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The exponential growth of genome sequences available has spurred research on pattern
detection with the aim of extracting evolutionary signal. Traditional approaches, such
as multiple sequence alignment, rely on positional homology in order to reconstruct
the phylogenetic history of taxa. Yet, mining information from the plethora of biological
data and delineating species on a genetic basis, still proves to be an extremely difficult
problem to consider. Multiple algorithms and techniques have been developed in
order to approach the problem multidimensionally. Here, we propose a computational
framework for identifying potentially meaningful features based on k-mers retrieved from
unaligned sequence data. Specifically, we have developed a process which makes use
of unsupervised learning techniques in order to identify characteristic k-mers of the
input dataset across a range of different k-values and within a reasonable time frame.
We use these k-mers as features for clustering the input sequences and identifying
differences between the distributions of k-mers across the dataset. The developed
algorithm is part of an innovative and much promising approach both to the problem
of grouping sequence data based on their inherent characteristic features, as well as
for the study of changes in the distributions of k-mers, as the k-value is fluctuating
within a range of values. Our framework is fully developed in Python language as
an open source software licensed under the MIT License, and is freely available at
https://github.com/BiodataAnalysisGroup/kmerAnalyzer.

Keywords: k-mers, unsupervised learning, phylogenetics, feature selection, SARS-CoV-2

INTRODUCTION

During the last decade DNA sequencing technology has been revolutionized, as the advent of Next
Generation Sequencing (NGS) (Castro et al., 2020) led to the production of great amounts of
biological data. To this end, the analysis of genomic sequences has expanded tremendously both
in scope and with respect to novel analytical methods. A research topic which recently has attracted
a great deal of attention is the development of alignment-free methods and approaches, mainly
for use in phylogenetic inference (Zielezinski et al., 2017; Ren et al., 2018; Bernard et al., 2019).
A part of this broader family of methods is k-mer based analysis. This type of analysis has been used
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in several studies for the comparison and analysis of DNA
sequences (Murray et al., 2017; Sievers et al., 2017). Alignment-
based methods, such as the well-known Basic Local Alignment
Search Tool (BLAST), consider the exact position and quality of
similarity of every part of the sequence within the dataset. In
contrast, k-mer estimation methods only interpret the sequences
as a group of characters, therefore neglecting any positional
information (Brendel et al., 1986). One of the main advantages
of this kind of approach is shorter computation times in relation
to sequence length (Chan and Ragan, 2013). In addition, most of
the time, prior knowledge of the underlying genome sequences
is not a requirement. To this end, Murray et al. (2017) have
proposed a new method for a k-mer-based sequence comparison
to estimate genetic relatedness from sequence data. Apart from
sequence similarity, some studies have focused on identifying
functional and evolutionary features based on k-mer extraction
methods (Sievers et al., 2017). Results so far suggest that specific
genomic regions that are recognized as evolutionary conserved
by alignment-based methods, maintain local k-mer structures
which can be identified by k-mer based approaches. Given the
overwhelming quantities of available sequence data, a question
that arises is how to identify key features across sequences
that they would serve as proxies for significant phenotypic
differences, aiding in this way the inference of the underlying
evolutionary relationships.

In this context, a conducive and topical field of application of
this kind of computational methods is the coronavirus (SARS-
CoV-2) case. Nearly a year after the first report of SARS-CoV-2
in Wuhan, China, the virus has spread with an unprecedented
pace causing a global pandemic. During this short time, several
SARS-CoV-2 related resources have become publicly available,
with the National Center for Biotechnology Information (NCBI)
reaching 28,058 nucleotide records from more than 18,792
genomes1. Against the backdrop of recent intense research in
various aspects of the coronavirus pandemic a lot of effort has
been channeled towards tracking down the virus origins. Past
studies were able to identify coronaviruses in several avian (Ismail
et al., 2003; Cavanagh, 2007) and mammalian hosts (e.g., mice,
dogs, cats) (Su et al., 2016). Amongst them, there are some
pathogenic to humans that led to past epidemics. In November,
2002 a severe acute respiratory syndrome coronavirus (SARS-
CoV) emerged in Guangdong, China and caused more than 8,000
infections and 774 deaths (Peiris et al., 2004), while in 2012 a
Middle East respiratory syndrome coronavirus (MERS-CoV) was
reported in Saudi Arabia and resulted in more than 850 deaths
(Zaki et al., 2012).

