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Background: Metastatic epidural spinal cord compression (MESCC) is a devastating
complication of advanced cancer. A deep learning (DL) model for automated MESCC
classification on MRI could aid earlier diagnosis and referral.

Purpose: To develop a DL model for automated classification of MESCC on MRI.

Materials and Methods: Patients with known MESCC diagnosed on MRI between
September 2007 and September 2017 were eligible. MRI studies with instrumentation,
suboptimal image quality, and non-thoracic regions were excluded. Axial T2-weighted
images were utilized. The internal dataset split was 82% and 18% for training/validation
and test sets, respectively. External testing was also performed. Internal training/validation
data were labeled using the Bilsky MESCC classification by a musculoskeletal radiologist
(10-year experience) and a neuroradiologist (5-year experience). These labels were used
to train a DL model utilizing a prototypical convolutional neural network. Internal and
external test sets were labeled by the musculoskeletal radiologist as the reference
standard. For assessment of DL model performance and interobserver variability, test
sets were labeled independently by the neuroradiologist (5-year experience), a spine
surgeon (5-year experience), and a radiation oncologist (11-year experience). Inter-rater
agreement (Gwet’s kappa) and sensitivity/specificity were calculated.

Results:Overall, 215 MRI spine studies were analyzed [164 patients, mean age = 62 ± 12
(SD)] with 177 (82%) for training/validation and 38 (18%) for internal testing. For internal
testing, the DL model and specialists all showed almost perfect agreement (kappas =
0.92–0.98, p < 0.001) for dichotomous Bilsky classification (low versus high grade)
compared to the reference standard. Similar performance was seen for external testing on
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a set of 32 MRI spines with the DL model and specialists all showing almost perfect
agreement (kappas = 0.94–0.95, p < 0.001) compared to the reference standard.

Conclusion: A DL model showed comparable agreement to a subspecialist radiologist
and clinical specialists for the classification of malignant epidural spinal cord compression
and could optimize earlier diagnosis and surgical referral.
Keywords: deep learning model, metastatic epidural spinal cord compression, MRI, Bilsky classification, spinal
metastasis classification, spinal metastatic disease, epidural spinal cord compression
INTRODUCTION

Spinal metastases are common and seen in up to 40% of cancer
patients. Up to 20% of these patients develop complications
including spinal cord compression, which can lead to permanent
neurological dysfunction if treatment is delayed. With the
development of more effective systemic therapy (such as
targeted and immunotherapy), the survival of patients with
metastatic cancer has increased, and consequently, the
incidence of spinal metastases is expected to rise (1–3).

Suspicion for spinal metastases begins in the clinic, as greater
than 85% of patients present with back pain. Imaging is then
required to confirm the presence of spinal metastases and the
associated complications. MRI is the most accurate modality due
to improved soft-tissue resolution, which allows assessment of
the extent of metastatic bony involvement, compression
fractures, and the presence of metastatic epidural spinal cord
compression (MESCC) (4).

The degree of MESCC is assessed on axial T2-weighted
(T2W) MR images using a six-point grading scale developed
by the Spine Oncology Study Group (SOSG), commonly referred
to as the Bilsky grading scale (5). Low-grade disease (Bilsky 0, 1a,
and 1b) can be considered for initial radiotherapy (including
stereotactic body radiotherapy (SBRT)/stereotactic radiosurgery),
whereas higher-grade disease (Bilsky 1c, 2, and 3) should be
considered for surgical decompression followed by radiotherapy
(6). MESCC requires urgent treatment to prevent permanent
neurological injury, but significant delays in management have
been reported. A study by van Tol et al. (2021) showed median
delays of 21.5, 7, and 8 days for the diagnosis, referral, and
treatment of MESCC, respectively (7).

A deep learning (DL) model to automatically detect and
classify low- versus high-grade Bilsky MESCC on MRI could
alert the radiologist and clinical teams, ensuring prompt
reporting and appropriate referral. This is important to prevent
poor functional outcomes and increased requirements of
healthcare resources (8). Automated tools for detecting urgent
findings on MRI are important due to increasing demand for the
modality, while faced with a shortage of radiologists (9). In the
United Kingdom, 3.4 million MRI studies are reported every
year, and patients can wait over 30 days for a report (10, 11).
Even for emergent indications including suspected MESCC
where reporting should be performed within hours, more than
a third of reports were provided greater than 48 h later at one
healthcare trust (10, 12).
2

Prior DL in spine MRI has shown promise, especially with the
use of convolutional neural networks (CNNs), which can
automatically learn representative features from images to
perform classification tasks. Most recently, several teams have
developed DL models for the automated classification of
degenerative narrowing in the lumbar spine (13, 14) or
adjacent segment disease along the cervical spine (15). DL for
spinal metastases on advanced imaging, including MRI, is still in
the preliminary phase. A study by Wang et al. (2017) showed the
feasibility of automated spinal metastatic disease detection on
MRI using a small set of 26 patients (16). The group achieved a
true positive rate of 90% with a false-positive rate of up to 0.4 per
case. DL for the detection of spinal metastases on CT has also
shown promise for quantifying metastatic bone disease burden
(17). Currently, to our knowledge, no DL model has been
developed to assess MESCC on MRI.

