) positive, HER2-negative (ER+/HER2-) genomic subgroups (32, 33) 
which are established early, evidenced by their identification in premalignant ductal carcinoma in 
situ (DCIS) (30). Thus, breast cancer provides an optimal proof-of-concept for studying this 
phenomenon. 
 
We leveraged paired tumor and normal sequencing data from 1,087 primary (3, 31) and 702 
metastatic (29) breast cancer patients as well as somatic genomic profiles from 341 patients with 
DCIS (30) and evaluated the relationship between germline-derived epitope burden (henceforth 
referred to as GEB) and subtype commitment, defined by the acquisition of focal oncogenic 
amplifications. We found that high GEB in subtype specific genes was consistently negatively 
associated with somatic gene amplification and, therefore, subtype commitment. Tumors that 
successfully overcome a high GEB were more aggressive and exhibited microenvironments 
depleted of lymphocytes, consistent with “immune cold” tumors. These data indicate that 
supposedly “benign” germline variants with little to no functional genic effect, may, in aggregate, 
sculpt breast cancer subtypes and disease aggression via immunoediting.   
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Results  

Germline-derived epitope burden (GEB) selects against cognate oncogene 
amplification 
 
Germline genomes, which vary from individual to individual across millions of polymorphic sites, 
serve as the substrate for the acquisition of somatic genomic alterations (4). We hypothesize that 
inherited variation in amplified oncogenes could result in varied immunoediting pressures across 
individuals. Specifically, if an individual harbors germline variants that produce epitopes that can 
be presented by their MHC class I, selection against genomic amplification of the germline 
epitopes may occur thus mitigating an anti-tumor immune response. A simplified example is 
illustrated in Figure 1A, where individual A does not have germline polymorphisms in gene X. 
Both copies of gene X in individual A match the reference genome exactly so we refer to this 
individual as wildtype (WT). When translated, protein X produces two peptides that can be 
presented by individual A’s MHC class I. Suppose during early stages of transformation, 
individual A acquires a somatic amplification such that there are three copies of gene X. In that 
case, this results in six available epitopes (2 unique epitopes x 3 gene copies = 6). Next, we 
consider individual B who has a homozygous polymorphism in gene X such that three peptides 
derived from protein X can be presented. If individual B gains three copies of gene X, nine epitopes 
are now produced. In contrast, individual C harbors a homozygous polymorphism that results in 
only one presentable epitope. In this case, amplification of gene X generates three epitopes. We 
assume the number of produced epitopes positively correlates with the likelihood of presentation. 
In this case, individual B would have the highest likelihood of presentation and the highest 
likelihood of triggering immune surveillance. In contrast, individual C has the lowest likelihood 
of presentation and immune surveillance. As a result, amplification of gene X would be more 
beneficial to individual C than individual B, who experiences an increased fitness cost when 
amplifying gene X. 
 
If this scenario occurs in human tumors, evidence of germline epitope-mediated negative selection 
of oncogenes should be detectable in retrospective cancer sequencing data. As proof of concept, 
we first considered ERBB2 as gene X. We identified, from the literature, a non-somatically mutated 
immunogenic peptide derived from HER2 that has been extensively characterized (17, 34, 35). 
GP2 is a nine amino acid immunogenic peptide derived from the transmembrane domain of HER2 
(aa 654-662; IISAVVGIL). GP2 has been repeatedly shown to elicit an immune response in 
various cancer settings, i.e., breast, ovarian and hepatocellular cancer (17, 35). A multi-center 
phase II clinical trial (NCT00524277) found that HER2+ breast cancer patients treated with the 
GP2 vaccine (nvaccine = 48) experienced no recurrences in contrast to the untreated control group 
(ncontrol = 50; 100% vs 87.2%; P = 0.052) (34). Based on these promising fundings, a randomized 
Phase II trial (NCT05232916) is underway. Given its established immunogenicity, we evaluated 
whether the naturally occurring GP2 influences development of HER2+ breast cancer. 
Specifically, we asked if ability to present GP2 (i.e., having HLA alleles that bind endogenous 
GP2 peptide) was associated with HER2+ breast cancer in individuals of European descent from 
two primary breast cancer cohorts: the International Cancer Genome Consortium (ICGC; n = 431) 
(31) and The Cancer Genome Atlas (TCGA; n = 656) (Figure 1B) (3). Indeed, we found that 
individuals that had HLA alleles that could bind GP2 were significantly less likely to develop 
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HER2+ breast cancer in both ICGC (Figure 1C) and TCGA (meta-analysis: OR = 0.60; P = 0.087; 
Supplementary Figure 1A). These data illustrate that germline epitopes play a role in dictating 
breast cancer subtypes motivating more comprehensive interrogation of the phenomenon. 
 
Building on this proof-of-concept, we investigated if germline-mediated negative selection 
extends beyond GP2 and considered germline-derived epitopes throughout ERBB2. We leveraged 
the TCGA cohort for discovery and the ICGC cohort along with a 341-patient cohort of ductal 
carcinoma in situ lesions (DCIS) for replication (Figure 1D; Supplementary Table 1). Briefly, 
we identified germline variants within ERBB2 that changed the protein sequence and predicted 
the number of epitopes derived from the variant protein sequence compared to WT sequence – 
defined as the reference genome. We confirmed genotype and HLA calls by ensuring allele 
frequencies in our cohort matched those reported in Gnomad (Supplementary Figure 1B) and 
The Allele Frequency Net Database (Supplementary Figure 1C), respectively (4, 36).  Patients 
were stratified by their GEB (i.e. greater than, the same as or less than WT)  (Supplementary 
Figure 1D) and whether they were HER2+ or HER2-, as defined by PAM50 transcriptional 
signature (Figure 1D). If a high GEB in HER2 leads to increased immune surveillance upon 
ERBB2 amplification, we hypothesized we would see a depletion of germline epitopes in HER2+ 
breast tumors compared to HER2- tumors. We discovered the GEB in ERBB2 is significantly 
negatively associated with HER2+ breast cancer (OR = 0.59; P = 6.63x10-3; Figure 1E). The odds 
of developing HER2+ breast cancer was 38% lower if an individual has a high GEB in ERBB2. A 
similar association was observed when considering GEB as a continuous value (Supplementary 
Figure 1E). The association was robust to varying definitions of HER2 positivity (i.e. 
transcriptomic vs genomic amplification; Supplementary Figure 1F) and HLA binding (i.e. 
varying binding thresholds; Supplementary Figure 1G). 
 
To ensure this association was not driven by functional germline variants that may promote or 
protect against HER2+ breast cancer, we reran our analyses holding germline variants constant but 
randomly reassigning the HLA alleles. If the observed associations are driven by germline variants 
alone, we should still see the same associations even with the null HLA alleles. However, if the 
presentation of the germline variants drives the observed depletion, the association should be 
abrogated with the null HLA alleles. Indeed, the negative association between GEB and HER2+ 
breast cancer was abrogated when HLA alleles were randomly assigned indicating that the 
association is not driven by functional germline variants alone (permutation test n = 1,000; 
Supplementary Figure 1H). 
 
Next, we investigated if GEB selected against amplifications of other recurrently amplified genes 
in breast cancer (Figure 1F). The Integrative Cluster (IntClust) subtypes of breast cancer are 
characterized by distinct copy number and gene expression profiles (32). We focused on the four 
ER+/HER2- high-risk IntClust subtypes, IC1, IC2, IC6 and IC6, which are each defined by specific 
recurrent amplifications and have an elevated and persistent risk of recurrence up to two decades 
after diagnosis (33). Since TNBC is characterized by increased genomic instability rather than 
focal amplification of any one specific gene/region, it did not lend itself well to these analyses 
(32). For each of the four subtypes, we identified 3-4 recurrently amplified genes that were highly 
expressed (Supplementary Figure 1I-L) and calculated the GEB as the sum of the burden across 
the selected genes. To increase power, subtypes were defined by amplification of the defining 
cytoband and ER positivity (Supplementary Figure 1M).  Similar to HER2, we found consistent 
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negative associations between GEB and subtype membership (OR = 0.51-0.83; FDR = 0.033-0.68; 
Figure 1G; Supplementary Table 1). For example, a high GEB in MYC, SQLE and FBXO32 was 
negatively associated with likelihood of developing the IC9 subtype which is defined by somatic 
amplification of these genes. Again, associations were depleted when HLA alleles were scrambled, 
indicating that these associations are not driven by functional variants alone (Supplementary 
Figure 1H). None of the variants considered in these analyses are known breast cancer 
susceptibility loci (Supplementary Figure 1N) (7) and GEB was not significantly correlated with 
somatic epitope burden in any of the subgroups (P > 0.48).  
 
