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Cornelia de Lange syndrome (CdLS) is a developmental multisystem disorder fre-
quently associated with mutations in NIPBL. CdLS is thought to arise from develop-
mental gene regulation defects, but how NIPBL mutations cause these is unknown.
Here we show that several NIPBL mutations impair the DNA loop extrusion activity of
cohesin. Because this activity is required for the formation of chromatin loops and topo-
logically associating domains, which have important roles in gene regulation, our results
suggest that defects in cohesin-mediated loop extrusion contribute to the etiology of
CdLS by altering interactions between developmental genes and their enhancers.
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Cornelia de Lange syndrome (CdLS) (Online Mendelian Inheritance in Man entries
122470, 300590, 300882, 610759, and 614701) is characterized by physical, cogni-
tive, and behavioral traits, including neurodevelopmental defects, facial dysmorphism,
and upper-limb abnormalities (1). About 70% of CdLS patients carry heterozygous
and sometimes mosaic mutations in NIPBL (2, 3). NIPBL is a 316-kDa protein, which
associates with cohesin, a multisubunit ATPase complex of the structural maintenance
of chromosomes (SMC) family (4). Cohesin is required for sister chromatid cohesion,
DNA damage repair, and folding of chromatin fibers into loops and topologically asso-
ciating domains (TADs) (4). NIPBL has been proposed to load cohesin onto DNA
(reviewed in ref. 4), stimulates cohesin’s ATPase activity (5, 6), is, like cohesin,
required for chromatin looping and TAD formation (7), and is essential for cohesin’s
ability to extrude DNA into loops (5, 6). This loop extrusion depends on cohesin’s
ATPase activity and is thought to be the process through which chromatin loops and
TADs are formed (4).
Mutations in other cohesin regulators and subunits have also been identified in

CdLS patients (∼10% of cases), suggesting that NIPBL mutations contribute to CdLS
by affecting cohesin functions (1, 8). Most NIPBL mutations and a subset of the cohe-
sin mutations are associated with a classical spectrum of CdLS features. In atypical
patients with CdLS-like symptoms, mutations in chromatin and gene regulation pro-
teins have been identified (8). These findings and the observation that patient-derived
cells and CdLS animal models show alterations in their transcriptomes suggest that
CdLS is caused by developmental gene regulation defects (4, 9, 10). However, how
NIPBL and cohesin mutations lead to such defects is unknown.

Results and Discussion

To test whether defects in loop extrusion could contribute to CdLS, as has been dis-
cussed (4, 11), we selected six CdLS NIPBL mutations (12, 13), which represent a
spectrum from high to low evolutionary conservation (Fig. 1A). Recombinant versions
of full-length NIPBL carrying these mutations could be isolated in amounts and con-
centrations comparable to those of wild-type NIPBL (Fig. 1B), suggesting that these
mutants are properly folded.
We first analyzed the ability of these mutants to stimulate cohesin’s ATPase activity.

We measured this activity in the absence and presence of λ-phage DNA, which (like
other DNA molecules) stimulates cohesin’s ATPase activity in the presence of NIPBL,
but not in its absence (Fig. 1C) (4–6). NIPBL-A1246G increased cohesin’s ATPase
activity as much as wild-type NIPBL in both the absence and presence of DNA (Fig.
1D). In contrast, in the absence of DNA, the other five mutants stimulated cohesin’s
ATPase activity less (R1856T and N1897Δ) or not at all (R1789L, A2390T, and
Y2440H) (Fig. 1D, white bars). However, in the presence of DNA, these NIPBL
mutants increased cohesin’s ATPase activity to some extent, although less than wild-
type NIPBL. In all cases, the fold activation of the basal cohesin–NIPBL activity by
DNA was comparable (Fig. 1D, gray bars). These results indicate that the reduced
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Fig. 1. CdLS mutations in NIPBL can impair cohesin’s ATPase and DNA loop extrusion activities. (A) Structure of NIPBL (Protein Data Bank ID: 6wg3.E). Residues
1193 to 2628 are visible. Mutated residues are indicated as spheres. The evolutionary conservation ranks (cons.) among vertebrate orthologs are indicated in
brackets: range 1 to 2804; 1, most conserved; 2804, least conserved. (B) Coomassie staining of cohesin and NIPBL after sodium dodecyl sulfate polyacrylamide
gel electrophoresis. Subunits of recombinant (rec.) and HeLa cohesin are indicated. (C and D) Cohesin ATPase rates (mean ± SD of three and four independent
experiments, for C and D, respectively) in the presence of the indicated components. The fold stimulation of ATPase activities by DNA is indicated above the
arrows. (E) Cartoon illustration of the loop extrusion assay. (F and G) Stills from time-lapse recordings of representative DNA molecules in the presence of
cohesin, ATP, and wild-type (WT) or mutant NIPBL. DNA was stained by Sytox Orange. (Scale bar: 1 μm.) (H and I) Frequencies of DNAs with extruded loops
(Left; mean ± SD of three independent experiments) and rates of loop extrusion (Right; n.d.: not determined; median and quartiles are shown).
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ATPase activities of these complexes are caused by impaired
abilities of the NIPBL mutants to stimulate cohesin’s ATPase
activity, and not by a defect of these complexes in interacting
with DNA.
To analyze the effects of these NIPBL mutations on loop

