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Abstract 

Platinum-based chemotherapies are first-line treatments for ovarian cancer (OC) patients. Although chemotherapy 

has a high initial response rate, some patients exhibit inherent chemo-resistance. With advancements of molecular 

and genomic profiling, it is of high interest to identify molecular and genomic signatures predictive of chemo-

sensitivity priori to treatment initiation in order to better personalize care decisions. Previous efforts have made use 

of mRNA expression levels of selected genes responsible for repairing DNA damage, under the hypothesis that 

chemo efficacy is associated with their proficiency. However, the resulting scores have been difficult to interpret. In 

this study, we designed a single-sample based approach known as eCARD to investigate chemo-sensitivity in 

ovarian cancer patients from The Cancer Genome Atlas. We demonstrated that the proposed single-sample based 

approach can lead to a molecular-based chemo-sensitivity score predictive of prognosis, which validates in 5 

independent cohorts, and associates with increasing mutation burden and likelihood of BRCA1/2 mutation.   

Introduction 

Ovarian cancer (OC) is one of leading causes of cancer mortality among women in the United States. About 70% of 
patients present at diagnosis with advanced-stage and high-grade serous ovarian cancer (1).  Platinum-based 
chemotherapy is a standard treatment following a cytoreductive surgery. Approximately 25% of patients develop 
platinum-resistance within six months and almost all patients with recurrent disease ultimately develop platinum 
resistance (2, 3). In addition, partly due to the lack of successful treatment strategies, the overall five-year survival 
rate for high-grade serous ovarian cancer is only 31%. Although several mechanisms have been revealed to 
contribute to chemotherapy response (4-6), there are no valid clinical or molecular markers that effectively predict 
chemotherapy response.  The cancer research community is compiling cancer genomic information, with the goal 
that new therapeutic options will be indicated, leading to tailored treatment for individual patients according to their 
personal tumor genome. A notable example is The Cancer Genome Atlas (TCGA) research network (1, 7, 8). TCGA 
has released an ovarian cancer dataset containing a large (for genomics) sample size with comprehensive genomic 
profiles and clinical outcome information (1). The dataset has been utilized to analyze chemotherapeutic response in 
ovarian cancers in several previous studies (8-12).  

Since the major antineoplastic mechanism of platinum-based chemotherapy is to induce DNA damage in tumor 
cells, leading to apoptosis, chemo-resistance is believed to be associated with proficiency of DNA-damage repair 
pathways, such as ataxia-telangiectasia-mutated (ATM), Fanconi anemia (FA) and Nucleotide excision repair (NER) 
(13-15). Such prior biological knowledge of DNA repair pathways and the genes they contain, has led to hypothesis-
driven molecular analysis to develop molecular scores associated with OC patient’s prognosis (9). However, we 
have found that the resulting scores lacked interpretability of their genomic basis (high scores indicate greater repair 
activation being associated with improved survival) (12, 16) and did not exhibit ideal reproducibility for different 
expression platforms applied to the same OC patient subjects.  

In the present study, our goal was to develop a simple yet robust molecular score known as eCARD (expression 
CDF trAnsform of Rank Distribution) that is able to predict a single patient’s chemo-sensitivity, and link the score 
to an interpretable genomic basis. We first developed our single-sample based expression scoring scheme by 
restricting our attentions to expression of a set of DNA repair genes. Next, robustness of our score with respect to 
assay platform was analyzed. We then performed associations between molecular scores vs. BRCA1/2 mutation 
status and global mutation burdens in OC patients with whole Exome sequencing measurements. We found that 
eCARD exhibits only a modest association with BRCA1/2 mutation status, as well as global mutation burden. Thus, 
expression-based scores are not proxies for these known prognostic features. Further, using Cox regression, we 
conducted univariate and multivariate survival analysis to investigate if our proposed molecular score predicts 
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patient outcomes. Finally, we confirmed associations of our chemo-sensitivity score within five independent cohorts 
where expression, clinical annotation, and follow-up data were provided. 

Methods 

TCGA expression 

Three expression datasets from TCGA were downloaded through the curatedOvarianData version 1.3.5 (17)  
package for R (18): Unified microarray Expression (UE; where each gene’s expression is a median across three 
individual microarray platforms), individual microarray platforms (Affymetrix U133A), and RNA-Seq. Nearly half  
(46%) of OC patients’ tumor gene expression is assayed using all three datasets. Affymetrix-based expression of 
TCGA OC patients was used to train molecular features used in our score. Comparison to the other expression 
platforms (e.g. RNA-seq) for the same subjects was used to quantify technical reproducibility and robustness.  