As negative controls, we identified proteins that were not expressed in mammary tissue as 
unexpressed proteins should not produce epitopes and, therefore, no association with subtype. We 
focused on keratins given their tissue specific expression patterns. We identified keratins that are 
not expressed in mammary tissue: KRT34, KRT71, KRT74 and KRT82 (37, 38) and tested the 
association between the GEB with the four PAM50 subtypes (excluding normal-like; 
Supplementary Figure 1O). None of the keratins were significantly associated with any subtype 
and the effects of the subtype-specific genes were significantly stronger than the keratin negative 
controls (Supplementary Figure 1P). Taken together, these data indicate that germline-mediated 
immunoediting sculpts the molecular subtype a tumor commits to.  

Germline-mediated immunoediting dictates breast cancer subtype during 
tumorigenesis  
To investigate whether patterns of germline-mediated immunoediting generalize to other breast 
cancer cohorts and to elucidate the timing of this process during disease progression, we evaluated 
the association between GEB and subtype commitment in two additional cohorts: the ICGC cohort 
(n=431; Supplementary Figure 2A) (31) as well as a cohort of 341 ductal carcinoma in situ 
lesions (DCIS) subjected to shallow whole genome sequencing (sWGS) (30). Genotyping and 
ancestry estimation were conducted as described previously (39). Genotypes were confirmed for 
both cohorts by ensuring polymorphism and HLA allele frequency matched those reported in 
Gnomad (Supplementary Figure 2B-C) and The Allele Frequency Net Database 
(Supplementary Figure 2D-E), respectively (4, 36). Across all cohorts we observed consistent 
negative associations between GEB and subtype membership (Figure 2A; Supplementary 
Figure 2F; Supplementary Table 1). Meta-analysis indicates that the odds of developing any of 
the subtypes is 1.25-1.9 times lower if the individual harbors a high GEB (FDR = 0.047-0.12). 
Thus, these data demonstrate that high GEB selects against subtype commitment and this negative 
selection is observed early, during pre-neoplasia. 
 
Next, we investigated if germline-mediated negative selection persists in metastatic lesions. To 
this end, we leveraged a fourth cohort of 702 metastatic breast cancer tumors with blood and tumor 
whole genome sequencing (29) (Figure 1D). Once again, we confirmed genotypes according to 
Gnomad and The Allele Frequency Net Database (Supplementary Figure 2G-H) (4, 36) and 
considered individuals of European descent (Supplementary Figure 2I). The association between 
GEB and subtype commitment was significantly weaker in metastatic vs. primary tumors and 
DCIS or, in some cases, the directionality changed (Supplementary Figure 2J; Supplementary 
Table 1). These data suggest immune sculpting occurs early during breast tumorigenesis and by 
the time the tumor metastasizes, it may no longer be susceptible to immunoediting pressures (40). 
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MHC class I binding affinity influences allele specific amplification  
If germline epitopes are involved in immunoediting, we should observe preferential gene 
amplification at loci harboring heterozygous polymorphisms. Suppose one allele produces an 
epitope with a higher MHC class I binding affinity than the alternative allele. In that case, the allele 
with the lower binding affinity will be preferentially amplified as it elicits a weaker immune 
response and has a lower fitness cost associated with its amplification (Figure 2B). To test this, 
we focused on the two most common variants observed in our discovery cohort: rs1058808 in 
ERBB2 (MAF = 0.33) and rs1292053 in TUBD1 (MAF = 0.45).  For both variants, we identified 
individuals that were heterozygous with either ERBB2 or TUBD1 amplifications, respectively. 
Next, we identified individuals that preferentially amplified the reference (Proportion ReadsAlt < 
0.20) or the alternative allele (Proportion ReadsAlt > 0.80; Supplementary Figure 2K-L). For each 
individual, we calculated the binding affinity of the alternative allele, defined as the differential 
binding affinity of the alternative allele compared to the reference allele (Altbinding – Refbinding; Figure 
2B). A high differential binding indicates the epitope derived from the alternative allele 
outcompetes the reference allele. For both rs1058808 and rs1292053, we observed significantly 
higher differential binding – i.e. alt allele binding affinity – in individuals that preferentially 
amplified the reference allele over the alternative allele (ESrs1058808 = -0.4; Prs1058808 = 3.46x10-3; ESrs1292053 = 
-0.3; Prs1292053 = 5.800x10-3; Mann-Whitney rank sum test; Figure 2C-D). We confirmed these data 
were not driven by any one tumor by testing the median differential binding per sample (ESrs1058808 = 
-0.4; Prs1058808 = 1.34x10-2; ESrs1292053 = -0.25; Prs1292053 = 1.59x10-2; Mann-Whitney rank sum test; 
Supplementary Figure 2M-N). These data suggest that tumors preferentially amplify the allele 
producing the epitope with weaker MHC class I binding affinity, consistent with our hypothesis 
that germline epitopes select against amplification.  

Tumors that overcome high GEB are more aggressive 
As stated above, our data indicate that by the time the tumor metastasizes it may no longer be 
susceptible to immunoediting (Supplementary Figure 2J). The lack of evident germline-
mediated immune editing in metastatic lesions suggests that at least a subset of tumors acquire 
oncogene amplification despite high GEB. Within each subtype, we investigated whether GEB 
was different between individuals with primary breast cancer vs. those with metastatic disease 
(Figure 3A). We first ensured there were no differences in allele frequencies for either the 
germline variants or the HLA alleles between the metastatic and primary tumors (Supplementary 
Figure 3A-D). Next, we compared the ERBB2 GEB in HER2+ primary breast tumors to HER2+ 
metastatic tumors. The GEB was significantly higher in HER2+ metastatic tumors vs. primary 
tumors from two independent cohorts (TCGA: OR = 1.66; P = 0.076; ICGC: OR = 3.14; P = 0.033; 
Figure 3B; Supplementary Figure 3E; table S1). This observation extended to the ER+ high 
risk IntClust subtypes. For all four high risk IntClust subtypes, metastatic tumors were enriched 
for germline-derived epitopes in subtype-specific genes compared to primary tumors from both 
TCGA and ICGC (OR = 1.29-2.53; FDR < 0.22; meta-analysis; Figure 3B; Supplementary 
Figure 3E). No enrichment was observed when running the same analyses with scrambled HLA 
alleles indicating that the observed enrichment is not driven by germline variants alone but rather 
MHC class I presentation of germline-derived epitopes (Supplementary Figure 3F). These data 
suggest that within the same subtype, tumors that amplify a specific oncogene, despite a high GEB, 
have a propensity to be more aggressive than tumors with a low GEB in the amplified oncogene. 
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To strengthen the link between GEB and disease aggression, we investigated the association with 
disease recurrence (distant relapse) after adjuvant treatment of primary tumors (Figure 3C). To 
ensure sufficient power, we leveraged a fifth cohort, METABRIC, comprised of 1,725 primary 
breast cancer tumors. While METABRIC provides the largest primary breast cancer cohort with 
comprehensive 20 year follow-up, it was profiled with Affymetrix SNP 6.0 arrays which makes 
genotyping rare variants and HLA alleles challenging. Despite this limitation, benchmarking HLA 
imputation from SNP 6.0 arrays in TCGA, which has both SNP 6.0 and whole exome sequencing, 
identified a subset of HLAs with accurate (>80%) imputation (Supplementary Figure 3G; see 
Methods). Focusing on the subset of HLA alleles with accurate imputation, we tested the 
association between GEB and risk of relapse within the first 5-years as we hypothesize 
immunoediting happens early during tumor growth.  We found that high GEB was associated with 
an increased risk of relapse within 5-years in HER2+ tumors (HR = 1.94; P = 0.02; CoxPH model; 
Figure 3D; Supplementary Table 1). To improve power, we considered the four ER+ high risk 
subtypes together, i.e. IC1, IC2, IC6 and IC9, and scored the GEB across all genes weighted by 
the presence of an amplification (see Methods). The high risk ER+ tumors showed the same trend 
– high GEB is associated with an increased risk of relapse within 5-years (HR=1.48; P = 0.05; 
Figure 3E; Supplementary Table 1). The same prognostic trends were observed within each 
subtype individually (Supplementary Figure 3H). The breadth of neoantigens that an HLA can 
present (i.e. HLA promiscuity) has previously been shown to be negatively associated with 
outcome following checkpoint blockade (41). To determine if the prognostic associations observed 
here were driven by HLA promiscuity, we calculated the proportion of promiscuous HLAs per 
individual (see Methods). While the proportion of promiscuous HLA alleles was weakly 
associated with outcome in HER2+ and high ER+ tumors (HRHER2= 3.99; PHER2= 0.071; HRER=2.15; 
PER=0.21; CoxPH model), controlling for HLA promiscuity did not abrogate the prognostic value 
of GEB (HRHER2= 1.81; PHER2= 0.036; HRER=1.50; PER=0.04; CoxPH model), suggesting this does not 
drive the observed prognostic associations.   
 