The aim of this study was to train a DL model for the
automated Bilsky classification of MESCC using axial T2W
MRI. This could aid earlier diagnosis of MESCC and identify
suitable candidates for radiotherapy versus emergent surgical
decompression. Once trained, the performance of the DL model
was compared with that of a radiation oncologist, spine oncology
surgeon, and subspecialty radiologist, on an internal test set. The
DL model performance and generalizability were also assessed
on an external test set.
MATERIALS AND METHODS

This study was approved by our institutional review board and
compliant with the Health Insurance Portability and Accountability
Act (HIPAA). A waiver of consent was granted due to the
retrospective nature of the study and the minimal risk involved.

Dataset Preparation
Retrospective, manual extraction, and anonymization of MRI
spines from patients with known vertebral metastatic disease and
thoracic MESCC were done over a 10-year period from
September 2007 to September 2017 at the National University
Hospital, Singapore. Adult patients (≥18 years) were included
with a selection of studies across different MRI scanners (GE and
Siemens 1.5- and 3.0-T platforms). A heterogeneous training
dataset obtained using a range of MRI platforms and T2W
parameters was used to prevent overfitting and provide a more
generalizable DL algorithm. MRI spines with instrumentation,
May 2022 | Volume 12 | Article 849447
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suboptimal image quality (e.g., motion and cerebrospinal fluid
flow artifacts), and non-thoracic spine regions were excluded.
Axial T2W DICOM images were utilized. Supplementary
Table 1 provides details on the MRI scanners and T2W
sequence parameters.

The dataset at the National University Hospital, Singapore,
was assigned as the internal dataset and was randomly split into
82% and 18% for the training/validation and test sets,
respectively. This is an acceptable split for DL datasets (18).

A dataset of MRI spine studies from patients with known
metastatic disease and MESCC was also obtained for external
testing from Ng Teng Fong General Hospital (Siemens 1.5-T
MRI platform). The inclusion and exclusion criteria were
identical to the internal dataset. The MRI spines were obtained
over a 5-year period from September 2015 to September 2020,
encompassing anonymized axial T2W DICOM images. No
further training was performed on this dataset.

Dataset Labelling
Internal training data were manually labeled by two board-
certified radiologists with sub-specialization in musculoskeletal
radiology (JH; 10-year experience) and neuroradiology (AM; 5-
year experience). Each radiologist labeled at least 100 MRI
thoracic spine studies independently. With the use of an open-
source annotation software (LabelImg, https://github.com/
tzutalin/labelImg), bounding boxes were drawn to segment the
region of interest (ROI) around the spinal canal along the
thoracic spine (C7–T1 through to the conus at T12–L3). A
bounding box was placed on each axial T2W image.

When drawing each bounding box, the annotating radiologist
classified the MESCC using the Bilsky classification (4). This
grading scheme consists of six classifications with grades 0, 1a,
and 1b amenable to radiotherapy and grades 1c, 2, and 3more likely
to require surgical decompression. A visual scale was provided to all
annotating readers (Figure 1). Degenerative changes (disk bulges
and ligamentum flavum redundancy) leading to moderate-to-
severe spinal canal stenosis were labeled by the annotating
radiologists and excluded from further analysis (19, 20).

The internal and external test sets were labeled using the same
visual scale by the musculoskeletal radiologist (JH) with 10-year
experience and served as the reference standard. For comparison
with the DL model and to assess interobserver variability, the
internal and external test sets were also labeled independently by
a subspecialist neuroradiologist (AM; 5-year experience), a spine
oncology surgeon (JT; 5-year experience), and a radiation
oncologist (BV; 11-year experience). The specialist readers
were blinded to the reference standard.

Deep Learning Model Development
A convolutional prototypical network is a newly proposed neural
network architecture for robust image classification with cluster
assumption (21). Specifically, it is assumed that there exists an
embedding space in which data points cluster around a single
prototype representation for each class. Different types of loss
functions are proposed for the training of the network with the
general stochastic gradient descent method (22). Several studies
have demonstrated the robustness of convolutional prototypical
Frontiers in Oncology | www.frontiersin.org 3
networks towards data scarcity and class imbalance problems,
which have also led to more compact and discriminative features
in the embedding space (21, 22).