With the emergence of the new SARS-CoV-2, enormous
effort has taken place in order to construct an evolutionary
roadmap of the virus. Full genome sequence analysis revealed
that SARS-CoV-2 belongs to the betacoronaviruses, while further
comparison with a bat SARS-related coronavirus (RaTG13)
showed 96.7% genomic similarity (Lu et al., 2020). Later
comparison to the coronavirus coming from two Malayan
pangolin genomes identified a specific genomic region (spike

1https://www.ncbi.nlm.nih.gov/sars-cov-2/

protein), as closely related between the two coronaviruses
(Xiao et al., 2020).

Here, we report on a new alignment-free method capable
of processing and counting k-mers in a reasonable time, while
evaluating multiple values of the k parameter concurrently.
Our approach was tested on SARS-CoV-2 genomes available
at https://www.ncbi.nlm.nih.gov/sars-cov-2/ in order to identify
k-mers at the nucleotide level, from which we were able
to construct an evolutionary tree. Further integration with
population demographic and chronological metadata led to the
identification of unique clusters and time correlated features
amongst the available sequences and k-mers. Our results
could be beneficial for a better understanding of the genetic
diversity of SARS-CoV-2 and eventually help to design a robust
therapeutic strategy.

MATERIALS AND METHODS

In order to investigate multiple values of the k parameter and
identify a useful set of k-mers that are representative of the
input data, our proposed algorithm is based on evaluation
trees. Evaluation trees are generic, non-binary trees; in our
case, each node corresponds to a single nucleotide and the
full path from root to leaf corresponds to a single k-mer that
has been located.

At the beginning of the construction of an evaluation tree,
a complete tree is being produced until a depth of four. This
is chosen because k-mers of length 1 or 2 have no meaningful
value, while k-mers of length 3 correspond to amino acids, the
distribution of which has already been investigated (Brooks et al.,
2002). The main idea of the algorithm is that, for every new
k-value that is being investigated, a new depth nodes are added to
the tree that correspond to the k-mers within the dataset, and the
procedure is divided into two parts, training and pruning. During
the training phase, every node, that corresponds to a k-mer that
has been found, is added to the tree and an evaluation method is
applied in order to get a metric of how representative each node
(and consequently each k-mer) is for the whole data set. During
the pruning phase, k-mers with small evaluation scores are being
cut off the tree. Taking all these into account, we define a tree
structure T as a pair (V, E) where V corresponds to a set of nodes
and E corresponds to a set of edges. Consequently, E is subset of V
meaning that E = (u, v), where u, v ∈ V ; u is defined as a parent
and v is a child node.

The final tree that is being generated contains all k-mers that
were identified by the algorithm. The root of the tree is an empty
node (meaning that it doesn’t have an associated nucleotide to
it), while every other node has a maximum of four children
(corresponding to the four nucleotides that can be found).

The current implementation of the algorithm works in a
serial mode, starting with lower values of k and proceeding to
higher values, given the user’s inputs. The maximum k-value
is an input parameter and a variable for further investigation.
When the analysis for a particular k-value is completed the
analysis continues with the next k-value. In Figure 1, a schematic
representation of the proposed framework is provided.
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FIGURE 1 | Schematic workflow of the proposed framework. (A) Construction of an evaluation tree. (B) The generated count table, with k-mers of multiple lengths
as features (columns) and sequences as observations (rows). Each cell of the table corresponds to the number of occurrences of a k-mer to a particular sequence.
(C) Principal components analysis projection on a two-dimensional space and the heatmap generated from downstream analysis of the algorithm’s output.

Training
During the training phase of a particular k-value, a new level
of depth k is added to the tree. The main goal is to identify all
k-mers, a pair of (V, E), that are found in the first subset of within
the dataset for the given depth. Once a k-mer is found, the tree
is parsed to identify if the particular k-mer already exists in the
tree. If it does, the k-mer count value is updated and the process
continues. If not, a new node is added to the corresponding path.