Previously, we demonstrated that the genomically defined IntClust subgroups dramatically 
improve risk of relapse prediction in ER+/Her2- disease beyond the established clinical covariates, 
and this is especially true for late (>5 years) distant relapse (33). Next, we investigated whether 
GEB might improve relapse prediction. GEB in combination with the IntClust subgroups showed 
significantly higher relapse prediction accuracy than the IntClust subgroups alone (FC > 1.03; P < 
0.03; Figure 3F). A more modest increase in accuracy was observed when considering 
clinicopathologic features in the model, including age, node involvement, size and grade 
(Supplementary Figure 3I). Taken together, these data suggest that tumors that overcome high 
GEB are aggressive. Moreover, GEB may improve predictions of risk of relapse in ER+ and 
HER2+ breast cancer. 

High GEB associated with lymphocyte depletion 
 
In invasive breast cancer, the association between high GEB and a more aggressive tumor is 
counterintuitive as an increased number of epitopes should make the nascent tumor more 
detectable by the immune system. We reasoned that tumors with high GEB are forced to develop 
immune suppression or evasion mechanisms in order to survive. To test this hypothesis, we 
harnessed a previous immunogenomic characterization of TCGA breast tumors in which 
comprehensive immune-related transcriptional signatures and deconvolution methods were 
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deployed on bulk RNA-sequencing to characterize the tumor microenvironment (42). Leveraging 
this resource, we identified immune cell population estimates, transcriptional signatures and gene 
markers reflective of immune cell infiltration, cytokine signaling and extracellular matrix 
composition (Figure 4A; Supplementary Table 2). Unsupervised clustering of these immune 
features in HER2+ tumors identified two clusters (Figure 4B). Cluster 1 was characterized by 
macrophages and TGFβ signaling, while cluster 2 was characterized by lymphocytes and 
interferon gamma signaling. Supportive of our hypothesis, the myeloid predominant cluster 1 was 
enriched for HER2+ tumors with high GEB while the lymphocyte predominant cluster 2 was 
enriched for HER2+ tumors with a low GEB (OR = 4.64; P = 0.012; Figure 4B). This enrichment 
was confirmed with consensus clustering (OR=3.25; P = 0.051; Figure 4B). Similarly, clustering 
of ER+ tumors identified a lymphocyte predominant cluster enriched for tumors with a low GEB 
and a myeloid predominant cluster enriched for tumors with high GEB (OR = 2.56; P = 0.02; 
Figure 4C). Next, we interrogated lymphocyte and macrophage infiltration in high vs. low GEB 
tumors. In both HER2+ and ER+ tumors, we observed a decrease in lymphocytes in tumors with 
high GEB (Effect Size ≤ -0.05; FDR ≤ 0.10; Supplementary Figure 4A-B). A modest 
downregulation of cytotoxicity, defined as the geometric mean of GZMA and PRF1 abundance, 
was also observed (Effect Size ≤ -21.71; FDR ≤ 0.16; Mann-Whitney test; Supplementary Figure 
4C). In parallel, tumors with high GEB demonstrated higher macrophage infiltration, specifically 
M2- rather than M1-polarized macrophages (Effect Size ≥ 0.06; FDR ≤ 0.10; Mann-Whitney test; 
Supplementary Figure 4D-F). These data are consistent with high GEB tumors having increased 
macrophage and lower lymphocyte infiltration compared to low GEB tumors, regardless of 
subtype. Next, we considered the six immune subtypes identified by Thorsson et al (42). We asked 
if, within each breast cancer subtype, the GEB was associated with anti-tumor (e.g. IFN-𝛾 
dominant, inflammatory) or tumor-promoting (e.g. wound healing, lymphocyte depleted, 
immunologically quiet, TGF-β dominant) immune microenvironments. In both HER2+ and ER+ 
tumors, high GEB was associated with tumor-promoting immune subtypes, although the 
associations did not reach statistical significance (ORHER2+ = 0.50; PHER2+ = 0.14; ORER+ = 0.70; PER+ = 
0.24; Supplementary Figure 4G). Taken together, these data demonstrate that tumors which 
overcome a high GEB have less cytotoxic immune microenvironments. 
 
Finally, we asked whether the observed differences in the tumor immune landscape could be 
explained instead by disruption to MHC class I presentation, a recurrent mechanism of immune 
evasion (40). We considered two transcriptional signatures of MHC class I presentation, as 
evaluated by Thorsson et al. (42). In both HER2+ and ER+ tumors, we observed only a slight 
decrease in MHC class I presentation in high GEB compared to low GEB tumors (ESER+ = -0.01; 
PER+ = 0.06; ESER+ = -0.02; PER+ = 0.07; Mann-Whitney test; Supplementary Figure 4H-I). This 
modest trend suggests that downregulation of MHC class I presentation may be one mechanism 
by which tumors with a high GEB evade immune detection but that it is unlikely to drive the 
observed immune differences. 

High GEB in DCIS reduces likelihood of progression to invasive breast cancer 
The model of germline-mediated immunoediting posits that, prior to immune escape, tumors with 
a high GEB are more likely to undergo immune-mediated cell death. Immune selection pressures 
promote immune escape resulting in invasive breast cancers (IBC) with high GEB being more 
aggressive. We reasoned that DCIS likely represents an immune protected state with more 
susceptibility to immunosurveillance, i.e. a state prior to immune escape. We hypothesized that 
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high GEB in DCIS would be associated with decreased likelihood of progression to IBC, opposite 
to that observed in primary IBC (Figure 4D). In line with our hypothesis, DCIS lesions that did 
not progress to IBC were enriched for high GEB (OR = 0.37; P = 0.035; Figure 4E). Previously, 
Risom et al. demonstrated that myoepithelial disruption was more pronounced in DCIS lesions 
that did not progress to IBC (43). Similarly, in a small cohort of the DCIS lesions with spatial 
proteomics data (n=34), we observe a modest negative association between GEB and 
myoepithelial integrity consistent with high GEB lesions experiencing more immune surveillance 
(FC = 0.52; P = 0.11; Figure 4F). Taken together, these data indicate DCIS lesions with a high 
GEB may experience more immune surveillance and GEB may be predictive of progression to 
invasive breast cancer. In order to progress to IBC, lesions must suppress or escape immune 
surveillance resulting in more aggressive primary tumors with a proclivity to metastasize. 
Altogether, our findings demonstrate that the germline genome influences somatic evolution via 
immunoediting. If a nascent lesion develops in an individual with high GEB in key breast cancer 
associated oncogenes, somatic amplification of the cognate oncogene comes with a fitness cost to 
the tumor (Figure 5). Oncogene amplification further augments an already high GEB, thereby 
increasing the likelihood of immune surveillance. Thus, the lesion is less likely to acquire a somatic 
amplification in the oncogene of interest, instead favoring an alternative oncogenic pathway with 
lower fitness costs. If the lesion is able to overcome high GEB and still acquires somatic 
amplification of the oncogene, the tumor is more aggressive and has a lymphocyte-depleted tumor 
microenvironment. This new model of germline-mediated immunoediting can be exploited to 
refine risk stratifications within breast cancer subtypes. Within subtypes already defined as part of 
the treatment paradigm of breast cancer, individuals with a high GEB and, therefore, an increased 
risk of relapse can be identified from germline information measured from blood. In this way, 
GEB may represent a minimally invasive biomarker to further refine breast cancer relapse risk and 
accompanying treatment and monitoring.  
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Discussion 

Leveraging 3,855 breast cancer lesions, spanning pre-invasive to metastatic disease, we show that 
a high GEB in recurrent oncogenes is associated with a reduced likelihood of somatic amplification 
of the oncogene (Figure 5). We reason this is because somatic amplification of a gene with a high 
GEB would increase the number of available epitopes resulting in increased immunosurveillance. 
Some tumors are able to overcome this high GEB and amplify a particular oncogene; however, 
these tumors are more aggressive and have “immune cold”, lymphocyte depleted, 
microenvironments. 