TCGA mutations (BRCA1/2 and global mutation status) 

We downloaded the confident somatic mutation calls of the OC patients from pan-TCGA mutation study 
(https://www.synapse.org/#!Synapse:syn1461171) (19). BRCA1/2 mutation status of OC patients were extracted 
and organized from previous related TCGA OC studies (1, 20). 

Selection of prognosis-relevant genes 

Cox proportional hazards models were used to quantify the relationship between expression of individual DNA 
damage repair genes and overall survival. The details of DNA damage pathways and related gene enumeration was 
described in (9) and its online supplementary materials. Candidate genes were selected from known DNA damage 
repair pathways. Any gene which exhibited a marginally significant trend with survival (P < 0.15) was included in 
our final score (9). The sign of the cox-regression coefficient was used to classify genes as indicating “chemo-
sensitive” if higher expression values associated with better outcome and indicating “chemo-resistant” if higher 
expression values associated with worse outcome. This classification is based on the assumption that gene 
expression leading to chemo-sensitivity imparts a direct survival benefit, and vice versa.   

Construction of molecular scores for chemo-sensitivity score by eCARD 

Previous studies (9) used binary representations of gene expression, indicating if a gene’s expression is greater than 
the median level across patients, or not. A median-based dichotomized score (MDS) may be sensitive to biologic 
and technical noise, especially for samples exhibiting expression close to the median level. Similar to previous 
studies, the MDS for the k

th subject is the per-subject sum of DNA Repair Genes (G) that are above the median 
expression level: 𝑀𝐷𝑆𝑘 =  ∑ 𝐺𝑘

𝑖
𝑖 ≥ 𝐺 𝑖̃ . 

We developed a single-sample expression scheme named eCARD for quantifying the prognosis value of “chemo-
sensitive” and “chemo-resistant” genes which are learned from a training cohort (see above). Given an expression 
sample of N genes, eCARD computes “chemo-sensitive” and “chemo-resistant” scores, per sample, by summarizing 
rank-transformed gene expression: 
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In which, ( )irank x
x

 is the relative rank of i-th gene expression value inform among all N measured genes in the 
give sample; the higher expression value of i-th gene 

ix , the higher rank position it has (e.g. the gene with largest 
expression value will be ranked at 1st ). 1(.)CDF  is an inverse cumulative density function (CDF) transformation 
function according to the normal distribution, so that an input will be transformed to a normally distributed signal. 
The purpose of rank-transformation is to improve robustness of expression measurements, so that the scoring 
scheme can be easily generalized across different platforms. For instance, if many genes are expressed at similar 
levels, small amounts of noise or technical variation could significantly change a given gene’s rank, but noise will 
not significantly change the normalized rank. The inverse CDF transformation, 1(.)CDF  , further prioritizes the 
expression changes close to the top or bottom of the ranking list (the highest and lowest genes spread out along the 
tails of the normal distribution), and puts less emphasis for the genes with intermediate ranks. In another word, the 

1(.)CDF   function enforces a nonlinear weighting scheme to highlight genes with large expression changes and 
down-weights moderate changes in expression, within a single sample. The final chemo-sensitivity score for the kth 
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subject is defined as the difference between these two scores; multiplying by an empirically determined constant for 
scale: 

eCARDk = 10 * (sensitive_score(
kx ) - resistant_score(

kx )) 

Application of eCARD Score in Independent Cohorts 

Independent cohorts of patient samples were from GEO (21) and used to evaluate and validate our scoring scheme’s 
generalizability: GSE49997 (22), GSE32062 (23), GSE9891 (24), GSE26712 (25), and Bentink et al. (26). 