The k-mer reading begins from the root of the tree and follows
the unique path that corresponds to each specific k-mer. For
example, when reading k-mer ACGT, the tree traversal begins
from the root to the first level node A, then to the second level
node C and so on. It is important to notice that the construction
of a new level of depth k is being done based on the already
existing structure, formed by lower k-values. For instance, when
reading the k-mer ACACACGT, the main goal of the procedure
is to traverse the tree from the root to node G at depth seven
and create a new T node, in case it doesn’t exist. However, this
scenario is not feasible if the current path has been pruned at an
earlier stage at depth five. In this case, the procedure moves on to
the next k-mer.

For every node that is added to the tree, an evaluation score
is assigned to the specific node indicating the significance of the
underlying k-mer. When the new tree is generated, the process
continues with the pruning phase.

Pruning
The pruning phase takes place at the end of the training process,
when all sequences have been examined. During this process,

k-mers - of fixed length, specified by the k-value that is being
examined – are being re-evaluated, based on their total counts
and length. If the evaluation score of a child node (v) is less than
the score of the parent (u), then the particular child is cut off the
tree. Once a node is removed, it cannot be reconstructed, and the
related k-mer stops being investigated in the data set:

If evaluationv < evaluationu, then v is removed from the
tree.

k-mer Node Evaluation
An important part of the proposed algorithm is evaluation.
Every new leaf that is added to the tree is assigned with an
evaluation score which represents how useful the k-mer, which
is constructed from the related path, is to the whole data set.

The score for a particular node n with a depth k, is calculated
as:

evaluationn =
Pkmer

Puni

where Pkmer represents the probability of finding the specific
k-mer, constructed by the path root to node in the dataset, and
Puni is the probability of finding the specific k-mer assuming that
all the other k-mers follow the uniform distribution. Given the
latter, we have that for the fixed depth k:

Puni =

(
1
4

)k

Pkmer is calculated by counting the number of occurrences of
a k-mer (count) and the whole number of the processed data(
examined

)
. Taking all into account, the evaluation is calculated
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as follows:
evauationn = 4k

·
count

examined

For simplicity, the logarithmic value of the above score is used.

k-mers as Data Tables
The algorithm uses as an input a fasta file, which contains all the
unaligned DNA sequences that are going to be analyzed. After the
whole range of the input k-values is investigated, the algorithm
produces a table with the left k-mers as features (columns) and
the sequences as observations (rows). Each column contains the
number of occurrences of the related k-mer in every sequence.
A sample output table is presented in Table 1.

Downstream Analysis
In order to identify unique observations and clusters, we further
proceeded in the analysis of the algorithm’s result in R. Firstly,
we filtered the output table by extracting all sequences that
contained more than six As in a row or at least one N. The
choice of filtering the polyA k-mers was driven by the fact that
the reference sequence for SARS-CoV-2 (NC_045512) contains
a polyA tail at the 3′-UTR region, a common event on SARS-
CoV-2 sequences. As such, in order to omit the construction
of k-mers based on this region, as they will not reveal any
significant association, any k-mer sequences containing six As
in a row or more were ultimately removed. Sequences with no
metadata were also removed. Similar filtering was also used for
the k-mers, where features with more than eight As in a row were
removed. In addition, we applied featured selection methods in
order to exclude k-mers with similar representation across all
sequences. For this reason, we used the nearZeroVar function
from caret package (Kuhn et al., 2020), which identifies and
removes near zero-variance features. It should be noted that there
can be instances where the data generating mechanism can create
predictors (features) that only have a single unique value (i.e. a
“zero-variance predictor”). For many models this may cause the
model to crash or the fit to be unstable. Similarly, predictors
might have only a handful of unique values that occur with
very low frequencies. The concern here is that these predictors
may become zero-variance predictors when the data are split
into cross-validation/bootstrap sub-samples or that a few samples
may have an undue influence on the model. These “near-zero-
variance” predictors may need to be identified and eliminated
prior to modeling. To identify these types of predictors, the
following two metrics (parameters) are calculated:

TABLE 1 | Example of the output count table produced by the algorithm.

AACA. . .CTG CTAAT. . .CCT AATAT. . .GCC . . . GTAAT. . .GGT

seq_1 89 75 78 . . . 0

seq_2 87 77 77 . . . 1

. . . . . . . . . . . . . . . . . .

seq_n 80 75 75 . . . 1

Sequences are stored as rows and k-mers as columns. Each column reports how
many times the related k-mer was found in every sequence.