There is mounting evidence that germline variation can skew somatic mutagenesis. For example, 
loss-of-function variants in DNA repair genes, such as BRCA1 and BRCA2, deregulate 
homologous repair resulting in mutational profiles characterized by tandem duplications and small 
(<10kb) deletions, respectively (2). Germline variants that regulate transcription of an oncogenic 
pathway can select for further somatic deregulation of the same pathway (8). Elucidating 
mechanistic links between germline variation and somatic mutagenesis facilitates delineation of 
the contribution of nature vs. nurture to inter-tumoral heterogeneity. We propose a novel 
mechanism by which the germline genome influences somatic evolution via immunoediting. 
Germline variants in a gene of interest that produce epitopes increases the fitness cost, thus 
decreasing the likelihood of gene amplification. Taken together, these studies suggest somatic 
mutagenesis is not stochastic but rather probabilistically bounded by the germline genome, which 
determines the likelihood of acquiring specific somatic mutations. 

In addition to linking germline and somatic variation, these data elucidate a novel link between 
germline variation and the tumor immune landscape. Specifically, we show that breast tumors with 
high GEB in a particular oncogene that somatically amplify the oncogene are more likely to 
become “immune cold” tumors – decreased lymphocyte infiltration. With increasing evidence 
supporting the effectiveness of checkpoint blockade in the adjuvant setting in breast cancer, 
including FDA approval of Pembrolizumab as an adjuvant therapy in TNBC (44), refined 
biomarkers are needed to predict which tumors would benefit the most from this form of therapy.  
Moreover, various clinical trials are currently underway evaluating experimental vaccines in breast 
cancer. One such trial (NCT04367675) is investigating the safety profile of plasmid DNA vaccine 
encoding hTERT, PMSA and WNT1 (INO-541) alone or in combination with IL12 (INO-9012) in 
BRCA1 or BRCA2 carriers (45). A second (NCT04674306) is investigating the safety and 
effective dose of an alpha-lactalbumin vaccine in triple negative breast cancer (46). Finally, GP2, 
a vaccine involving an endogenous peptide derived from HER2 (34), has progressed to a multi-
center, randomized, phase three clinical trial to evaluate its safety and efficacy in HER+ breast 
cancer (NCT05232916). These studies further motivate the discovery of generalizable cancer 
vaccine targets to facilitate preventative vaccinations. Germline epitopes, such as those presented 
here, may serve as such generic targets.  

Importantly, despite recent efforts to improve ancestry representation in cancer genomic cohorts, 
currently available cohorts are heavily enriched for individuals of European descent. Further 
studies in more diverse cohorts are required to evaluate the generalizability and prevalence of 
germline-mediated immunoediting in other populations, and may help to explain differences in 
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breast cancer subtype and severity (13). While the current study focuses on breast cancer we 
anticipate germline-mediated immunoediting extends to other cancers. Future studies in 
adequately powered cohorts are needed to confirm this. 

These data have important clinical implications. First, germline variants can be measured from 
blood and thus represent a low-cost, minimally invasive biomarker that is not sufficiently 
harnessed at present. Second, germline-mediated immunoediting may explain why an individual 
develops one breast cancer subtype over another. Third, GEB, measured from blood, may be 
exploited to further stratify risk of relapse within breast cancer subtypes as well as to identify 
tumors with high lymphocyte infiltration, i.e. “immune hot” tumors. Fourth, our data demonstrate 
that immunoediting pressures differ during the course of a patient’s disease, potentially informing 
the timing of therapeutic interventions. Finally, germline-mediated immunoediting points to a 
broad source of currently underappreciated immunogenic antigens, thus dramatically expanding 
the quest for alternative antigens (47). This motivates a potential new avenue for developing cancer 
vaccines with desired properties, including being clonal and present in entire subgroups of disease.  
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Methods 

The Cancer Genome Atlas (TCGA) primary invasive breast cancer cohort 
We considered 656 primary breast cancer tumors from TCGA that were determined to be of 
European descent by Yuan et al (48) and had both tumor and normal whole exome sequencing (3). 
Whole exome sequenced bam files were downloaded from Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov/). We leveraged previously published copy number alterations, 
mRNA abundance and somatic single nucleotide variants downloaded from 
https://gdc.cancer.gov/about-data/publications/pancanatlas. Genes were considered to be 
amplified if the total copy number was greater than 4. We downloaded class 1 HLA alleles for 
each individual in TCGA from Shulka et al. (49). 

The International Cancer Genome Consortium (ICGC) primary invasive breast 
cancer cohort 
We leveraged 431 primary breast cancer tumors with paired normal whole genome sequencing 
from ICGC (31). Bam files were downloaded from EGA (EGAD00001000141, 
EGAD00001001322, EGAD00001001334, EGAD00001001335, EGAD00001001336, 
EGAD00001001337, EGAD00001001338), backextracted using picard SamToFastq (v2.27.5), 
followed by alignment to hs37d5 using the PCAP (ICGC/TCGA Pan-Cancer Analysis Project) 
docker implementation of bwa mem (https://github.com/cancerit/PCAP-core). Genotypes were 
called using HaplotypeCaller (v4.1.8.1) to produce gvcfs, followed by joint genotyping (i.e. 
GenotypeGVCFs) and variant recalibration (i.e. VariantRecalibrator and ApplyVSQR), according 
to GATK best practices (50). Using 128 ancestry informative markers (51), we estimated the 
genetic ancestry of each case via principal component comparison with reference populations 
provided by Philips et al. Cases that clustered outside +/- 0.2 from the European-descent 
population in the reference population were excluded from further analyses. We leveraged 
previously published copy number segments provided in Supplementary Table 4 of Nik-Zainal  et 
al. (31). Genes were considered to be amplified if the total copy number was greater than 4. 
Hormone status was provided in Supplementary Table 1 of Nik-Zainal et al. We identified MHC 
class I alleles using the nf-core/hlatyping nextflow (v21.05.0) pipeline (revision 1.2.0) using 
default parameters. 

GP2 presentation selects against HER2+ breast cancer 
GP2 is a peptide vaccine derived from HER2 with known immunogenicity. To evaluate if GP2 
presentation was associated with an individual’s likelihood of developing HER2+ breast cancer, 
we first identified HLA alleles that could present GP2 using netMHCpan (v4.1) with default 
settings (52). We tested all HLA alleles and considered those where GP2 was ranked within the 
top 3% of peptides – the same threshold as used throughout the manuscript (see Germline-derived 
epitope burden in TCGA). Next, we calculated the number of HLA alleles each individual 
possessed that were capable of binding GP2. We tested if the number of HLA alleles was 
associated with HER2+ breast cancer, defined by clinical hormone status, using a logistic 
regression model correcting for the first six genetic principal components:  

HER2+ ~ number of HLA alleles able to bind GP2 + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 
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The same model was applied to both TCGA and ICGC. Meta-analysis was conducted using 
restricted maximum likelihood (REML) as implemented in the metafor (v3.4.0) R package. 

Germline-derived epitope burden in TCGA  
We identified genomic coordinates representing recurrently amplified genes in the high-risk 
ER+/HER2- integrative subtypes (IntClust: IC1, IC2, IC6, IC9) and HER2+ (IC5) breast cancer 
subtypes (32, 33) (Figure 1F). We selected the three or four most abundant genes based on mRNA 
profiling for each high-risk ER+ amplicon using the RNA supplemental data provided as part of 
the TCGA PanCancer Atlas (3): IC1 – RPS6KB1, TUBD1, DHX40, BCAS3; IC2 – RSF1, CCND1, 
PAK1, NARS2; IC6 – ZNF703, FGFR1, LETM2, EIF4EBP1; IC9 – MYC, SQLE, FBXO32. Using 
these coordinates, we ran GATK HaplotypeCaller (v4.1.8.1) to produce gvcfs, followed by joint 
genotyping (i.e. GenotypeGVCFs) and variant recalibration (i.e. VariantRecalibrator and 
ApplyVSQR), according to GATK best practices  (50). For each gene, we identified missense and 
frameshift variants using SnpEff (v4.3t) and generated the protein sequence considering all 
missense and frameshift variants using FRED-2 (v2.0.7) (53). Next, in order to calculate how many 
epitopes could be derived from each protein sequence, we downloaded class 1 HLA alleles for 
each individual in TCGA from Shulka et al (49). We predicted the binding probabilities for all 8-
11 amino acid peptides derived from each gene for each class I HLA allele using netMHCpan 
(v4.1) with default settings (52). For each individual, considering their class I HLA alleles, we also 
predicted the binding probabilities for peptides derived from the reference sequence for each gene 
using the same approach. To enrich for peptides able to escape central tolerance (21), we 
considered peptide sequences that were predicted to be weak binders. We empirically evaluated 
various binding thresholds before defining “weak binders” as within the 0.5-3% of naturally 
occurring random peptides (Supplementary Figure 1G). We calculated the total number of weak 
binding peptides derived from each individual’s protein sequence, including all missense and 
frameshift germline variants, and subtracted the total number of weak binding peptides derived 
from the reference protein sequence. This resulted in a value for each of the six class I alleles for 
all isoforms of the gene of interest. Next, for each class I allele, we took the median over all 
isoforms. Finally, we calculated the median over all six class I alleles. This resulted in the average 
GEB for each gene for each individual with respect to the reference sequence. We binned samples 
with GEB less than the reference sequence (< WT), the same as the reference sequence (WT) or 
more than the reference sequence (>WT). When considering multiple genes, we first binned 
samples with epitope burden <WT (-1), WT (0) or >WT (1) per gene first before summing across 
genes. 

