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This study aimed to evaluate DNA damage in patients with breast cancer before treatment (background) and after chemotherapy
(QT) and radiotherapy (RT) treatment using the Comet assay in peripheral blood and the micronucleus test in buccal cells. We
also evaluated repair of DNA damage after the end of RT, as well as the response of patient’s cells before treatment with an
oxidizing agent (H2O2; challenge assay). Fifty women with a mammographic diagnosis negative for cancer (control group)
and 100 women with a diagnosis of breast cancer (followed up during the treatment) were involved in this study. The
significant DNA damage was observed by increasing in the index and frequency of damage along with the increasing of the
frequency of micronuclei in peripheral blood and cells of the buccal mucosa, respectively. Despite the variability of the
responses of breast cancer patients, the individuals presented lesions on the DNA, detected by the Comet assay and
micronucleus Test, from the diagnosis until the end of the oncological treatment and were more susceptible to oxidative
stress. We can conclude that the damages were due to clastogenic and/or aneugenic effects related to the neoplasia itself and
that they increased, especially after RT.
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1. Introduction

Breast cancer is a heterogeneous group of neoplasms originat-
ing from the epithelial cells lining themilk ducts and is a com-
plex disease characterized by disordered cell growth involving
differentmechanisms [1]. Among cancers, breast cancer is the
most common and lethal in women [2], with more than one
million cases diagnosed worldwide annually [3–5]. In Brazil,
it is the second most frequent cause of mortality among
women; first is skin cancer [5, 6]. Breast cancer is a multifac-
torial disease, where epidemiological studies indicate that in
addition to genetic predisposition, exposure to mutagenic
agents, nutritional habits, and lifestyle are relevant factors
that can trigger the carcinogenic process [7–9]. Associated
with this, reproductive age, involving events such as menar-
che, menopause, pregnancy, and hormone therapy, also con-
stitutes risks to induce neoplastic transformations [10, 11].

Early diagnosis indicates a good prognosis and is funda-
mental in patient survival, being able to signal a less aggressive
treatment [12, 13]. Mammography remains the primary
method of diagnosing breast cancer [14]. The performance of
surgery, chemotherapy (QT), radiotherapy (RT), and, in some
cases, hormone therapy is alternative that science has for the
treatmentof thispathology [15]. In recent years, thedescription
of well-defined molecular subtypes of breast cancer, together
with the identification of the driving genetic alterations and
signaling pathways, has led to the clinical development of a
number of successful molecular-targeted agents [4].

Cancer is intimately related to the accumulation of DNA
damage, as well as with DNA repair failures. Cytogenetic bio-
markers have attracted more attention from the scientific
community because they are potential indicators of biologi-
cal effects, including cancer risks [4, 16]. The use of Comet
assay has been used to detect genotoxicity and to human bio-
monitoring [17]. In addition, the micronucleus test, which
observes numerical chromosomal abnormalities (e.g., whole
chromosomal lagging or malsegregation at mitosis) or from
structural chromosomal abnormalities (e.g., the failure of
an acentric fragment or dicentric chromosome to segregate
at mitosis) or cell death, has been also used [18]. Besides, to
assist in the diagnosis, these methodologies could be used
to follow the patient in understanding their individual
response to treatment choices.

Thus, the aim of this study was to evaluate DNA damage
in patients with breast cancer before treatment (background)
and after QT and RT treatment using the Comet assay in
peripheral blood and micronucleus test in buccal cells. In
addition, we evaluated recovery DNA damage after stop
RT, as well as response of the patient’s cells before treatment
with an oxidizing agent (H2O2; challenge assay).

2. Materials and Methods

2.1. Ethics Statement. Human subject research was approved
by theCentroUniversitárioUNINOVAFAPI (CONEPproto-
col number 0408.0.043.000-11). Written documentation of
informed consent was obtained from all research participants.