extrusion, we used an in vitro reconstitution assay in which the
ability of cohesin and NIPBL to reel DNA into loops can be
analyzed by total internal reflection fluorescence microscopy at
the single-molecule level in real time (Fig. 1E) (5). Loop extru-
sion occurred with similar frequencies and rates in the presence
of wild-type NIPBL and NIPBL-A1246G (Fig. 1 F and H). In
contrast, the other five NIPBL mutants only supported loop
extrusion to a much lesser extent (N1897Δ, A2390T, and
Y2440H) or not at all (R1789L and R1856T; Fig. 1 F–I). The
few loop extrusion events that occurred in the presence of the
NIPBL mutants N1897Δ, A2390T, and Y2440H occurred
with rates similar to those observed with wild-type NIPBL (Fig.
1 I, Right). All NIPBL mutants that are impaired in stimulating
cohesin’s ATPase activity are therefore also impaired in sup-
porting loop extrusion, as expected given that cohesin’s ATPase
activity is required for this process (5, 6). However, the oppo-
site is not true: Although NIPBL-R1856T and NIPBL-
Y2440H stimulated cohesin’s ATPase activity in the presence
of DNA to a similar extent, only NIPBL-Y2440H enabled
some loop extrusion. The loop extrusion defect of NIPBL-
R1856T can therefore not only be explained by its reduced
ATPase stimulation but must be due to additional defects.
These results show that some of the NIPBL mutations that

have been identified in CdLS patients cause defects in loop
extrusion and therefore suggest that deficiencies in this process
can contribute to the etiology of CdLS. Importantly, our obser-
vation that DNA stimulates the ATPase activities of all mutant
cohesin–NIPBL complexes shows that these can still interact
with DNA (Fig. 1D, gray bars). These results suggest that at
least some NIPBL mutations interfere with loop extrusion
directly, as opposed to simply affecting the loading of cohesin
onto DNA. These conclusions are supported by our recent
observation that two CdLS mutations in the cohesin subunit
SMC1A also impair loop extrusion but not stimulation of
cohesin’s ATPase activity by DNA (SMC1A-Δ58-62 and
SMC1A-R711Q; ref. 14).
The observation that NIPBL-A1246G behaved like wild-

type NIPBL in our assays suggests that NIPBL mutations
might also contribute to CdLS by affecting functions other
than loop extrusion. Alternatively, it is possible that this

mutation causes cellular loop extrusion defects, which cannot
be detected in our in vitro assays because these utilize “naked”
DNA and not chromatin fibers and do not contain loop extru-
sion boundaries and cohesin regulators as they are found in
cells. It is also possible that this mutant is expressed at lower
levels or is less stable than wild-type NIPBL in cells.

Defects in loop extrusion could explain how NIPBL and
cohesin mutations lead to developmental gene dysregulation in
CdLS patients, since some of the chromatin loops formed by
this process facilitate enhancer–promoter interactions (4, 15),
and since boundaries between TADs can insulate genes from
activation by enhancers in other TADs (16). Consistent with
this prediction, a recent study reported changes in chromatin
interactions at the H19-IGF2 locus in CdLS cells (17). Since
CdLS patients carry heterozygous and sometimes mosaic muta-
tions in NIPBL and cohesin genes, and since mouse models
have shown that Nipbl heterozygosity only reduces Nipbl tran-
script levels by 30% (9), genome architecture changes in CdLS
patient-derived cells are expected to be subtle. However, even
small alterations in enhancer–promoter interactions could lead
to the severe developmental abnormalities from which CdLS
patients suffer.

Materials and Methods

Recombinant versions of Flag-Halo-NIPBL-10xHis and cohesin [SMC1A, SMC3-
Flag, RAD21(TEV)-Halo and 10xHis-STAG1] were expressed in baculovirus-
infected Sf9 cells and purified by tandem-affinity chromatography via their His
and Flag tags. ATPase activities of recombinant cohesin were measured by
[γ-32P] ATP (Fig. 1C) or luminescence (Fig. 1D) detection using the ADP-Glo
Kinase Assay (Promega, TM313). Cohesin purified from HeLa “Kyoto” cells
expressing RAD21-Halo-Flag (5) was used with recombinant NIPBL to perform
the loop extrusion experiments as described (5, 14). See SI Appendix for detailed
protocols.

Data Availability. All study data are included in the article and/or SI Appendix.
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