Survival Analysis 

In order to focus our survival analysis on the most homogeneous and relevant OC patient population, we limited all 
cohorts to primary high-grade serous OC receiving platinum and taxane therapies, and excluded patients treated in 
the neo-adjuvant setting.  We used overall survival (OS) time as the clinical endpoint in all cohorts. Each cohort is 
evaluated independently using both univariate (eCARD score alone) and multivariate (score and patient age, tumor 
stage, grade, and surgical de-bulking status, when available from each study) Cox proportional hazards models. The 
outcome of Cox regression is reported in terms of a Hazard Ratio (HR). Values greater than 1 indicate increased 
hazard (probability of cancer-related mortality), while values less than 1 indicate decreased relative risk, compared 
to a reference group. In order to summarize across the cohorts, we generate a mixed effects Cox model, adding a 
random intercept variable by cohort membership which models a different baseline hazard for each study. The HR 
reported for each score is the association of the score with OS, independent of baseline hazard and other clinical 
covariates. All analyses were performed in the R programming language version 3.2.0 (18), leveraging the packages 
survival v2.38.3 and coxme v2.2.5. 

Results 

In total, we identified 24 genes for which higher expression levels were indicative of chemo-sensitivity, and nine 
genes for which higher expression levels indicated chemo-resistance. Table 1 lists these genes by which DNA repair 
pathway they contribute. BER and MMR pathways contain genes exclusively associated with better survival 
outcomes, while genes within NER and HR show mixed associations. 

First, we investigated the technical reproducibility of our eCARD score using gene expression across platforms. For 
example, we quantify the extent of agreement between microarray-based expression signatures and RNA-seq 
measurements. The MDS DNA-Damage score (similar to Kang et al. (9)) and our eCARD score were calculated for 
each platform. All datasets correlate well with each other but our eCARD score exhibits consistent gains in cross-
platform reproducibility, increasing the correlation between U133A and RNA-Seq to 0.88 and between UE and 
RNA-Seq to 0.93. Overall, our method achieves better concordance between independent platforms of the same 
patients.  

 

Table 1. Genes and associated pathways chosen in the eCARD model to predict outcome 
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Table 2. Across-platform concordance of median-based and eCARD chemo-sensitivity scores. Gain is the gain in 
performance for our eCARD score over the Median-Dichotomized Score (see Methods). Affy signifies Affymetrix 
U133A; RNA, mRNA-Seq-V2; UE, Unified Expression. These comparisons were made using all patient samples 
common to a given pair of expression datasets. 

 MDS eCARD Gain 

  Affy vs 
RNA 

UE vs 
RNA 

UE vs 
Affy 

Affy vs 
RNA 

UE vs 
RNA 

UE vs 
Affy 

Affy vs 
RNA 

UE vs 
RNA 

UE vs 
Affy 

Cramer's V 0.62 0.62 0.65 0.69 0.72 0.80 0.07 0.10 0.15 

Spearman's CC 0.82 0.80 0.83 0.88 0.92 0.92 0.06 0.12 0.09 

Linear R
2
 0.69 0.62 0.68 0.80 0.86 0.84 0.11 0.24 0.16 

 

While our scoring method is based on only gene expression levels, we further incorporated other genomic 
measurements, such as the number of single-nucleotide variants per sample, into the considerations of chemo-
sensitivity/resistance prediction. Multiple previous studies have demonstrated that mutation burden and 
constitutional mutations, such as BRCA1/2, are predictive of chemotherapy response for OC patients. It is critical to 
investigate if expression-based scores introduce independent predictive information, or if they simply serve as 
surrogates for underlying genomic aberrations. In Fig. 1 (c)), we showed that BRCA1/2 mutation status in 316 
subjects with exome-seq measurements, is highly correlated with increasing mutation burden (t-test p-value = 1.2e-
04); in contrast, BRCA1/2 mutation status only has a marginally significant associations with eCARD score. 

In the same TCGA-OC cohort (316 subjects, 13 removed from missing data, 172 with cancer-related mortality), we 
performed multivariate survival analysis, incorporating expression signatures with genomic information and 
important clinical factors (age, grade, stage). The result is shown in Table 3, from which chemo-sensitivity score 
indeed provides additional independent prediction in multivariate models, where increase of each unit of eCARD 
score is indicative of 20% of risk reduction (HR = 0.78, 95% CI = [0.71, 0.86]). 

In an expanded effort to validate if proposed scoring provided a generalized predictive model for prognosis of OC 
patients. We chose 5 OC cohorts, each with at least 100 patient subjects and expression measurements (22-26). A 
univariate mixed effects model shows a strong relationship between eCARD score across these independent cohorts 
(HR = 0.72; P = 2.1E-3). Similar effects were observed in multivariate mixed-effects models (HR = 0.67; P = 2.4E-
3; see Figure 2). 