• the frequency of the most prevalent value over the second
most frequent value (called the “frequency ratio”), which
would be near one for well-behaved predictors and very
large for highly unbalanced data and
• the “percent of unique values” is the number of unique

values divided by the total number of samples (times 100)
that approaches zero as the granularity of the data increases.

If the frequency ratio is greater than a pre-specified threshold
and the unique value percentage is less than a threshold,
we might consider a predictor to be near zero-variance and
therefore removed.

The remaining table was used as input to unsupervised
learning techniques. More specifically, we applied PCA (prcomp
function) and hierarchical clustering (hclust function, methods
Eucledian, and ward.D) in order to identify unique observations
or clusters that are formed in our dataset. What is more, in order
to evaluate the algorithm’s integrity, we built a phylogenetic tree
from the raw sequences and compared it with the dendrograms
constructed by the algorithm’s output. For the alignment of the
raw sequences, we used the software package Clustal Omega
(Sievers et al., 2011) with default parameters and built the
phylogenetic tree in R by applying neighbor joining (ape (Paradis
and Schliep, 2019) package R) on a Log-Det distance matrix
(Lake, 1994; Lockhart et al., 1994).

RESULTS

Input Data
A total of 12,474 sequences of SARS-CoV-2 were retrieved from
NCBI2, along with a metadata JSON file containing chronological
information (i.e., collectionDate, releaseDate, and updateDate),
demographic information (i.e., city, country, and continent) and
information related to the collection source (cell, lung, and brain
etc.). Sequences ranged in length from 28,000 to 30,000 bp.

We investigated different ranges of k-values for the same
sequences and produced different k-mer count tables. From the
raw count tables, we continued by filtering both sequences and
features the way we have described above and ended up with
8,693 sequences and different numbers of features, depending on
the data table that was analyzed.

Comparison of Different k-Value Ranges
The proposed method was used to study how different k-mer
lengths could affect sequence clustering. In order to do that, we
firstly investigated lower k-mer sizes and therefore we started
with a range of k ∈ [4, 5]. The resulting k-mer counts table
included 224 features. After the application of the feature
selection method, a total of 148 features were retained. We
proceeded with exploring a range of k ∈ [4, 10] which resulted
originally in 3464 features and later after the application of the
selected criterions in 45 features. Finally, we investigated higher
ranges of k-values, considering the length of the raw sequences.
For that, we chose a range of k ∈ [4, 80] which included 3861

2https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/
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FIGURE 2 | Comparison of results produced by the investigation of multiple k-ranges. (Ai) Heatmap of produced features in the range of k ∈ [4, 5] and (Aii) the
projection of the underlying sequence clusters in the phylogenetic tree produced by the raw sequences. (Bi, ii) Heatmap and the projected sequence clusters on the
phylogenetic tree for k ∈ [4, 10]. (Ci, ii) Heatmap and the projected sequence clusters on the phylogenetic tree for k ∈ [4, 80]. (Di) Overlap between sequence
clusters for k ∈ [4, 5] (depicted as columns) and k-mer clusters (depicted as rows) for k ∈ [4, 10]. (Dii) Overlap between sequence clusters for k ∈ [4, 10] (depicted as
columns) and k-mer clusters (depicted as rows) for k ∈ [4, 80]. (Diii) Overlap between sequence clusters for k ∈ [4, 5] (depicted as columns) and k-mer clusters
(depicted as rows) for k ∈ [4, 10]. (Div) Overlap between sequence clusters for k ∈ [4, 10] (depicted as columns) and k-mer clusters (depicted as rows) for
k ∈ [4, 80]. (E) Correlations based on the Fowlkes-Mallows index with 4 clusters, between the three sequence dendrograms (generated for the three ranges) and the
phylogenetic tree.

features before the filtering process and 236 k-mers after the
filtering process.