2.2. Study Group and Sampling. A total of 100 patients pre-
sented with a diagnosis of breast cancer from the oncology

clinic of the Hospital São Marcos (Piauí, Brazil) (followed
up during the treatment; mean age 50.0± 12.0 years) and 50
women with a mammographic diagnosis negative for cancer
(control group; mean age 47.0± 13.0 years). Patients with
organic, renal, and hepatic dysfunction or other associated
chronic disease were considered as exclusion criteria. Only
10% of patients was considered smokers. All volunteers
answered an individual health questionnaire as recom-
mended by the International Commission for Protection
against Environmental Mutagens and Carcinogens [19].

The clinical stages of the patients associated with the his-
topathological results lead to the choice of the chemothera-
peutic scheme. The patients in this study underwent two
different QT schemes: (a) FAC, which represent 500mg/m2

of 5-fluorouracil, 50mg/m2 of doxorubicin, plus 500mg/m2

of cyclophosphamide, in 21-day cycles; (b) AC, which repre-
sents 60mg/m2 doxorubicin and 600mg/m2 cyclophospha-
mide, also in 21-day cycles. Patients undergoing the AC
regimen still receive 80mg/m2 of taxol per week for 12 weeks,
seeking a potentiation of this treatment. Regarding RT,
patients were exposed to 25 adjuvant radiotherapy sessions,
alone or after QT, with radiation doses of 4500 to 5000 cGy
total and with 180 to 200 cGy/fraction.

The blood and buccal cells sampling were performed on
the same days. In this study, five collections were performed
in patients with breast cancer: (1) at the time of diagnosis,
prior to treatment; (2) 3 weeks after begin chemotherapy,
after the different QT schemes; (3) prior to RT initiation;
(4) in the third week after RT initiation; and (5) 21 days after
the end of the RT sessions.

2.3. Alkaline Comet Assay. Samples were processed immedi-
ately after collection using heparin tubes. The method was
performed according to Tice et al. [20], and the slides were
stained with silver solution as described in Nadin et al. [21].
The results were expressed as damage index (DI) and damage
frequency (DF). For the evaluation of DNA damage, 100 cells
per subject were analyzed at 200x magnification under a light
microscope, using blinded slides. Cells were assessed visually
and received scores from 0 (no migration) to 4 (maximal
migration) according to tail intensity (size and shape). There-
fore, the total scores (DI, arbitrary units) for 100 cells ranged
from 0 (all cells with no migration) to 400 (all cells with max-
imal migration) [22]. Dusinska and Collins [23] demon-
strated that results expressed as either % tail DNA or
arbitrary units correlate extremely well. DF was calculated
by subtracting 100 cells with zero damage, that is, based on
the number of cells with damage versus those without dam-
age. For assessment of susceptibility to exogenous DNA
damage, two slides prepared from patients from diagnostic
moment (before treatment) were exposed to 0.25mM
recently prepared H2O2 (challenge treatment) for 5min, at
4°C [24]. After that, the slides were put in lysis solution for
1 h at 4°C. Subsequent steps were the same as in the alkaline
version of the Comet assay.

2.4. Buccal Micronucleus Cytome Assay (BMNCyt). The
BMNCyt test in exfoliated epithelial cells of oral mucosa
was performed according to the method described by
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Thomas et al. [25], with some alterations. Briefly, buccal cell
samples were collected from the inner cheeks of the subjects
with a cytobrush, which was immersed in 5mL of cold saline
solution (NaCl 0.9%), and after washed three times with
saline the cells were fixated on Carnoy’s solution. After the
slides had been prepared, they were stained with Schiff’s
reagent and Light Green. Cells were evaluated according
Thomas et al. [25] at 1000x magnification under a light
microscope, using blinded slides. The BMNCyt assay has
been used to measure biomarkers of DNA damage (micronu-
clei and/or elimination of nuclear material by budding,
BUDs), cytokinetic defects (binucleated cells), and cell death
(condensed chromatin, and karyorrhectic, pyknotic, and
karyolitic cells). For each volunteer, 2.000 buccal cells (1000
from each of the duplicate slides) were scored.