Germline-derived epitope burden in ICGC 
Genotypes were called using HaplotypeCaller (v4.1.8.1) to produce gvcfs, followed by joint 
genotyping (i.e. GenotypeGVCFs) and variant recalibration (i.e. VariantRecalibrator and 
ApplyVSQR), according to GATK best practices (50). We identified MHC class I alleles using 
the nf-core/hlatyping nextflow (v21.05.0) pipeline using default parameters. HLA allele 
frequencies within the ICGC cohort were compared against population frequencies from the Allele 
Frequency Net Database considering USA NMDP European Caucasian populations. Calculations 
of the average GEB were performed as for the discovery cohort (see Germline-derived epitope 
burden in TCGA).  
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Ductal carcinoma in situ (DCIS) cohort 
We leveraged 341 primary ductal carcinoma in situ tumors shallow whole genome (sWGS) 
sequencing from HTAN Atlas (30). Samples were sequenced and sequencing data aligned as 
previously described (30). Briefly, raw reads were aligned to GRCh38 reference genome using 
BWA (v0.7.17) and GATK (v4.1.7.0) (54)  implemented in the Nextflow-base pipeline Sarek 
(v2.6.1). The recalibrated reads were further processed and filtered for mappability, GC content 
using the R/Bioconductor quantitative DNA-sequencing (QDNAseq) (v1.22.0) with R (v3.6.0). 
Copy number alterations were called using QDNAseq as detailed in Strand et al. (30). A subset of 
lesions (n=34) additionally had multiplexed ion beam imaging as previously described (43). 

Germline-derived epitope burden in DCIS 
We used QUILT (v0.1.9) to simultaneously genotype and impute germline variants genome-wide 
(55). We used the 1000 Genomes Project as the reference panel and the following parameters “--
buffer=10000 --nGen=100”. QUILT was also used to estimate the class I HLA alleles for each 
case leveraging the reference panels provided with QUILT and default parameters. We only 
considered samples that had more than two HLA alleles imputed with >50% posterior probability 
(n=341 samples). Calculations of the average GEB were performed as for the discovery cohort 
(see Germline-derived epitope burden in TCGA).  

Germline-derived epitope burden in metastatic breast cancer (Hartwig) 
We leveraged 702 metastatic breast cancer tumors with paired normal whole genome sequencing 
from Hartwig (29). Genotypes were called using HaplotypeCaller (v4.1.8.1) to produce gvcfs, 
followed by joint genotyping (i.e. GenotypeGVCFs) and variant recalibration (i.e. 
VariantRecalibrator and ApplyVSQR), according to GATK best practices (50).  Using 128 
ancestry informative markers (51), we estimated the genetic ancestry of each case via principal 
component comparison with reference populations provided by Philips et al. Cases that clustered 
outside +/- 0.2 from the European-descent population in the reference population were excluded 
from further analyses. We identified MHC class I alleles using the nf-core/haplotyping nextflow 
(v21.05.0) pipeline (revision 1.2.0) using default parameters. HLA allele frequencies within the 
Hartwig cohort were compared against population frequencies from the Allele Frequency Net 
Database considering USA NMDP European Caucasian populations. Calculations of the average 
GEB were performed as for the discovery cohort (see Germline-derived epitope burden in 
TCGA). Copy number alterations were identified using FACETS-SUITE with the following 
parameters: “--cval 1000 --purity-cval 1800 --normal-depth 20”. A gene was considered amplified 
is if the total copy number was greater than 4. 

Association between germline-derived epitope burden and oncogene amplification 
We hypothesized that a high GEB in an oncogene would select against oncogene amplification. 
To test this, we considered five breast cancer subtypes defined by amplification of characteristic 
genomic regions: HER2+ and ERBB2 (17q12), IC1 and 17q23, IC2 and 11q13, IC6 and 8p12, and 
IC9 and 8q24. To identify which genes within these amplified regions to measure germline epitope 
burden, we prioritized genes with high mRNA abundance. Specifically, we selected four genes 
with the highest median mRNA abundance per subtype based on RNA sequencing data provided 
by the TCGA PanCancer Atlas (Supplementary Figure 1I-L). Only three genes were selected for 
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IC9 as only four genes are commonly amplified in this subgroup and ADCY8 was not expressed 
(Supplementary Figure 1L). GEB across the genes selected was calculated as the sum of the sign 
of the epitope burden per gene, i.e. <WT (-1), WT (0) and >WT (1). We calculated the association 
between the GEB in each gene and whether each individual developed the corresponding subtype 
using a logistic regression model correcting for the first six genetic principal components and the 
somatic mutation burden:  

subtype ~ epitopes + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + somatic SNV burden 
 
For TCGA, the first six genetic principal components calculated by Yuan et al. were used (48). 
For ICGC and Hartwig, genetic principal components were derived from PCA with reference 
populations provided by Philips et al. (51). Further modifications to the model were made for the 
DCIS cohort for which tumor tissue only was profiled with shallow whole genome sequencing 
(sWGS). Specifically, we only included HLA alleles genotyped with a posterior probability > 0.5. 
If after removing low confidence HLA alleles from the analysis, the sample had at most two unique 
HLA alleles remaining, we excluded the sample from the analysis. Additionally, we estimated 
ancestry in the sWGS DCIS cohort using the same protocol as Gusev et al. (39). Specifically, we 
scored each sample against ancestry-specific scores derived from SNPWEIGHTS (56) as 
implemented on github (https://github.com/gusevlab/panel-imp). We used these ancestry-specific 
scores to correct for population structure in the logistic regression model. As these samples were 
profiled with sWGS, we were not able to control for somatic SNV burden in the DCIS cohort. 
Meta-analysis was conducted using REML as implemented in the metafor (v3.4.0) R package. 
Finally, to improve power and unify subtype definitions across cohorts, subtypes in each cohort 
were defined as follows: HER2+ was defined as overexpression of HER2/ERBB2 by PAM50 
(TCGA, DCIS) or hormone status included in clinical annotations (ICGC, Hartwig), IC1 was 
defined as amplification of RPS6KB1 and positive ER hormone status included in clinical 
annotations (ER+), IC2  was defined as amplification of RSF1 and ER+, IC6 was defined as 
amplification of ZNF703 and ER+  and IC9 was defined as amplification of MYC and ER+. P-
values were adjusted for multiple hypothesis testing using the Benjamini-Hochberg correction. We 
also correlated GEB with somatic neoantigens as calculated by Thorsson et al. using Spearman’s 
correlation (42) . 

Null association between germline-derived epitope burden and oncogene 
amplification 
To ensure the negative association observed between the GEB and oncogene amplification was 
not driven by germline variants having a functional impact on the gene itself, we permuted the 
HLA alleles, scrambling them across all individuals in the TCGA discovery cohort. We predicted 
epitopes using netMHCpan as described above using the scrambled HLA alleles instead of the true 
HLA genotypes. We calculated the average GEB for each gene and tested the association with the 
corresponding subtype using the null epitope predictions and the same modeling approach. We 
reran this permutation step 1,000 times and plotted the median, 0.025 and 0.975 quantiles of the 
null b values. 

Allelic imbalance in somatic amplifications 
To ensure sufficient power, we considered two of the most common SNPs in our discovery 
(TCGA) cohort: rs1058808 in ERBB2 (MAF = 0.33) and rs1292053 in TUBD1 (MAF = 0.45).  For 
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each variant, we identified heterozygous individuals that also had an amplification in the 
corresponding gene, i.e. ERBB2 (defined as IC5) or TUBD1 (defined as IC1). To determine allelic 
imbalance, we ran GATK CollectAllelicCounts (v 4.1.8.1) to calculate the number of reference 
and alternative allele at each site. We defined amplifications that preferentially amplified the 
reference allele as those that had <20% of reads mapping to the alternative allele. While 
amplifications that preferentially amplified the alternative allele were defined as those that had 
>80% of reads mapping to the alternative allele. We ran the R package antigen garnish (v2.3.1) to 
identify the binding potential of peptides produced by the alternative allele (57). “Binders” were 
identified using the same definition as before: ranks within 0.5-3% of naturally occurring random 
peptides. We defined differential binding as the binding potential (i.e. rank) of the alternative allele 
– the reference allele. We compared differential binding between samples that preferentially 
amplified the alt allele vs. those that preferentially amplified the ref allele using a Mann-Whitney 
rank sum test. To ensure these differences were not driven by a single sample, we also evaluated 
the median differential binding per sample with preference to amplify the alt or ref allele. 