Hierarchical clustering was performed on all final tables that
remained from the filtering process, depicting features (i.e.,
k-mers) as rows and sequences as columns (Figures 2Ai–Ci).
In addition, we applied hierarchical clustering both on features
and sequences, using as a distance measure the Euclidean
distance. We chose to assemble both sequences and k-mers
into 4 groups and searched for overlapping clusters between
the sequence clusters (Figures 2Di,Eii) and the feature clusters
(Figures 2Diii, Eiv) for the three ranges. We proceeded by
creating a phylogenetic tree from the raw aligned sequences and
projecting the resulting sequence clusters on the phylogenetic tree
(Figures 2Aii–Cii). Finally, the Fowlkes–Mallows index (Fowlkes
and Mallows, 1983; Wallace, 1983) was used to determine
the similarity between the underlying distances in the three
dendrograms produced by the algorithm and the dendrogram
that was derived from the phylogenetic analysis (Figure 2E).

Dendrograms produced by the ranges k ∈ [4, 5] and k ∈
[4, 10] show higher correlation scores between them, as opposed
to the dendrogram produced by k ∈ [4, 80] (Figure 2E).
Moreover, we observe that there is no strong similarity between

the distances produced by the different k-mer based trees and the
phylogenetic tree, as all three k-mer based trees exhibit a Fowlkes-
Mallows correlation of 0.5 to the distances of the phylogenetic
tree. However, given the known difficulty (Morel et al., 2020) in
producing a valid phylogenetic tree for these particular sequences
(Vasilarou et al., 2020), this moderate correlation level is an
encouraging result.

Investigation of 80-mers
We continued our analysis by focusing only on 80-mers, as they
seem to preserve a clearer distinction of the sequence grouping.
Unsupervised principal components analysis (PCA) was applied
on the table derived from the feature selection step (n = 236).

The first 10 principal components (i.e., PCs) gather almost
90% of explained variance of the dataset, with PC1 describing
28.6% of the dataset and PC2 almost 16%. In addition, each
sequence along with its demographic information is projected
on the two-dimensional PC1-PC2 space, where distinct groups
of sequences seem to be formed (Figure 3B). Furthermore, the
time evolution of the sequences in relation to every principal
component is investigated (Figure 3A), where a time correlation
of PC2 is revealed. The PC2 showed a statistically significant
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FIGURE 3 | Unsupervised Principal Components Analysis of the selected sequences (n = 236) (A) Time correlation for every principal component (PC)
(B) Projection of all raw sequences on the PC1 – PC2 space along with their demographic meta data. Arrows correspond to the k-mers that are projected on PC1
and PC2.

correlation with the day of sampling (Pearson R = 0.33, p <
0.001); in our study, we considered Dec 1 2019 as the first day
(day 0) of the sampling.

Having a general perspective of the grouping between
sequences, we proceeded with hierarchical clustering with
4 groups both on features and observations. The resulting
clustering is visualized in a heatmap (Figure 4A) and it
depicts a unique signature of k-mer clusters, able to clearly
define the sequence groups. We calculated the Levenshtein
distance across all 80-mers in order to identify additions
or substitutions between the k-mers on the nucleotide level
(Figure 4B). We observed that k-mer clusters 3 and 4, which
seem to follow a complementary distribution, are relatively
close to each other, implying few nucleotide changes compared
with the other groups. Finally, the obtained sequence groups
were annotated with their corresponding chronological and
demographic metadata (Figures 4C,D), where the resulting
clusters show significant time correlated differences.

Performance Evaluation
We used a 24-core Unix cluster with 220G RAM for the
alignment of raw sequences and the testing of the proposed
algorithm. The main k-mer detection tool is written in
Python language and is freely available at https://github.com/
BiodataAnalysisGroup/kmerAnalyzer. The downstream analysis
was performed in R and the source code is located in the subfolder
R of the provided repository.

Clustal Omega (Sievers et al., 2011) required approximately
18 days to generate a multiple sequence alignment using the
default parameters. In addition, an extra day was required to build
a distance matrix to be used for phylogenetic tree inference. The
proposed framework was executed with different k-mer length
ranges and as independent runs on the same computational
infrastructure. The corresponding execution times are given in
Table 2.