 
(a)                                    (b)                                      (c)                                         (d) 

Figure 1. KM-plot of TCGA OC overall survival showing high eCARD scores, computed from expression 
measured by a) Affymetrix U133a microarray platform and b) mRNA sequencing, are associated with improved 
survival. To contrast whether eCARD scores are mainly determined by BRCA1/2 mutation status, (c) and (d) 
display mutation burden (measured by number of SNVs per sample) vs. BRCA1/2 mutation status, and chemo-
sensitivity score vs. BRCA1/2 mutation status, respectively. 

We compare our score to other previously published chemotherapy sensitivity scores. CLOVAR (10) is an 
expression-based score that utilizes a small set of representative genes from multiple DNA damage repair pathways. 
A subset of samples meeting our selection criteria (N = 167) is labeled as “Good” or “Poor” prognosis based on their 
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score (1, 10). We have used this designation to compare the dichotomized CLOVAR score to the dichotomized 
eCARD score. Both show significant association with OS, with eCARD (HR = 0.50, CI = [0.33, 0.77], p = 1.8x10-3) 
exhibiting a more consistent association compared to CLOVAR (HR = 0.58, CI = [0.38, 0.90], p = 1.4x10-2). The 
same trend holds after adjusting for patient age and surgical de-bulking status: eCARD (HR = 0.54, CI = [0.34, 
0.85], p = 8.4x10-3) and CLOVAR (HR = 0.61, CI = [0.38, 0.98], p = 4.1x10-2). PROVAR scores were shown to be 
of greater prognostic power than CLOVAR (11). We calculated PROVAR scores according to the published 
formula (a weighted sum of 9 protein levels) and using the Revers-Phase Protein Array (RPPA) data provided in 
their supplemental data tables (11). For comparisons to PROVAR, only the subset of patients with both Unified 
Expression and RPPA data was used. Within this subset and adjusting for covariates, eCARD is more consistently 
associated with OS (HR = 0.94, CI = [0.91, 0.97], p = 2.6x10-4) than PROVAR (HR = 0.26, CI = [0.09, 0.78], p = 
1.7x10-2). Univariate analyses yield similar estimates (not shown). Our eCARD score also exhibits a more consistent 
association with OS among high-grade OC patients than previously established prognostic scores. 

Table 3: The multivariate cox-regression analysis results of chemo-sensitivity scores, along with age, tumor-grade, 
stage, BRCA1/2 mutation status and global mutation burden, which is measured by total number of somatic SNVs in 
each tumor sample.  

 
multivariate 

p-value HR 95% Conf. Int. 

diagnosis age 1.99E-02 1.017 1.003 1.031 
tumor-grade 
   (grade-3 vs. -2) 2.31E-01 1.383 0.813 2.352 

tumor-stage 
   (stage-III vs. -II) 6.00E-01 1.280 0.509 3.218 

   (stage-IV vs. -II) 3.35E-01 1.612 0.611 4.255 
eCARD score 5.87E-07 0.784 0.712 0.862 

BRCA status 
   (BRCA1/2 vs. none) 2.99E-02 0.629 0.414 0.956 

global mutation burden 
   (N. SNVs per sample) 6.48E-03 0.991 0.985 0.998 

Table 4: Comparison of eCARD and MDS scores across three high-throughput data platforms. Hazard ratios 
(HRs) are presented from multivariate (Multi) and univariate (Uni) Cox regression, and either a single microarray 
platform (U133A), the per-gene median across three microarray platforms (Unified Expression), or mRNA 
sequencing from TCGA. 

 
Affymetrix U133A mRNA-Seq-V2 Unified Expression 

 
Multi Uni Multi Uni Multi Uni 

N 356 386 156 174 319 349 

 eCARD  

HR 0.80 0.79 0.89 0.87 0.94 0.93 

p-value 1.9x10
-7

 2.4x10
-9

 0.4x10
-1

 0.4x10
-2

 1.7x10
-5

 2.2x10
-7

 

95% CI 0.73, 0.87 0.73, 0.85 0.80, 1.00 0.79, 0.96 0.92, 0.97 0.91, 0.96 

  MDS 

HR 0.97 0.96 0.95 0.96 0.97 0.95 

p-value 2.1x10
-1

 0.6x10
-1

 0.9x10
-1

 1.8x10
-1

 2.7x10
-1

 2.1x10
-2

 