2.5. Statistical Analysis. The normality of the variables was
evaluated by the Kolmogorov-Smirnov test, and Student’s
t-test or MannWhitneyU test was used to compare the char-
acteristics of the study population and DNA damage in rela-
tion to characteristics of the study population. The statistical
differences of damage observed for groups by the comet assay
and BMNCyt assay were determined by ANOVA test. Values
of P < 0 05 were considered statistically significant. All anal-
yses were performed using the GraphPad PRISM statistical
software (GraphPad Inc., San Diego, CA, USA).

3. Results

In clinical diagnosis, tumor types were classified as 83% with
invasive ductal carcinoma, 6% with invasive lobular carci-
noma, 3% intraductal carcinoma, 3% medullary carcinoma,
and 3% phyllodes tumor, presenting staging of I to III.

Damage index and micronucleus frequency (mean ± SD)
during diagnostic of breast cancer in relation to clinical char-
acteristics of patients are presented in Table 1. Individuals
with negative receptors for estrogen and progesterone pre-
sented higher levels of DNA damage, observed by Comet
assay, than positive ones.

The genotoxicity data evaluated with the comet assay in
peripheral blood are shown in Table 2. All patient group
demonstrated a significant increase of DNA damage in rela-
tion to control but not in relation to different groups.

The micronucleus test in buccal cells also showed DNA
damage evidenced by the significant increase of micronuclei,
BUDs, and binucleated cells. Cell death was also increased in
the groups in relation to the control group (Table 3). In
addition, an increase in DNA damage and cell death during
treatment can be observed in relation to the patients at the
time of diagnosis.

Figure 1 shows that both DI and DF demonstrate a signif-
icant increase for challenge assay in all groups with breast
cancer, from diagnosis to the end of radiotherapy treatment
in relation to the control group exposed to H2O2.

Figures 2 and 3 demonstrate a relationship between DNA
damage using comet assay and micronucleus test in relation
to the different therapeutic regimens used by the patients in
this study (AC, FAC, or RT-isolated). No difference was
observed using comet assay, but micronucleus test for 21

days after the end of radiotherapy demonstrated the highest
values of micronucleus for all therapeutic regimen.

4. Discussion

Breast cancer is one of the most relevant causes of death
among women worldwide [3]. Data from the World Cancer
Report of the International Agency for Research on Cancer
(IARC) and the World Health Organization (WHO) show
a 2030 incidence of 27 million cases, resulting in 17 million
deaths and 75 million people annually, with cancer. This
increasing occurrence [26] characterizes it as one of the most
important public health problems today. This pathology,
which, in the 70s, was the fourth leading cause of death, cur-
rently occupies the second position of the global incidence
[27]. Understanding the risk factors for breast cancer is of
paramount importance for epidemiological, social, and indi-
vidual studies and is critical for the development of preven-
tion strategies and therapies [28].

Another crucial factor for this pathology is late diagnosis,
which signals advanced stages of the disease. Clinical stages 0,
I, and II of the American Joint Committee on Cancer system,
which considers the extent of primary tumor and metastases,
are classified as an early stage of breast cancer; late-stage
patients belong to the groups III and IV [29]. In our study,
although 41% of the patients had stages III and IV, signaling
an advanced disease, there was no statistically significant cor-
relation between the DI and micronucleus (MN) frequency
of the patients at diagnosis. This fact may be related to the
sensitivity of the comet assay, as a marker of genomic insta-
bility, and could be used since the beginning of the disease.
Genetic alterations, including telomere damage, chromo-
somal aberrations and amplification, and epigenetic modifi-
cations, are an initial step in the process of carcinogenesis
[30] and tumor progression [31]. Thus, the genomic instabil-
ity, detected by the “comet assay and MN test”, can be sug-
gested as markers for cancer [32, 33], and its monitoring is
important in therapeutics, especially with the changes in
the chromosomes [31, 34].