In this paper, a convolutional prototypical network was trained
with ResNet50 as its backbone to project ROI images into a high-
dimensional embedding space (23). The Apache SINGA (24)
platform was adopted for efficient training of the deep network,
and MLCask (25), an efficient data analytics pipeline management
system, was adopted to facilitate managing different versions of the
developed pipelines. We used the output from the global average
layer of ResNet50 as the feature representation for each image in
the embedding space. A class prototype was assigned for each
Bilsky score in the embedding space. The prediction probability of
a data point was calculated for each class via a SoftMax over the
negative distance to the class prototypes. The network was trained
with a cross-entropy loss on the prediction probability using a
standard SGD optimizer, and a compact regularization was
introduced to further minimize the distance between the data
points and their corresponding class prototypes. Simultaneously,
the virtual adversarial loss was introduced to ensure our model
makes consistent predictions around the neighborhood of each
data point with adversarial local perturbation (26). An ablation
study was also conducted to demonstrate the effectiveness of the
virtual adversarial loss and the compact regularization loss. The
ablation study details are included as the Supplementary
Material, and Supplementary Table 2 shows the ablation
study results. The Supplementary Material including
Supplementary Table 3 has also been provided to compare
our developed model with both the standard ResNet50 and the
plain convolutional prototypical network.
FIGURE 1 | Bilsky classification of metastatic epidural spinal cord
compression on MRI of the thoracic spine. Axial T2-weighted (repetition time
ms/echo time ms, 5,300/100) images were used. Training of the deep learning
model was performed by a radiologist by placing a bounding box around the
region of interest at each T2-weighted image. A bounding box example is
included for a low-grade Bilsky 1b lesion (1b). CSF, cerebrospinal fluid.
May 2022 | Volume 12 | Article 849447
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For inference, the first step is to extract the ROI of an input
image. The extracted ROI is then projected into the embedding
space. Finally, the label of the input image is predicted as the label
of its nearest class prototype in the embedding space
(Supplementary Figure 1). The DL model (SpineAI@NUHS-
NUS) code is at https://github.com/NUHS-NUS-SpineAI/
SpineAI-Bilsky-Grading. Supplementary Figure 2 shows a
flow chart of the developed DL model in a clinical setting.

Statistical Analysis
All analyses were performed using Stata version 16 (StataCorp,
College Station, TX, USA) with statistical significance set at 2-
sided p < 0.05. Postulating that a kappa of 0.9 is to be anticipated,
at least 138 samples (MRI studies) were required to provide a 95%
CI width of 0.1. Over the 10-year study period, 174 subjects with
239 MRI studies were collected, which was sufficient for the
analysis. Descriptive statistics for continuous variables were
presented as mean ± SD (range) and n (%) for categorical
variables. Inter-rater agreement using dichotomous (low-grade
versus high-grade) Bilsky classification was assessed using Gwet’s
kappa to account for the paradox effect of a high percentage of
normal classification (27). Sensitivity and specificity were also
presented for dichotomous Bilsky gradings only. Sensitivity is the
percentage of high-grade Bilsky classifications that are correctly
identified by the DL model and specialist readers, whereas
specificity is the percentage of low-grade Bilsky classifications
that are correctly identified by the DLmodel and specialist readers.

Levels of agreement were defined for Gwet’s kappa: <0 = poor,
0–0.2 = slight, 0.21–0.4 = fair, 0.41–0.6 = moderate, 0.61–0.8 =
substantial, and 0.81–1 = almost-perfect agreement (28). Also,
95% CIs were calculated.
RESULTS

Patient Characteristics in Datasets
Data collection over the 10-year study period identified 174
patients with 239 MRI spines for analysis. Of these, 24 MRI
spines from 10 patients were excluded due to instrumentation (4
MRI spines), suboptimal image quality (2 MRI spines), or non-
thoracic spine MRI (18 MRI spines). A total of 164 patients
encompassing 215 MRI thoracic spines were evaluated. Overall,
the mean age of all 164 patients was 62 ± 12 (SD) (range: 18–93
years). The patient group was predominantly male (91/164
patients, 55.4%), with breast and lung being the most common
primary cancers (63/164 patients, 38.4%). There was a wide range
of sites of MESCC along the thoracic region, with a predominance
of disease in the semirigid thoracic region between T3 and T10
(73/164 patients, 44.5%). The patient demographics, cancer
subtypes, and MESCC distribution along the thoracic region for
the training and test sets are displayed in Table 1.

The internal dataset of 215 MRI spines was randomly split
into 177 (82%) studies for training/validation and 38 (18%)
studies for internal testing. A flow chart of the internal dataset
study design is provided in Figure 2.

For the external dataset, 32 patients with 32 MRI spines
covering the thoracic region were available for external testing.
Frontiers in Oncology | www.frontiersin.org 4
Overall, the mean age of the 32 patients was 60 ± 13 (SD) (range:
19–85 years). Similar to the internal dataset, the patient group had
a predominance of men (20/32 patients, 62.5%), with the lung
being the most common primary cancer (13/32 patients, 40.6%).

Reference Standard
The number of ROIs and the corresponding Bilsky classifications
in the internal training and test sets, and external test sets are
highlighted in Table 2. In the internal training/validation set,
high-grade Bilsky classification (1c/2/3) accounted for 462/5,863
ROIs (7.9%) with a predominance of low-grade Bilsky
classification (0/1a/1b) at the remaining 5,401/5,863 ROIs
(92.1%). In the internal test set, high-grade Bilsky classification
(1c/2/3) accounted for 84/1,066 ROIs (7.9%) with a
predominance of low-grade Bilsky classification (0/1a/1b) at
the remaining 982/1,066 ROIs (92.1%). In comparison, for the
external test set, there was a greater proportion of high-grade
Bilsky classification (169/754 ROIs, 22.4%) and a reduced
predominance of low-grade Bilsky classification (585/754 ROIs,
77.6%). The greater proportion of higher-grade Bilsky
classification in the external test set was likely due to more
targeted axial T2W images at the sites of MESCC.