Germline epitope burden in primary vs metastatic tumors 
We evaluated the GEB between primary and metastatic tumors within each subtype by applying a 
logistic regression model to compare the TCGA vs Hartwig cohorts and ICGC vs Hartwig cohorts 
separately:  

metastatic (yes/no) ~ epitopes  

The model was applied to each subtype individually defining subtype as indicated previously (see 
Association between germline-derived epitope burden and oncogene amplification). To 
ensure differences in GEB were not driven by differences in germline genotypes or HLA 
genotypes, we compared variant minor allele frequencies and HLA genotype frequencies using 
Pearson correlation. Meta-analysis was conducted using REML as implemented in the metafor 
(v3.4.0) R package. P-values were adjusted for multiple hypothesis testing using the Benjamini-
Hochberg correction.  

Epitope burden across ER+ high risk tumors for within subtype analyses 
To improve power for within subtype analyses, we merged all ER+ high risk tumors (i.e. IC1, IC2, 
IC6 and IC9). To ensure a uniform score was calculated across subtypes, we scored the GEB across 
all genes weighted by the binary presence of an amplification (defined as >4 copies): 

ER+ high-risk GEB = IC1 genes burden * IC1 amplification + IC2 genes burden * IC2 
amplification + IC6 gene burden * IC6 amplification + IC9 gene burden * IC9 amplification 

This ensured the GEB within each set of subtype specific genes was only considered if the sample 
had the corresponding gene amplification.  

Benchmarking HLA imputation from SNP6.0 arrays 
To assess the accuracy of HLA imputation from SNP6.0 arrays, we leveraged TCGA which has 
both SNP6.0 array and WES. We considered HLA alleles determined from WES previously as the 
gold standard (49). We called genotypes from SNP6.0 using Birdseed using default parameters 
and converted to plink file formats using plink (v1.9) (58). Next, we used CookHLA to impute 
HLA genotypes for each sample using the 1000 Genomes European reference panel (59). For each 
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HLA allele, we assessed the concordance between the SNP6.0 imputed genotypes and the WES-
derived gold standard genotypes. We only considered HLA alleles with >80% concordance 
(nalleles=68) for further analysis.  

Germline-derived epitope burden in METABRIC 
We leveraged 1,725 primary breast cancer tumors with SNP6 arrays from METABRIC (32). 
Genotypes were imputed using the TOPMed Imputation Server using the TOPMed r2 reference 
panel and Eagle v2.4 for phasing (60). We used CookHLA to impute HLA genotypes for each 
sample using the 1000 Genomes European reference panel (59). Considering only HLA alleles 
with >80% concordance in our TCGA benchmarking (see Benchmarking HLA imputation from 
SNP6.0 arrays), we calculated the average GEB the same as the discovery cohort (see Germline-
derived epitope burden in TCGA). We merged all ER+ high risk tumors (i.e. IC1, IC2, IC6, IC9) 
using the same scoring metric outlined in Epitope burden across ER+ high risk tumors for 
within subtype analyses.  

Prognostic association of germline-derived epitopes 
We interrogated if GEB was associated with relapse after primary treatment in the METABRIC 
cohort (32, 33). Because we hypothesize immunoediting happens early in tumorigenesis, we 
focused on patients that relapsed within five-years of treatment. We tested prognostic associations 
in HER2+ and high risk ER+ tumors separately using a CoxPH model correcting for the first two 
genetic principal components, age at diagnosis, IntClust and percent genome copy-number altered 
(PGA). Within each subtype, samples were median dichotomized into low and high GEB. To test 
if the prognostic associations observed were driven by the capacity of each HLA to present a wide 
range of antigens (i.e. HLA promiscuity), we leveraged HLA promiscuity metrics generated by 
Manczinger et al. (41). For each sample, we calculated the proportion of HLA alleles that had a 
promiscuity score greater than the median promiscuity score. We only considered HLA alleles 
with scores measured by Manczinger et al. We tested the association between proportion of 
promiscuous HLAs and relapse using a CoxPH model correcting for the first two genetic principal 
components, age at diagnosis, PGA and IntClust subtype. Next, we tested if the proportion of 
promiscuous HLAs mediated the prognostic value of GEB using a logistic regression model 
including GEB, first two genetic principal components, age at diagnosis, IntClust, PGA and 
proportion of promiscuous HLAs. Finally, we evaluated if GEB could improve predictions of risk 
of five-year relapse. We first tested if GEB in combination with the IntClust subtypes improved 
relapse predictions over the IntClust subtypes alone. We compared the c-index of coxph models 
with GEB + IntClust subtypes vs. IntClust subtypes alone for 1,000 bootstrapped iterations. We 
calculated the fold change as the ratio of medians c-index from the two models and the p-value as 
1 – the proportion of iterations where the c-index of the GEB + IntClust model was greater than 
the IntClust model alone. Next, we used the same approach to compare an IntClust and 
clinicopathologic model (IC + age + size + node involvement + grade) with IntClust, 
clinicopathologic and GEB model.  

Immune association of germline-derived epitopes 
Within HER2+ and ER+ tumors, we interrogated the immune landscape of tumors with a high 
GEB vs tumors with a low GEB. We defined HER2+ based on pam50 and ER+ high risk tumors 
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as IC1, IC2, IC6 and IC9 from the IntClust subtypes. We leveraged tumor microenvironmental 
characterization of the TCGA cohort conducted by Thorsson et al. (42). We selected 23 immune 
features – including cell estimates from deconvolution of RNA sequencing, transcriptomic 
signatures and marker gene mRNA abundance – based on their characterization of lymphocyte 
infiltration, macrophage infiltration, cytokine signaling and extracellular matrix composition. 
Immune features were downloaded from https://gdc.cancer.gov/about-
data/publications/panimmune. We conducted unsupervised clustering based on Z-scores of the 23 
immune features using Pearson correlation and the diana (DIvise ANAlysis Clustering) algorithm, 
as implemented in the cluster R package (v2.1.0), as well as consensus clustering as implemented 
in the ConsensusClusterPlus R package (v1.50.0). We compared how immune clusters associated 
with GEB using a Fisher’s exact test. We tested the association of lymphocyte and macrophage 
infiltration with GEB in HER2+ and ER+ tumors using a Mann-Whitney test. 
Next, we considered the immune subtypes. We categorized subtypes into anti-tumor -- C2: IFN𝛾 
dominant and C3: inflammatory -- and pro-tumor -- C1: wound healing, C4: lymphocyte depleted, 
C5: immunologically quiet, C6: TGF-𝛽 dominant. We tested the association between the GEB and 
immune reactivity correcting for the first six genetic principal components: 

Immune subtype ~ GEB + PC1 + PC2 + PC3 + PC4 +PC5 +PC6 
Finally, we investigated if differences in immune features were driven by disruption to HLA class 
I presentation. We considered two MHC class I antigen presentation signatures (Senbabaoglu - 
APM1 and Wolf - MHC.I_19272155)  scored by Thorsson et al. (42) and downloaded from 
https://gdc.cancer.gov/about-data/publications/panimmune. Associations with GEB in HER2+ 
and ER+ tumors were quantified with a Mann-Whitney rank sum test. P-values were adjusted for 
multiple hypothesis testing using the Benjamini-Hochberg correction. 

Germline epitope burden association with risk of invasive breast cancer  
To investigate if germline epitope burden was associated with risk of invasive breast cancer 
recurrence after DCIS, we calculated the germline epitope burden as the sum across 8p24, 8p12, 
11q13, 17q23 and 17q12. High epitope burden tumors were defined as those with epitope burdens 
greater than the median. We evaluated if high germline epitope burden tumors were enriched in 
lesions that progressed to invasive breast cancer vs those that had neither invasive breast cancer 
nor DCIS recurrence using a logistic regression model correcting for eight genetic ancestry 
principal components, ER and HER2.  Next, we identified 34 lesions that were also profiled with 
multiplex ion beam imaging (MIBI) (cite). Previously, myoepithelial integrity was negatively 
associated with risk of invasive breast cancer relapse. We evaluated if epitope burden was 
associated with myoepithelial integrity (defined as % E-cadherin within myoepithelial) using 
Mann-Whitney Rank Sum test.  

Data visualizations 
Visualizations were generated in the R statistical environment (v3.3.1) with the lattice (v0.24-30), 
latticeExtra (v0.6-28) and BPG (v5.6.23) packages (61). 