Breast cancer is a heterogeneous disease with multiple
types of intrinsic tumors [35], which can be classified into
distinct subgroups presenting different biological, clinical,
and behavioral parameters offered by immunohistochemical
examination. This biomarker is important for oncology,
since it has information of prognostic value and predictive
response to certain therapies, both for metastatic disease
and adjuvant therapy [36]. The literature reports that hor-
mone receptor positivity confers a better prognosis to meta-
static disease. Its major relevance lies in the signaling of
specific therapies [37]. The biomarkers Her2, ER, PR, and
Ki-67, associated with the clinical and histopathological
stages, guide the therapeutic management of cancer patients.
In our study, 67% and 72% of the patients presented positiv-
ity for estrogen and progesterone receptors, respectively.
Although the negativity for ER and PR was lower, 33% and
28%, respectively, the patients at diagnosis showed DNA
damage as evidenced by the statistically significant increase
in DI and frequency of MN. Júnior et al. [38] corroborated
with the data obtained in a study when monitoring patients
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with breast cancer who, at the time of diagnosis, already pre-
sented damages in the genetic materials (e.g., DNA and
RNA), demonstrating genomic instability. The request for
the immunohistochemical test for Ki-67 also has a prognostic
and therapeutic decision impact on breast cancer because it is
a marker of cell proliferation [39]. In our study, 78% of the
patients presented high Ki-67, suggestive of a disease with a
more aggressive biological behavior. However, in this study,
no influence of this factor on genetic damage was observed.

Early diagnosis indicates a good prognosis and is funda-
mental to patient survival [40, 41]; that for nonmetastatic
disease, the treatment options fall into surgery (radical

mastectomy or conservative surgery), QT, RT, QT, and hor-
mone therapy [42]. RT and QT, which have the cytotoxic
capacity to kill cancer cells, are one of the pillars of oncology
therapy used by half the cancer population [43]. The plan-
ning and association of QT, RT, and surgery have increased
the survival of cancer patients. However, the radiosensitivity
and radioresistance presented by ionizing radiation have
contributed to the limitation of therapeutic success [44]. Sim-
ilar to RT, chemotherapeutics also have limitations. DNA
damage assessed by the comet assay in peripheral blood
showed a statistically significant increase in all the treatment
steps and protocols, as well as in the micronucleus test, when
compared to the control group, especially for the group after
radiotherapy (after 21 days). Similar to our results, other
authors have observed increased DNA damage by the comet
assay and micronucleus test in breast cancer patients in dif-
ferent treatments and protocols [38, 45].

Studies developed by Iarmacovai et al. [46], conducting a
meta-analysis of the frequency of MN in peripheral blood
lymphocytes of cancer patients, evidenced a significant
increase in the frequency of this biomarker in patients not
treated with antineoplastic therapy. Corroborating with these
data, Santos et al. [47] demonstrated the high frequency of
MN in peripheral blood lymphocytes in 45 women with
untreated invasive or in situ breast cancer. Murgia et al.
[48], analyzing peripheral blood lymphocytes of 1650 indi-
viduals without diseases, showed strong predictive values of
MN frequency associated with the risk of cancer death. In
this study, significant increases were observed in MN fre-
quencies in all groups, from diagnosis (baseline damage) to
after RT, in relation to the control group and to baseline
damage. However, after RT, the data were significant

Table 1: Damage index and micronucleus frequency (mean± SD) during diagnostic of breast cancer in relation to clinical characteristics
of patients.