Internal Test Set Region of Interest
Classification
For the internal dataset, there was almost perfect agreement
between the reference standard for dichotomous Bilsky
classification and the DL model and all specialist readers, with
kappas ranging from 0.92 to 0.98, all p < 0.001 (Table 3). A
kappa of 0.98 (95% CI = 0.97–0.99, p < 0.001) for the spine
surgeon was the highest, with similar kappas of 0.97 (95% CI =
0.96–0.98, p < 0.001) and 0.96 (95% CI = 0.95–0.98, p < 0.001)
for the radiation oncologist and neuroradiologist, respectively.
DL model kappa of 0.92 (95% CI = 0.91–0.94, p < 0.001) was
slightly lower compared to that of the specialist readers.

The sensitivity for the DL model (97.6%, 95% CI = 91.7%–
99.7%) was the highest for the internal dataset, and this was
significantly higher compared to both the neuroradiologist
(84.5%, 95% CI = 75.0%–91.5%) and spine surgeon (79.8%,
95% CI = 69.6%–87.7%), p = 0.003 and p < 0.001, respectively
(Table 4 and confusion matrix in Supplementary Table 4). High
specificities (range = 93.6%–99.5%) were seen for the DL model
and specialists. The spine surgeon had a specificity of 99.5% (95%
CI = 98.8%–99.8%), which was significantly higher than the DL
model, neuroradiologist, and radiation oncologist, with
specificities of 93.6% (95% CI = 91.9%–95.0%), 98.1% (95% CI
97.0%–98.8%), and 97.9% (95% CI = 96.7%–98.7%), p < 0.001,
p = 0.004, and p = 0.002, respectively.

External Test Set Region of
Interest Classification
For the external dataset, the DL model and all the specialist
readers also had almost perfect agreement (kappas 0.94–0.95, all
p < 0.001) compared to the reference standard for dichotomous
Bilsky classification (Table 3). The neuroradiologist kappa of
0.95 (95% CI = 0.93–0.97, p < 0.001) was only slightly higher
compared to the rest, with similar kappas of 0.94 (95% CI = 0.92–
May 2022 | Volume 12 | Article 849447
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0.96, p < 0.001), 0.94 (95% CI = 0.92–0.96, p < 0.001), and 0.94
(95% CI = 0.91–0.96, p < 0.001) for the DL model, radiation
oncologist, and spine surgeon, respectively.

The sensitivity for the DL model on the external dataset was
89.9% (95% CI = 84.4%–94.0%), and this was not significantly
different from the other readers, including the neuroradiologist
with the highest sensitivity of 92.9% (95% CI = 87.9%–96.2%), all
p > 0.05 (Table 4 and confusion matrix in Supplementary
Table 5). The neuroradiologist had no significantly higher
Frontiers in Oncology | www.frontiersin.org 5
sensitivity compared to the other readers, all p > 0.05. The
spine surgeon had a specificity of 99.3% (95% CI = 98.3%–
99.8%), which was significantly higher than the specificity of the
neuroradiologist at 97.9% (95% CI 96.4%–98.9%), p = 0.042.

DISCUSSION

MRI is an essential tool in the assessment of MESCC, which is a
potentially devastating complication of advanced cancer. Bilsky
FIGURE 2 | Flow chart of the study design for the internal training/validation and test sets. The deep learning model performance was compared with an expert
musculoskeletal radiologist (reference standard) and three specialist readers.
TABLE 1 | Patient demographics and clinical characteristics for the internal and external test sets.

Characteristics Internal training set (n = 129) Internal test set (n = 35) External test set (n = 32)

Age (years)* 61 ± 13 (18–93) 61 ± 12 (39–87) 60 ± 13 (19–85)
Women 55 (42.6) 18 (51.4) 12 (37.5)
Men 74 (57.4) 17 (48.6) 20 (62.5)
Ethnicity
Chinese 93 (72.1) 28 (80) 23 (71.9)
Malay 21 (16.3) 3 (8.6) 7 (21.9)
Indian 7 (5.4) 2 (5.7) 0 (0)
Others 8 (6.2) 2 (5.7) 2 (6.2)
Cancer subtype
Breast 23 (17.8) 8 (22.9) 3 (9.4)
Lung 21 (16.3) 11 (31.4) 13 (40.6)
Prostate 19 (14.7) 5 (14.3) 4 (12.5)
Colon 15 (11.6) 3 (8.6) 3 (9.4)
Renal cell carcinoma 10 (7.8) 2 (5.7) 1 (3.1)
Nasopharyngeal carcinoma 9 (7) 3 (8.6) 1 (3.1)
Others 32 (24.8) 3 (8.6) 7 (21.9)
No. of MRI thoracic spines 177/215 (82.3) 38/215 (17.6) 32
MESCC location
Diffuse thoracic# 30 (23.3) 8 (22.9) 3 (9.4)
C7–T2 13 (10.1) 3 (8.6) 6 (18.8)
T3–T10 55 (42.6) 18 (51.4) 15 (46.9)
T11–L3 31 (24.0) 6 (17.1) 8 (25)
May 2022 | V
MESCC, malignant epidural spinal cord compression.
*Values are mean ± SD (range) for numerical variables and n (%) for categorical variables.
#Two or more sites of thoracic epidural disease.
olume 12 | Article 849447
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et al. (2010) developed an MRI classification for MESCC that
aimed to improve communication between specialists and aid
decision making for initial radiotherapy versus expedited
surgical decompression. In our study, we trained a DL model
for automated Bilsky MESCC classification on thoracic spine
MRI using manual radiologist labels. On an internal test set, the
DL model showed almost-perfect agreement (k = 0.92, p < 0.001)
for dichotomous Bilsky classification (low grade versus high
grade), similar to specialist readers (k = 0.96–0.98, all p <
0.001), which included a radiation oncologist, a neuroradiologist,
and a spine surgeon. In a further step, external testing of the DL
model was performed on a dataset from a different institution to
assess generalizability. For the external dataset, the DL model and
all the specialist readers also had almost perfect agreement (kappas
0.94–0.95, all p < 0.001) for dichotomous Bilsky classification.