Data availability  
All cohorts are publicly available. TCGA BRCA samples can be found on the Genomic Data 
Commons Data Portal (https://portal.gdc.cancer.gov/). The ICGC breast cancer samples can be 
found on the European Genome-Phenome Archive (accession: EGAD00001000141, 
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EGAD00001001322, EGAD00001001334, EGAD00001001335, EGAD00001001336, 
EGAD00001001337, EGAD00001001338). Metastatic breast cancer samples (Hartwig) are 
available for academic use under a Data Use Agreement (DR-230) from the Hartwig Medical 
Foundation (https://www.hartwigmedicalfoundation.nl/en/data/data-acces-request/).  All the 
scripts and code is available on the Curtis Lab Github Repo: 
https://github.com/cancersysbio/germline-epitopes   
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Figure 1 – Germline-derived epitope burden in oncogenes selects against oncogene 
amplification 

A) Schematic of germline-mediated immunoediting. Prior to transformation, differing germline 
genomes and HLA alleles result in differing numbers of epitopes derived from a gene of interest 
(e.g. Gene X). If during transformation, the tumor acquires additional copies of Gene X (i.e. 
somatic amplification), the number of epitopes increases further. As a result, individuals with a 
high burden of epitopes are more likely to be surveilled by the immune system triggering cell 
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death. B) As proof of concept, GP2 is a well-characterized, naturally occurring (i.e., non-
somatically mutated) immunogenic peptide derived from HER2. Schematic overview of analysis 
framework to investigate if the ability to present GP2, i.e., having MHC Class I alleles that bind 
GP2, is associated with HER2+ breast cancer. C) The ability to present GP2 is negatively 
associated with HER2+ breast cancer. Barplot shows the ratio of HER+ to HER2- in patients that 
have HLA alleles that can bind GP2 (GP2 presented) vs patients that do not (GP2 not presented). 
Odds ratio (OR) and p-value from logistic regression model correcting for first six genetic 
principal components. D) Schematic outlining methods to investigate germline-mediated 
immunoediting. Using four independent cohorts representing multiple stages of breast cancer, pre-
invasive, primary invasive and metastatic invasive breast cancer, we investigated if the GEB in a 
gene of interest was associated with the likelihood of acquiring a somatic amplification of the gene 
using HER2 as a representative example. E) GEB in ERBB2 is negatively associated with HER2+ 
breast cancer. Barplot shows the ratio of HER2+ to HER2- patients with low, medium or high 
GEB. Odds ratio (OR) and p-value from logistic regression model correcting for the first six 
genetic principal components. F) Beyond ERRB2, we investigated amplicons that characterize four 
ER+/HER2- high risk of relapse subtypes (IC1, IC2, IC6 and IC9), where the percent of breast 
cancer cases they represent and the corresponding chromosome region and core genes is denoted 
for each subtype. G) GEB in recurrently amplified genes  is negatively associated with gene 
amplification. Scatterplot shows odds ratio (x-axis) and 95% confidence intervals from logistic 
regression model correcting for the first six genetic principal components and somatic mutation 
burden. Covariates in the top panel indicate the direction of the effect, namely whether GEB is 
associated with increased or decreased likelihood of each subtype.  
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Figure 2 – Germline-mediated immunoediting dictates breast cancer subtype early during 
tumorigenesis  
A)  Across five subtypes and three independent cohorts, high GEB in subtype-specific oncogenes 
is associated with a decreased likelihood of developing the cognate subtype of breast cancer. Forest 
plot shows the odds ratio and 95% confidence intervals from a meta-analysis across three cohorts: 
DCIS (N=341), TCGA (n=656) and ICGC (n=431). B) At the individual variant level, to avoid 
immunoediting, tumors should preferentially amplify the germline allele that produces a weaker 
epitope. For example, considering only heterozygous individuals, in scenario 1 the reference (ref) 
allele produces an epitope with higher binding affinity for MHC class I than the alternative (alt) 
allele. As a result, the tumor preferentially amplifies the alt allele as evidenced by the increased 
proportion of sequencing reads supporting the alt allele. By contrast, in scenario 2, the alt allele 
produces an epitope with higher binding affinity for MHC class I and the ref allele is preferentially 
amplified. C-D) Allele producing epitope with weaker MHC class I binding affinity is 
preferentially amplified. Boxplots of differential binding for epitopes derived from the alt allele vs 
ref allele (y-axis), i.e. a measure of alt allele binding affinity, for samples that preferentially 
amplified the alt or the ref allele. Effect size and p-value from Mann-Whitney rank sum test. 
Boxplots show analysis for rs1058808 derived from ERBB2 (C) and rs1292053 derived from 
TUBD1 (D). 
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Figure 3 – Tumors that overcome a high burden of germline epitopes are more aggressive 
A) Schematic of within-subtype comparison between GEB in primary tumors (TCGA and ICGC) 
vs metastatic tumors (Hartwig). B) Across five subtypes, metastatic tumors show an enrichment 
of epitopes compared to primary tumors. Forest plot shows odds ratio and 95% confidence 
intervals from meta-analysis of TCGA vs Hartwig and ICGC vs Hartwig. C) Schematic of within-
subtype comparisons of GEB association with risk of relapse within five years in METABRIC. D-
E) A high GEB is associated with increased risk of relapse in HER2+ (D) and ER+ (E) tumors. 
Hazard ratio and p-value from CoxPH model correcting for first two genetic principal components, 
percent genome altered and age. F) GEB in combination with the Integrative Clusters (IntClust) 
improves the accuracy of five-year relapse prediction in ER+ and HER2+ tumors. Forest plot 
shows c-index of predictive models considering the IntClust alone or in combination with GEB 
for 1,000 bootstrapped iterations. Fold change (FC) is calculated as the ratio of medians while the 
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p-value is calculated as 1 – the proportion of iterations where the -index of the IntClust and GEB 
model was greater than the IntClust alone model. 
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Figure 4 – A high germline epitope burden promotes an immunosuppressive phenotype 
A) Schematic of within-subtype comparisons of the immune landscape between high GEB and 
low GEB tumors in TCGA. B-C) Unsupervised clustering of 23 immune features, selected to 
reflect broad immune cell populations, cytokine signaling and extracellular matrix composition, 
identified two dominant clusters within HER2+ (B) and ER+ (C) breast tumors driven by GEB. 
Heatmap shows the z-score of each immune feature (y-axis) for each tumor (x-axis). Covariates 
along the top indicate if the tumor has a high GEB or a low GEB along with clusters from two 
different clustering methods (Diana and Consensus). Immune features cluster into two broad 
categories, myeloid and lymphocyte predominant, as indicated by the covariate on the right. 
Statistics from Fisher’s exact test quantifying the enrichment of high GEB tumors in the myeloid 
predominant cluster for both clustering methods. D) Schematic of GEB association with 
progression to invasive breast cancer. E) DCIS lesions that do not progress to IBC are enriched 
for high GEB. Barplot shows the proportion of DCIS lesions that progress or not progress to IBC 
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stratified by GEB. Statistics from a logistic regression model correcting for eight genetic principal 
components, HER2 and ER status. F) Myoepithelial integrity is negatively associated with GEB. 
Boxplot shows myoepithelial integrity (% of E-cadherin in myoepithelium), as defined by Risom 
et al. (43), in high vs low GEB lesions for a subset of lesions that had spatial proteomics data. 
Statistics are based on a Mann-Whitney Rank Sum test. 
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Figure 5 – Germline-mediated immunoediting sculpts breast cancer subtypes and 
metastatic proclivity 
Schematic of mechanistic molecular model of germline-mediated immunoediting and its 
implications for improving breast cancer risk stratification. Briefly, during tumorigenesis, lesions 
with a high GEB in a gene of interest are less likely to acquire somatic amplification of that gene. 
However, if the tumor gains additional copies of the gene, it is forced to develop an immune 
suppressive/evasive phenotype and is more aggressive. Conversely, low GEB has little impact. By 
the time the tumor has metastasized to distant sites, it develops immune suppression/evasion 
mechanisms and is refractory to immunoediting pressures. In the pre-cancerous setting, GEB may 
be indicative of risk of progression to an invasive cancer since lesions with high GEB would have 
to overcome stronger immune pressures. Once the lesion becomes invasive, within a breast cancer 
subtype, tumors may be further stratified into those with high and low risk of relapse based on 
GEB in subtype-specific genes.  
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Supplementary Figure 1 – GEB in oncogene selects against oncogene amplification 