95% CI 0.92, 1.02 0.91, 1.00 0.89, 1.01 0.90, 1.02 0.92, 1.02 0.90, 0.99 

  eCARD (High versus Low) 

HR 0.50 0.47 0.78 0.64 0.58 0.56 

p-value 1.6x10
-5

 0.6x10
-6

 3x10
-1

 0.4x10
-1

 0.7x10
-3

 2.1x10
-4

 

95% CI 0.37, 0.69 0.35, 0.63 0.49, 1.24 0.42, 0.98 0.43, 0.80 0.42, 0.76 
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Fig. 2.  Forest plot summarizing the eCARD scores from multivariate Cox regression of 5 independent validation 
cohorts. A mixed effects model summarizes across the cohorts.  

Discussion 

DNA-Damage scores have been met with mixed reactions (16), partly due to the difficulty of interpreting the results 
given that the observed survival associations show a protective effect of higher scores. Higher scores, indicative of 
greater DNA-Damage pathway activity or capacity (expression of the genes contained), were hypothesized to 
increase the likelihood that tumor cells could repair chemotherapy-induced legions. If this hypothesis were true, 
higher scores would be associated with poorer survival. This may be due to due to tumor cellular mechanisms 
compensating homologue-repairing deficiency (12), which is one of the key characteristics of ovarian tumors (27, 
28). Also, it may be that the DNA-Damage repair pathway activity is more informative of the state of the tumor cells 
and the extent of pre-existing genomic instability, rather than indicative of direct cellular response to cytotoxic 
agents. We hypothesize that tumors exhibiting higher DNA-Damage pathway activity scores have more stable 
genomes, perhaps due to more intact damage monitoring and repair systems. This state makes chemotherapy-
induced DNA damage a more disruptive change for these tumors, compared to tumors which already exhibit high 
instability.  

High reproducibility between technical platforms is a necessity for modern precision initiatives (29). We have 
shown our version of the DNA-Damage score, eCARD, to be more reproducible between two common technology 
platforms. Further, we have not required thorough normalization procedures, favoring a simple data transformation 
that naturally emphasizes the most prominent expression features and de-emphasizes small differences that are more 
likely to be affected by biologic and technical noise.  

A feature of our method is that we have taken into account the sign of each gene; if its expression level is positively 
or negatively associated with survival. This is both a positive feature and a potential limitation. It is positive because 
we are not confounding opposing effects. However, this procedure could potentially limit the generalizability of our 
score. One could argue that because we have chosen the sign of each gene based on its independent association with 
survival, that we are highly biased to a positive result. To address this concern, we have tested our scoring method 
on five independent cohorts which validate its utility.  

Hazard ratios (HRs) are calculated either for one group versus another, or for a unit-increase in a continuous score. 
Thus, when considering the impact of a score, one must also consider the range of values that the score attains 
across a given dataset. For example, the HR of eCARD is 0.94 and of PROVAR is 0.26, for the cohort with both 
Unified Expression and RPPA data. The Inter-Quartile Range (IQR; 75th and 25th percentiles) of eCARD score for 
this cohort is [-3.8, 4.6]. Thus, moving from the first to the third quantile is a difference of more than 8 units, 
indicating a relative risk of 0.61. However, the IQR of PROVAR is [-0.13, 0.08]; a difference of 0.22 units, 
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indicating a relative risk of 0.75. Thus, eCARD has a more consistent survival association, which is more 
interpretable after accounting for their different ranges. 

Previously published prognostic scores were generated after thorough data normalization. While thorough data 
normalization is appropriate for approaching the true expression level, it can be a barrier to reproducibility and 
application to single samples. We have not attempted to fully reproduce all normalization steps for each score. 
Instead, we aim to identify if there is an approach that could be more readily adapted and applied to diverse datasets 
and potentially single samples. Our eCARD score shows significantly more stable cross-platform reproducibility 
and robust survival association. Future work could expand the eCARD score to include representatives from 
additional repair mechanisms and further refine the interplay between these features. 

Conclusion 

In summary, we have proposed a single sample-based scoring method known as eCARD for evaluating OC tumors. 
We have shown the prognostic value of our eCARD score, independent of major genomic features such as BRCA 
mutation, across five validation cohorts. Further, our score exhibits less sensitivity to data assay platform (array 
versus NGS) and normalization method. Finally, it exhibits more consistent association with survival than three 
previously established prognostic scores. 
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