DL is already being used in spine diseases to aid in the
diagnosis of spinal stenosis on MRI spines, surgical planning, and
prediction of outcomes in patients with spinal metastases (8, 29).
DL in spinal oncology imaging is limited with most researchers
focusing on the detection of metastases (30), or automated
spinal cord segmentation as an organ at risk for radiotherapy
Frontiers in Oncology | www.frontiersin.org 6
planning (31). Average Dice similarity coefficients for spinal cord
segmentation are as high as 0.9 for automated lung cancer
radiotherapy planning using DL on CT studies (32, 33).
Automated detection of spinal cord compression on MRI has
currently only been assessed in the cervical spine. Merali et al.
(2021) developed a DL model for degenerative cervical spinal
cord compression on MRI using 201 patients from a surgical
database (34). Their DL model had an overall AUC of 0.94 with a
sensitivity of 0.88 and specificity of 0.89.

To our knowledge, no team has currently looked at the
automated prediction of metastatic epidural spinal cord
compression on MRI, which is a medical emergency. The
current National Institute for Health and Care Excellence
(NICE) guidelines state that metastatic epidural spinal cord
compression should be treated as soon as possible, ideally within
24 h, to prevent irreversible neurological dysfunction (35). Our
MRI Bilsky grading prediction model could improve the imaging
and clinical workflow of patients with spinal metastases. MRI
studies with MRI studies with high-grade Bilsky disease could be
triaged for urgent radiologist review, with the radiology reporting
augmented by an automated selection of key images at the sites of
TABLE 2 | Reference standards for the internal (training and test) and external (test) sets showing the number of Bilsky MESCC grades.

Bilsky MESCC grade Internal training/validation set Internal test set External test set

0 4,508 (76.9) 849 (79.6) 454 (60.2)
1a 424 (7.2) 82 (7.7) 48 (6.4)
1b 469 (8.0) 51 (4.8) 83 (11)
1c 216 (3.7) 35 (3.3) 51 (6.7)
2 105 (1.8) 26 (2.4) 39 (5.2)
3 141 (2.4) 23 (2.2) 79 (10.5)
Total 5,863 1,066 754
May 2022 | Volume 1
Values are n (%). A region of interest (bounding box) for Bilsky grade was drawn at each axial T2-weighted image.
MESCC, malignant epidural spinal cord compression.
TABLE 3 | Internal and external test set classifications using dichotomous Bilsky gradings (low versus high grade) on MRI.

Reader Internal test set External test set

Kappa (95% CI) p-Value Kappa (95% CI) p-Value

DL model 0.92 (0.91–0.94) <0.001 0.94 (0.92–0.96) <0.001
Neuroradiologist 0.96 (0.95–0.98) <0.001 0.95 (0.93–0.97) <0.001
Radiation oncologist 0.97 (0.96–0.98) <0.001 0.94 (0.92–0.96) <0.001
Spine surgeon 0.98 (0.97–0.99) <0.001 0.94 (0.91–0.96) <0.001
2 | Article
Gwet’s kappa was used.
DL, deep learning model.
TABLE 4 | Internal and external test set sensitivity and specificity for the deep learning model and specialist readers using dichotomous Bilsky gradings (low versus high
grade) on MRI.

Reader Internal test set External test set

Sens (95% CI) Spec (95% CI) Sens (95% CI) Spec (95% CI)