DISCUSSION

Next generation sequencing has revolutionized the generation of
data. An emerging task has been the identification of possible
features for sample data classification. For this reason, reference
sequence databases are often used, and new methods, for
managing the great amount of data, are being developed (Allesøe
et al., 2020). In this study, we propose a new computational
framework for k-mer feature identification from unaligned
sequences by investigating multiple values of the k parameter. The
algorithm produces a k-mer count table which can be used for the
extraction of key features capable of clustering the raw sequences.

In order to evaluate our methods, we applied the proposed
tool on SARS-CoV-2 sequences from the NCBI and studied
three different ranges; k ∈ [4, 5], k ∈ [4, 10], and k ∈ [4, 80].
We managed to cluster the raw sequences into 4 groups
and compared the tool’s output with the traditional approach
involving multiple sequence alignment, using Clustal Omega,
and phylogenetic tree inference. Comparison of execution times
between the two methodologies suggest that, for the same input
dataset, our method can produce a count table much faster than
an alignment by Clustal Omega. Further investigation of the
dendrograms generated by the three experiments we performed
and the phylogenetic tree generated by the raw input sequences,
showed a moderate correlation. This is a very unexpected result,
especially if we take into consideration the growing concern
regarding the reliability of SARS-CoV-2 generated phylogenies.
Recent studies (Morel et al., 2020; Vasilarou et al., 2020) support
that the relatively high nucleotide substitution rate expected
for viruses, along with high recombination rates, imply crucial
difficulties that need to be overcome in order to generate
valuable conclusions.

We further proceeded in analyzing the output count table
of 80-mers. We were able to identify a unique signature of a
group of k-mers which cluster the input sequences. Moreover, we
integrated our results with chronological metadata and found a
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FIGURE 4 | Hierarchical clustering analysis of the 236 selected sequences features (A) The generated heatmap for k ∈ [4, 80] (B) Number of sequences for every
region in the sequence clusters. (C) Hierarchical clustering of the 236 80-mers based on Levenshtein distance. (D) Day count of the sequences in relation to the
obtained clusters, considering December 1, 2019 as day 0.

TABLE 2 | Execution times of the proposed algorithm.

Range Duration

k ∈ [4, 5] 400 min (6 h, 40′)

k ∈ [4, 10] 1236 min (20 h, 30′)

k ∈ [4, 80] 17635 min (12 d, 6 h)

correlation between the second principal component (PC2) and
the time that has passed since the first incident, which implies a
set of k-mers that play a vital role for the virus evolution.

Moving beyond the constraints of the use case presented here,
the proposed methodology can be readily applied to a wider range
of applications that depend on sequence data. The identified
k-mers define a novel feature space that can be directly leveraged
towards the application of machine learning approaches. As an
example, supervised machine learning can be applied to classify
sequence data using only k-mers as input-features. It is also
important to highlight that there is no particular constraint to
the sequence length; the method is equally applicable to complete
sequences as well as short reads generated through NGS. In
this context, there is a wider range of applications, including
metagenomics, virtual barcoding and overall alignment-free
sequence data processing.

Although the proposed method can provide a profound
representation of the analyzed sequences, there are also
some limitations. A key element of the proposed algorithm
is the evaluation function. In our case, the evaluation of
every node, and every k-mer, is based on probabilities of
finding specific k-mers. As this is a first implementation of
the proposed methodology it is worth investigating different
evaluation functions which, consequently, may result to different
sets of k-mers. What is more, most of the sequences of
the input dataset were from North America, thus making
it impossible to draw a firm conclusion on the overall
picture of the evolution of SARS-CoV-2. An application on a
more diverse dataset, not only on SARS-CoV-2 but also on
other genomes, would give a clearer view of the benefits of
the framework.

It is worth mentioning that the optimization of the sub-
procedures and functions of the proposed method is an
open task for further investigation and will be considered in
future work. Moreover, a next step would be to facilitate a
complementary approach that will apply an exhaustive search
(brute force) of all possible k-mers that can be retrieved
from the raw sequence data. This approach may result in a
more meaningful count table which would contain all possible
k-mers present in the input dataset, and therefore increase
the possibility of identifying a strong underlying signal.
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Finally, the proposed framework has been implemented as
an open-source, fully documented tool, available on GitHub and
easily applicable to any type of sequence data. It provides a new
perspective towards sequence analysis, by offering comparably
short execution times and meaningful representation of the
underlying information structure.
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