Parameters Characteristics (n) Damage index (0–400) MN/1000 cells

Family breast cancer
No (58) 201.30± 59.21 4.09± 1.92
Yes (42) 196.90± 60.60 3.80± 1.25

Clinical staging
I and II (59) 194.80± 62.36 4.36± 1.60

III and IV (41) 205.10± 55.64 3.18± 0.98

Estrogen receptors
Negative (33) 227.80± 48.58∗∗∗ 4.09± 1.22
Positive (67) 185.00± 59.61 3.94± 1.66

Progesterone receptors
Negative (28) 218.30± 56.31∗ 3.70± 1.15
Positive (72) 192.10± 59.50 4.05± 1.66

Her-2
Negative (30) 183.80± 63.56 3.75± 1.39
Positive (70) 203.60± 57.86 3.62± 1.40

Ki-67a
Low (7) 189.20± 53.96 3.00± 0.00

Moderate (15) 186.00± 45.53 4.20± 1.78
High (78) 204.30± 61.46 3.90± 1.50

Chosen treatment
FACb (8) 206. 90± 75.83 3.80± 1.34
AC-Tc (44) 183.80± 51.86 3.80± 1.29

Scheme Only RT (48) 211.30± 63.42 4.40± 2.50
aKi-67 = proliferation index: Ki-67 < 10% is low; Ki-67 of 10–25 is moderate; Ki-67 > 25 is high; bFAC: fluorouracil, doxorubicin, and cyclophosphamide;
cAC-T: doxorubicin, cyclophosphamide, and taxol; RT: radiotherapy; QT: chemotherapy; n: number of individuals with the characteristic. ∗Significant at
P < 0 05 in relation to progesterone positive receptor; ∗∗∗ P < 0 001 in relation to estrogen positive receptor; Mann Whitney U test was the test applied to
evaluate the table's variables.

Table 2: DNA damage (mean± SD) evaluation in peripheral blood
of patients with breast cancer before, during, and after treatment
and nonexposed control using comet assay.

Groups
Comet assay (100 cells/individual)

Damage index
(0–400)

Damage frequency
(%)

Control 22.90± 19.31 14.53± 8.24

Patients

Before treatmenta 180.90± 53.67∗∗∗ 91.57± 13.94∗∗∗

Chemotherapyb 187.2± 56.61∗∗∗ 94.83± 6.80∗∗∗

Before radiotherapyc 156.70± 69.68∗∗∗ 73.10± 21.54∗∗∗

Radiotherapyd 189.60± 66.61∗∗∗ 86.07± 12.34∗∗∗

After radiotherapye 229.10± 47.93∗∗∗ 90.20± 12.23∗∗∗
aPatient at the time of diagnosis; b3 weeks after beginning chemotherapy;
cBefore radiotherapy and after chemotherapy; d3 weeks after beginning
radiotherapy; e21 days after the end of radiotherapy; ∗∗∗Significant at
P < 0 001 in relation to control group (ANOVA and Kruskal-Wallis).
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compared to before radiotherapy (after chemotherapy), indi-
cating that, after RT, the patients were more genetically
unstable due to the probable aneugenic and/or clastogenic
effects, considering this biomarker of mutagenicity. Other
studies have also pointed to DNA damage in patients with
breast cancer exposed to RT by a significant increase in breast
cancer during cancer treatment [49]. MN are simple markers
routinely examined in cytological preparations, ensuring
credibility in the assessment of cytogenetic damage of popula-
tions exposed to mutagenic and carcinogenic agents [50, 51].
As they result from aggressions in the genetic material, they
represent a potential risk for the onset of cancer [8, 52]. It
has been reported that the frequency of MN resulting from
exposure to IR is dose-dependent [53].

Bonassi et al. [8] have shown evidence that the frequency
of MN in peripheral blood lymphocytes is predictive of can-
cer risk, suggesting that increased MN formation is associ-
ated with the latest events in carcinogenesis. Similar to our
data, in a review of human biomonitoring study with appli-
cation of the MN Test, Speit et al. [54] indicate that the
therapies used in cancer patients, QT and RT, result in an
increase in MN formation due to aggression to the genetic
material. By the micronucleus test, it has been observed
the increase of nuclear buds only after RT and binucleate
cells in QT, RT, and after RT. It is known that the nuclear
bud formation may be related to the chromosomal instabil-
ities resulting from genetic material damage or to gene ampli-
fication [55, 56]. The presence of binucleate cells is related to

Table 3: DNA damage and cell death evaluated using micronucleus test in buccal in patients with breast cancer before, during, and after
treatment and nonexposed control.