DL model 97.6 (91.7–99.7) 93.6 (91.9–95.0) 89.9 (84.4–94.0) 98.1 (96.7–99.1)
Neuroradiologist 84.5 (75.0–91.5) 98.1 (97.0–98.8) 92.9 (87.9–96.2) 97.9 (96.4–98.9)
Radiation oncologist 94.0 (86.7–98.0) 97.9 (96.7–98.7) 88.8 (83.0–93.1) 98.5 (97.1–99.3)
Spine surgeon 79.8 (69.6–87.7) 99.5 (98.8–99.8) 83.4 (77.0–88.7) 99.3 (98.3–99.8)
DL, deep learning model; Sens, sensitivity; Spec, specificity.
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the highest-grade Bilsky lesions and spinal cord compression.
These key images could also be circulated to an on-demand spine
oncology multidisciplinary team (spine surgeons, oncologists, and
radiation oncologists) for more streamlined decision making and
appropriate referral. It should be emphasized that the treatment of
MESCC is not just dependent on imaging but is also heavily
weighted on clinical presentation, e.g., myelopathy, weakness, and
loss of bowel and bladder function. Individuals can present with
high-grade Bilsky scores and not be suitable surgical candidates.
Further work using our Bilsky prediction model could involve
combining imaging data with clinical information (e.g., age, cancer
subtype, and degree of neurological impairment) to improve the
selection of patients for more aggressive management including
surgery and/or SBRT (21, 36). Our DL model is focused on Bilsky
classification and currently does not have the ability to segment or
outline tumors. DL auto-segmentation of tumors in MR images
could optimize and reduce the time taken for radiotherapy
planning (32). Future research will focus on developing a DL
model for this application, which will be especially useful
for SBRT.

Our study has limitations. First, we utilized axial T2W images
along the thoracic region, which was recommended as the most
accurate method for MESCC classification on MRI in the study
by Bilsky et al. (2010) (4). In further studies, we could enhance
the model performance for the detection and classification of
MESCC by combining multiple MRI sequences, including
sagittal T2W and gadolinium-enhanced T1-weighted axial and
sagittal image sets. Second, we chose to use dichotomous Bilsky
classification (low grade vs. high grade) with the inclusion of
Bilsky 1c under high-grade disease. This is controversial, as
patients with Bilsky 1c are unlikely to have neurological
deficits requiring urgent surgical treatment. However, for the
purpose of treatment triaging, we decided to be more
conservative and classify 1c under high grade. Third, the
reference standard was a single expert musculoskeletal
radiologist who reviewed the test set independently from the
other three specialist readers. No consensus labeling was
performed for the readers, as this may have been biased
toward the expert. Fourth, the test sets were only assessed by
specialist readers to ensure the most rigorous comparison with
the DL model. Assessment by less experienced readers (e.g.,
radiology or surgical trainees) was not analyzed but could be
performed through further studies that include the use of semi-
supervised reporting augmentation by the DL model. Finally,
labeling of images for model development was a labor-intensive
manual process (highly supervised). This was believed to be the
most accurate method for training the model but potentially
limited the number of MRI studies that could be used for
training. Alternatively, future larger datasets could utilize semi-
supervised learning, which can leverage unlabeled data to boost
the DL model performance and reduce the data annotation
burden (37–39). Future work could also utilize additional
external datasets to ensure the DL model is not overfitted to
our institution data and is generalizable to new, unseen data.

In conclusion, we demonstrated that our DL model is reliable
and may be used to automatically assess the Bilsky classification of
Frontiers in Oncology | www.frontiersin.org 7
metastatic epidural spinal cord compression on thoracic spine
MRI. In clinical practice, the early diagnosis of spinal cord
compression is important to prevent permanent neurological
dysfunction (40). The DL model could be used to triage MRI
scans for urgent reporting, augment non-sub-specialized
radiologists when they report out of hours, and improve the
communication and referral pathways between specialties
including oncology, radiation oncology, and surgery. Finally, the
proposed framework, which makes use of Apache SINGA (24) for
distributed training, has been integrated into our MLCask (25)
system for handling healthcare images and analytics.
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Supplementary Figure 1 | Deep learning model development pipeline. Given the
x as the input data of medical images, our goal is to classify these images into the
corresponding Bilsky class. We first extract the region of interest (ROI) of x and feed
them to the feature extractor and perturbation generator. The produced r and radv
are the representation and virtual adversarial perturbation of data, respectively. We
assign prototypes for each Bilsky class in the embedding space and calculate
prediction probability for both the original and perturbated data points via a SoftMax
over the negative of distance to the class prototypes. Correspondingly, �y1 and ŷ 1

are the original prediction and perturbated predictions. Finally, the deep learning
network is trained by minimizing the virtual adversarial loss on consistency
regularization and the cross-entropy loss on the prediction probability. Note, in the
embedding space, the orange-colored points are prototypes for each Bilsky class,
data points of other colors represent images with different Bilsky classes. The grey-
colored points are original data before perturbation.

Supplementary Figure 2 | Flow chart of deep learning model deployment for
clinical usage. We embed the developed deep learning model in the above pipeline
for deployment. Input MRI images from patient studies will go through ROI detection
Frontiers in Oncology | www.frontiersin.org 8
with the clinicians, then the developed model is used to make predictions for the
studies and report the prediction results back to the clinicians

Supplementary Table 1 | MRI Platform and parameters for MRI spine axial T2-
weighted Imaging. TE, echo time; TR, repetition time; GE, General Electric, *MRI
scanner at the external center (Ng Teng Fong General Hospital, Singapore). All four
other scanners were situated at the National University Hospital, Singapore. All
studies were performed in the supine position with a torso coil.

Supplementary Table 2 | Ablation study on the developed model.

Supplementary Table 3 | Comparison study on the developed model.