A) Forest plot shows OR and 95% confidence intervals for association between number of HLA 
alleles an individual possesses that can bind GP2 and whether the individual has HER2+ breast 
cancer in ICGC and TCGA. B) Scatterplot of minor allele frequencies (MAF) in TCGA discovery 
cohort compared to population frequencies in Gnomad (Pearson correlation). C) Scatterplot of 
HLA allele frequencies in TCGA discovery cohort compared to population frequencies in The 
Allele Frequency Net Database. D) Barplot showing the number of samples that have low, medium 
or high GEB (defined as less than the reference genome (<WT), the same as reference (WT) or 
greater than the reference genome (>WT)) in subtype specific recurrently amplified loci. E) 
Boxplot showing depletion of the average number of binders in ERBB2 in HER2+ breast cancer 
compared to HER2- breast cancer. Statistics from a logistic regression model correcting for the 
first six genetic principal components. Boxplot represents median, 0.25 and 0.75 quantiles with 
whickers at 1.5x interquartile range. F) Barplot shows the ratio of HER2+ to HER2- patients with 
low, medium or high GEB defining HER2+ as having an ERBB2 amplification (i.e. >4 copies). 
Statistics from logistic regression model correcting for the first six genetic principal components. 
G) Scatterplot showing odds ratio (x-axis) between GEB and HER2+ breast cancer considering 
varying definition of HLA binders (y-axis). H) Negative association between GEB and subtype 
commitment is not driven by germline variants alone. Forest plot shows odds ratio and 95% 
confidence intervals for the true associations (“real”) compared to associations run with scrambled 
HLA alleles (“scrambled”). Odds ratio and 95% confidence interval plotted were calculated as the 
median, 0.025 and 0.975 quantiles of 1,000 iterations of scrambled HLA alleles. Covariate along 
the right indicates if statistics are from real or scrambled analyses. I-L)  mRNA abundance of 
recurrently amplified genes in each of the four high risk ER+ IntClust subtypes: IC1 (I), IC2 (J), 
IC6 (K) and IC9 (L). M) Boxplot shows the number of samples (y-axis) corresponding to each 
subtype (x-axis) based on alternative subtype definitions. N) Barplot shows effect size (top) and 
p-value (bottom) from association with breast cancer risk from Zhang et al. (7) O-P) As a negative 
control, we tested the association of the GEB in unexpressed keratins, KRT34, KRT71, KRT74 
and KRT82, with the PAM50 subtypes. As these proteins are not expressed in mammary tissue, 
there should be no association. (O) Boxplot shows log10 mRNA abundance of subtype specific 
genes on the left (grey background shading) compared to the unexpressed keratins on the right. 
(P) Boxplot shows the coefficients for these analyses are significantly closer to zero compared to 
the coefficients from the subtype-specific protein analyses. Effect size (ES) represents the 
difference in medians. P-value from Mann Whitney Rank Sum Test.  
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Supplementary Figure 2 – Germline-mediated immunoediting dictates breast cancer 
subtype early during tumorigenesis  
A) Scatterplot shows principal component 1 and 2 for ICGC replication cohort against reference 
cohort based on 128 ancestry informative markers (51). Majority of samples cluster with European 
population. Dotted lines represent cutoffs for inclusion in analysis. B-C) Scatterplot of minor allele 
frequencies (MAF) in ICGC (B) and DCIS (C) replication cohorts compared to population 
frequencies in Gnomad (Pearson correlation). D-E) Scatterplot of HLA allele frequencies in ICGC 
(D) and DCIS (E) replication cohorts compared to population frequencies in  The Allele Frequency 
Net Database. F) Across five subtypes and three independent cohorts, a high GEB in subtype-
specific oncogenes is associated with decreased likelihood of developing the cognate subtype. 
Forest plot shows the odds ratio and 95% confidence intervals for three cohorts: DCIS, TCGA and 
ICGC. Covariate on the right indicates cohort. G)  Scatterplot of minor allele frequencies (MAF) 
Hartwig cohort compared to population frequencies in Gnomad (Pearson correlation). H) 
Scatterplot of HLA allele frequencies in Hartwig cohort compared to population frequencies in 
The Allele Frequency Net Database. I) Scatterplot shows principal component 1 and 2 for Hartwig 
cohort against reference cohort based on 128 ancestry informative markers (51). Majority of 
samples cluster with European population. Dotted lines represent cutoffs for inclusion in analysis. 
J) Forest plot shows association between GEB and subtype in metastatic breast cancer (Hartwig). 
No association was observed in metastatic breast cancer. K-L) Barplots show fraction of reads 
supporting the alternative allele in the tumor (top) and the normal (bottom) for two common 
variants: rs1058808 (K) and rs1292053 (L). The number on the top of each plot shows the top 
number of reads covering each loci. The horizontal line indicates fraction = 0.5 while the dotted 
lines represent fraction = 0.2 or 0.8. M-N) Boxplots of median differential binding per sample for 
epitopes derived from the alt allele vs ref allele (y-axis) for samples that preferentially amplified 
the alt or the ref allele. Effect size and p-value from Mann-Whitney rank sum test. Boxplots show 
analysis for rs1058808 derived from ERBB2 (M) and rs1292053 derived from TUBD1 (N). 
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Supplementary Figure 3
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Supplementary Figure 3 – Tumors that overcome a high GEB are more aggressive 
A-B)  Scatterplot of minor allele frequencies (MAF) in TCGA (A) and ICGC (B) compared to 
Hartwig (Pearson correlation). C-D)  Scatterplot of HLA allele frequencies in TCGA (C) and 
ICGC (D) compared to Hartwig (Pearson correlation). E) Forest plot comparing GEB between 
primary and metastatic tumors of the same subtype. Two primary cohorts were evaluated, TCGA 
and ICGC, against one metastatic cohort (Hartwig). Covariate on the right indicate which cohort. 
F) Enrichment in metastatic tumors is not driven by germline variants alone. Forest plot shows 
odds ratio and 95% confidence intervals for the true associations (“real”) compared to associations 
run with scrambled HLA alleles (“scrambled”). Odds ratio and 95% confidence interval plotted 
were calculated as the median, 0.025 and 0.975 quantiles of 1,000 iterations of scrambled HLA 
alleles. Covariate along the right indicates if statistics are from real or scrambled analyses. G) 
Accuracy of HLA imputation from TCGA SNP6 data compared to HLA genotyping from WES 
from Polysolver (49) as the gold standard.  Horizontal line indicates accuracy of 80%. H) Forest 
plot shows hazard ratio (HR) and 95% confidence intervals from CoxPH correcting for the first 
two genetic principal components, age and percent genome altered (PGA) for each high-risk ER+ 
subtype individually. I) Boxplot shows c-index of predictive models considering Integrative 
Clusters (IC) and clinicopathologic features (age, size, grade and node involvement) alone or in 
combination with GEB for 1,000 bootstrapped iterations. Fold change (FC) is calculated as the 
ratio of medians while the p-value is calculated as 1 – the proportion of iterations where the c-
index of the IC+clinical+GEB model was greater than the IC+clinical model. 
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Supplementary Figure 4
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Supplementary Figure 4 – A high GEB promotes an immunosuppressive phenotype 
A-F) Lymphocyte infiltration (A), CD8+ T cells infiltration (B), cytotoxic score (C), macrophage 
infiltration (D), M2- (E) or M1-polarized macrophages (F) in ER+ or HER2+ high germline 
epitope tumors compared to low germline epitope tumors in TCGA. Effect size (ES) shows 
difference in medians while p-value is from Mann-Whitney Rank Sum test. Boxplot represents 
median, 0.25 and 0.75 quantiles with whickers at 1.5x interquartile range. g) Forest plot shows 
odds of developing anti-tumor immune subtype (x-axis) given a high GEB in HER2+ or ER+ 
subtypes (y-axis). Covariate along the right indicate the subtype evaluated while the covariate 
along the top indicates the interpretation of the direction of effect. H-I) Boxplot of MHC Class I 
antigen presentation pathway measured by two different transcriptional signatures (y-axis) 
stratified by high vs low GEB tumors (x-axis). Effect size (ES) and p-value from Mann-Whitney 
Rank Sum test. 

Supplementary Table Legends 
Supplementary Table 1 – GEB across five individual breast cancer cohorts 
Patient-level GEB in five recurrent amplicons for four individual cohorts: TCGA (primary 
invasive breast cancer), ICGC (primary invasive breast cancer), DCIS, Hartwig (metastatic breast 
cancer) and METABRIC (primary invasive breast cancer). Table includes subtype annotations, 
GEB in each of the four amplicons, genetic principal components and number of somatic SNVs 
for each cohort. METABRIC table additionally includes overall survival at five years and percent 
genome altered (PGA).  
 
Supplementary Table 2 – Immune landscape of high vs low GEB tumors 
Immune transcriptomic features from Thorsson et al. (42) for HER2+ and ER+ high vs low GEB 
tumors.  
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