Parameters Control
Patients

Before
treatmenta

Chemotherapyb
Before

radiotherapyc
Radiotherapyd

After
radiotherapye

DNA damage

Micronucleus 1.76± 1.30 3.93± 1.50f 4.00± 1.14h 5.53± 2.77h 7.60± 3.19h, i 8.16± 3.69h, i

Buds 2.43± 1.71 2.56± 1.59 1.90± 1.18 2.96± 2.55 4.06± 2.72 6.06± 3.37h, i, and j

Binucleated cells 5.33± 2.23 7.16± 4.99 9.93± 3.42g 9.10± 6.17 14.80± 16.75g, i 18.40± 17.03h, i

Cell death

Condensed chromatin +
karyorrhectic cells

195.50± 112.50 272.80± 105.10 412.50± 110.50h, i 340.80± 200.90 389.70± 228.8g 457.40± 276.00h

Pyknotic cells 1.70± 3.40 14.50± 5.50h 16.97± 4.99h 27.90± 35.20g 35.40± 37.50h, i 52.40± 52.3h, i

Karyolitic cells 53.80± 38.60 97.70± 63.80f 63.07± 23.30 121.50± 99.90f 163.50± 126.00h 226.80± 229.00h

Values represent the mean ± SD of 2000 buccal cells analyzed. aPatient at the time of diagnosis; b3 weeks after beginning chemotherapy; cBefore radiotherapy
and after chemotherapy; d3 weeks after beginning radiotherapy; e21 days after the end of radiotherapy; fSignificant at P < 0 05; gP < 0 01; hP < 0 001 in relation
to control group. iSignificant at P < 0 05 in relation to the group: before treatment. jSignificant at P < 0 05 in relation to the group: radiotherapy (ANOVA,
Kruskal-Wallis).
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Figure 1: Damage index (a) and damage frequency (b) induced by H2O2 (challenge assay) to peripheral blood lymphocytes from breast
cancer patients at diagnosis, during and after treatments and healthy controls. ∗Significance at P < 0 05 and ∗∗∗P < 0 001 compared to
negative control (Kruskal-Wallis test).
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cytokinesis failures and to the occurrence of aneuploidies
resulting from the cytotoxic activity of chemotherapeutics
[55–57]. Most chemotherapeutics, used in clinical practice,
have diverse mechanism of actions that converge for changes
in the cell cycle and consequent impairment of cell division
and cell death. During this process, chemotherapeutic treat-
ment can alter the final events of the cell division, leading
to blocking of cytokinesis and formation of binucleate cells.
Despite these findings, Torres-Bugarín et al. [58], studying
genotoxic QT effects in 163 patients with various cancers,
found a decrease in the frequency of binucleate cells through-
out the treatment, justified by the fact that QT leads to cell
death before the end of the cell cycle. In the present study,
an increase of karyorrhectic cells due to QT and pyknotic
due to RT was observed, and the pyknotic cells remained
increased after RT compared to the pretreatment group, indi-
cating increased cell death by both QT and RT.