Supplementary Table 4 | Confusion matrix of the deep learning model on the
internal test set.

Supplementary Table 5 | Confusion matrix of the deep learning model on the
external test set.
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Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017:
Automation of Reading of Radiological Features From Magnetic Resonance
Images (MRIs) of the Lumbar Spine Without Human Intervention is
Comparable With an Expert Radiologist. Eur Spine J (2017) 26:1374–83.
doi: 10.1007/s00586-017-4956-3
15. Goedmakers CMW, Lak AM, Duey AH, Senko AW, Arnaout O, Groff MW,
et al. Deep Learning for Adjacent Segment Disease at Preoperative MRI for
Cervical Radiculopathy. Radiology (2021) 301:664–71. doi: 10.1148/
radiol.2021204731

16. Wang J, Fang Z, Lang N, Yuan H, Su MY, Baldi P. A Multi-Resolution
Approach for Spinal Metastasis Detection Using Deep Siamese Neural
Networks. Comput Biol Med (2017) 84:137–46. doi: 10.1016/j.compbiomed.
2017.03.024

17. Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulén J, Poulsen MH, et al.
Deep Learning for Segmentation of 49 Selected Bones in CT Scans: First Step
in Automated PET/CT-Based 3D Quantification of Skeletal Metastases. Eur J
Radiol (2019) 113:89–95. doi: 10.1016/j.ejrad.2019.01.028

18. England JR, Cheng PM. Artificial Intelligence for Medical Image Analysis: A
Guide for Authors and Reviewers. AJR Am J Roentgenol (2019) 212:513–9.
doi: 10.2214/AJR.18.20490

19. Lurie JD, Tosteson AN, Tosteson TD, Carragee E, Carrino JA, Kaiser J, et al.
Reliability of Readings of Magnetic Resonance Imaging Features of Lumbar
Spinal Stenosis. Spine (Phila Pa 1976) (2008) 33:1605–10. doi: 10.1097/
BRS.0b013e3181791af3

20. Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze
GK. Lumbar Disc Nomenclature: Version 2.0: Recommendations of the
Combined Task Forces of the North American Spine Society, the American
Society of Spine Radiology and the American Society of Neuroradiology. Spine
J (2014) 14:2525–45. doi: 10.1016/j.spinee.2014.04.022

21. Snell J, Swersky K, Zemel RS. Prototypical Networks for Few-Shot
Learning, in: Advances in Neural Information Processing Systems (2017).
pp. 4077–87.

22. Yang HM, Zhang XY, Yin F, Liu CL. Robust Classification With
Convolutional Prototype Learning, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2018). pp. 3474–3482.

23. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016). pp. 770–778.

24. Ooi BC, Tan KL, Wang S, Wang W, Cai Q, Chen G, et al. SINGA: A
Distributed Deep Learning Platform. In Proceedings of the 23rd ACM
International Conference on Multimedia (2015). pp. 685–8.

25. Luo Z, Yeung SH, Zhang M, Zheng K, Zhu L, Chen G, et al. MLCask: Efficient
Management of Component Evolution in Collaborative Data Analytics
Pipelines. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE) (2021). pp. 1655–66. IEEE.

26. Miyato T, Maeda SI, Koyama M, Ishii S. Virtual Adversarial Training: A
Regularization Method for Supervised and Semi-Supervised Learning. IEEE
Trans Pattern Anal Mach Intell (2018) 41(8):1979–93.

27. Gwet KL. Computing Inter-Rater Reliability and Its Variance in the Presence
of High Agreement. Br J Math Stat Psychol (2008) 61(Pt 1):29–48.
doi: 10.1348/000711006X126600

28. Landis JR, Koch GG. The Measurement of Observer Agreement for
Categorical Data. Biometrics (1977) 33:159–74. doi: 10.2307/2529310
May 2022 | Volume 12 | Article 849447

https://doi.org/10.1001/jama.2020.0716
https://doi.org/10.1001/jama.2020.0716
https://doi.org/10.1093/neuros/nyx567
https://doi.org/10.1093/neuros/nyx567
https://doi.org/10.1148/rg.2019190024
https://doi.org/10.3399/bjgp14X681589
https://doi.org/10.3171/2010.3.SPINE09459
https://doi.org/10.1634/theoncologist.2012-0293
https://doi.org/10.1177/2192568221994787
https://doi.org/10.1177/2192568221994787
https://doi.org/10.1016/j.spinee.2019.04.011
https://doi.org/10.1016/S1470-2045(17)30806&ndash;9
https://www.cqc.org.uk/RadiologyReview
https://www.cqc.org.uk/RadiologyReview
https://www.rcr.ac.uk/sites/default/files/publication/Unreported_stu
https://www.rcr.ac.uk/sites/default/files/publication/Unreported_stu
https://doi.org/10.1136/bmj.n1749
https://doi.org/10.1148/radiol.2021204289
https://doi.org/10.1007/s00586-017-4956-3
https://doi.org/10.1148/radiol.2021204731
https://doi.org/10.1148/radiol.2021204731
https://doi.org/10.1016/j.compbiomed.2017.03.024
https://doi.org/10.1016/j.compbiomed.2017.03.024
https://doi.org/10.1016/j.ejrad.2019.01.028
https://doi.org/10.2214/AJR.18.20490
https://doi.org/10.1097/BRS.0b013e3181791af3
https://doi.org/10.1097/BRS.0b013e3181791af3
https://doi.org/10.1016/j.spinee.2014.04.022
https://doi.org/10.1348/000711006X126600
https://doi.org/10.2307/2529310
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hallinan et al. Deep Learning Model for MESCC
29. Massaad E, Fatima N, Hadzipasic M, Alvarez-Breckenridge C, Shankar GM,
Shin JH. Predictive Analytics in Spine Oncology Research: First Steps,
Limitations, and Future Directions. Neurospine (2019) 16:669–77.
doi: 10.14245/ns.1938402.201