Antineoplastic agents, classified as cytotoxic, include
chemical agents that control the development of tumors by
killing actively growing cells. Among these, doxorubicin,
which despite its great therapeutic potential in a wide variety
of cancers [59], is limited by the severe side effects such as a
cardiotoxicity present in 50% of patients and myelosuppres-
sion. Exposure of the DNA molecule to radiation induces a
signal transduction cascade resulting in damage to the
genetic material, including the increase of reactive oxygen
species (ROS) [60]. There are records that signal IRs as
responsible for the induction of chromosomal aberrations
(AC) and apoptosis [61]. Tumor suppressor genes, such as
p53 and PTEN, can be dysregulated, resulting in impairment
of important functions such as induction of apoptosis, activa-
tion of the repair system, and cell cycle arrest [62]. Thus, ROS,
by different mechanisms of action, can lead to apoptosis and
tumor regression. In this study, when the patients’ samples
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Figure 2: Damage index in relation to the therapeutic regimen: (a) FAC, (b) AC, and (c) RT-isolated.
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were challenged to use an oxidizing agent (H2O2) in the dif-
ferent treatments, we observed a significant increase of dam-
ages when compared to the samples of the control subjects
(without cancer) exposed to the agent, which shows a suscep-
tibility of these individuals to agents inducing oxidative dam-
age. Blasiak et al. [63] also reported sensitivity of lymphocytes
from BC patients to hydrogen peroxide (H2O2). Despite this,
the control group shows a DI (comet assay) of about 22.9,
while patients shows a DI of 180.9 before any treatment.
However, after treatment with an oxidizing agent, the average
DI of the controls rises ~10 times and patients about ~1.7
times. Therefore, patients’ cells appear relatively less suscepti-
ble to oxidative damage than cells from individuals without
cancer. Possibly the dose of H2O2 was high, which probably
saturated the detection capacity of damage for patients by
comet assay (reaching a limit of damage, almost 100% of

damage). Brandão et al. [64], in a study on H2O2-induced
cytotoxicity in human cells deficient in DNA repair, revealed
that deficient lines in the nucleotide excision repair pathway
were more sensitive to an inducer of oxidative damage, such
as H2O2. In view of the above, a deficiency in the repair sys-
tem may justify the potentiation of the peroxide sensitivity,
culminating in the increase of damages.

Due to the different effects that could be induced by
the different chemotherapeutic treatments, a comparison
between induction of an increase in the DI and MN and
the different treatment protocols was performed. Our results
demonstrate that although there was no statistically signifi-
cant increase in DI, the frequency of MN was statistically
significant in the different cancer protocols, FAC, AC, and
RT-isolated. Guerreiro et al. [65] report an increased fre-
quency of MN and binucleate in breast cancer cells exposed
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Figure 3: Micronucleus frequency in relation to the therapeutic regimen: (a) FAC, (b) AC, and (c) RT-isolated. ∗Significant at P < 0 05;
∗∗P < 0 01; ∗∗∗P < 0 001 using Kruskal-Wallis test.
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to DOX. These data corroborate with Uriol et al. [66] who
report that most chemotherapeutic treatments induce differ-
ent DNA damage as observed in this study.

The different DNA damage induced by antineoplastics by
DNA is associated with the different classes of these agents.
Chemotherapy drugs classified as antimetabolites include
compounds of clinical use that have different mechanisms
of action that interfere with the synthesis of new precursors
of DNA and RNA, inhibitors of DNA synthesis and com-
pounds that alter the pattern of DNA methylation. As an
example, there is 5-fluorouracil, which is an antimetabolite
analogous to pyrimidine. Although the mechanisms of action
of anthracyclines, including doxorubicin, are still controver-
sial, we can consider DNA intercalation, free radical genera-
tion, DNA alkylation, and covalent bonding between DNA
strands (DNA crosslinks) [67]. Of the natural products, taxol
is a drug that acts as a poison of the mitotic spindle, increas-
ing the polymerization of tubulin. These antimitotic agents
stimulate the polymerization of the microtubules. This site-
specific binding seems to antagonize the breakdown of this
cytoskeletal key protein, with consequent formation of stable
and abnormal microtubules, blocking the progression of G2
and M phase in the cell cycle [68–70].

The comet assay is increasingly being used to detect gen-
otoxicity and human biomonitoring [38, 71], as well as the
MN test, which can detect clastogenesis, aneugenesis, and cell
death [18, 52]. Biomonitoring of molecular alterations can be
an important tool to better understand the molecular biology
of cancer, resulting in accurate diagnoses and successful
treatments, especially due to the lack of specificity and selec-
tivity in cancer therapy [72]. To this end, cytogenetic bio-
markers have attracted more attention from the scientific
community because they are potential indicators of biologi-
cal effects, including cancer risks.
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