30. Merali ZA, Colak E, Wilson JR. Applications of Machine Learning to Imaging
of Spinal Disorders: Current Status and Future Directions. Global Spine J
(2021) 11(1_suppl):23S–9S. doi: 10.1177/2192568220961353

31. Liu X, Li KW, Yang R, Geng LS. Review of Deep Learning Based Automatic
Segmentation for Lung Cancer Radiotherapy. Front Oncol (2021) 11:717039.
doi: 10.3389/fonc.2021.717039

32. Samarasinghe G, Jameson M, Vinod S, Field M, Dowling J, Sowmya A, et al.
Deep Learning for Segmentation in Radiation Therapy Planning: A Review.
J Med Imaging Radiat Oncol (2021) 65:578–95. doi: 10.1111/1754-9485.13286

33. Dong X, Lei Y, Wang T, Thomas M, Tang L, Curran WJ, et al. Automatic
Multiorgan Segmentation in Thorax CT Images Using U-Net-GAN.Med Phys
(2019) 46:2157–68. doi: 10.1002/mp.13458

34. Merali Z, Wang JZ, Badhiwala JH, Witiw CD, Wilson JR, Fehlings MG. A
Deep Learning Model for Detection of Cervical Spinal Cord Compression in
MRI Scans. Sci Rep (2021) 11:10473. doi: 10.1038/s41598-021-89848-3

35. National Institute for Health and Care Excellence. Metastatic Spinal Cord
Compression: Diagnosis and Management of Adults at Risk of and With
Metastatic Spinal Cord Compression NICE Guidelines (CG75). London: NICE
(2008).

36. Gottumukkala S, Srivastava U, Brocklehurst S, Mendel JT, Kumar K, Yu FF,
et al. Fundamentals of Radiation Oncology for Treatment of Vertebral
Metastases. Radiographics (2021) 41:2136–56. doi: 10.1148/rg.2021210052

37. Chapelle O, Scholkopf B, Zien A. Semi-Supervised Learning. IEEE Trans
Neural Networks (2009) 20:542. doi: 10.1109/TNN.2009.2015974

38. Zhu L, Yang K, Zhang M, Chan LL, Ng TK, Ooi BC. Semi-Supervised
Unpaired Multi-Modal Learning for Label-Efficient Medical Image
Frontiers in Oncology | www.frontiersin.org 9
Segmentation. In International Conference on Medical Image Computing
and Computer-Assisted Intervention 2021 Sep 27 (pp. 394-404). Springer,
Cham.

39. Zhang W, Zhu L, Hallinan J, Makmur A, Zhang S, Cai Q, Ooi BC. BoostMIS:
Boosting Medical Image Semi-supervised Learning with Adaptive Pseudo
Label ing and Informative Active Annotat ion. arXiv preprint
arXiv:2203.02533. 2022 Mar 4.

40. van Tol FR, Massier JRA, Frederix GWJ, Öner FC, Verkooijen HM, Verlaan JJ.
Costs Associated With Timely and Delayed Surgical Treatment of Spinal
Metastases. Global Spine J (2021):2192568220984789. doi: 10.1177/
2192568220984789

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Hallinan, Zhu, Zhang, Lim, Baskar, Low, Yeong, Teo,
Kumarakulasinghe, Yap, Chan, Lin, Tan, Kumar, Vellayappan, Ooi, Quek and
Makmur. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
May 2022 | Volume 12 | Article 849447

https://doi.org/10.14245/ns.1938402.201
https://doi.org/10.1177/2192568220961353
https://doi.org/10.3389/fonc.2021.717039
https://doi.org/10.1111/1754-9485.13286
https://doi.org/10.1002/mp.13458
https://doi.org/10.1038/s41598-021-89848-3
https://doi.org/10.1148/rg.2021210052
https://doi.org/10.1109/TNN.2009.2015974
https://doi.org/10.1177/2192568220984789
https://doi.org/10.1177/2192568220984789
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Deep Learning Model for Classifying Metastatic Epidural Spinal Cord Compression on MRI
	Introduction
	Materials and Methods
	Dataset Preparation
	Dataset Labelling
	Deep Learning Model Development
	Statistical Analysis

	Results
	Patient Characteristics in Datasets
	Reference Standard
	Internal Test Set Region of Interest Classification
	External Test Set Region of Interest Classification

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


