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Abstract: Attention deficit hyperactivity disorder (ADHD) is a chronic heritable develop-

mental delay psychiatric disorder requiring chronic management, characterized by inatten-

tion, hyperactivity, hyperkinectivity and impulsivity. Subjective clinical evaluation still

remains crucial in its diagnosis. Discussed are two key aspects in the “characterizing

ADHD” and on the quest for objective “pathognomonic/endophenotypic diagnostic markers

of ADHD”. The first aspect briefly revolves around issues related to identification of

pathognomonic/endophenotypic diagnostic markers in ADHD. Issues discussed include

changes in ADHD definition, remission/persistence and overlapping-symptoms cum shared-

heritability with its co-morbid cross-border mental disorders. The second aspect discussed is

neurobiological and EEG-based studies on ADHD. Given the neurobiological and temporal

aspects of ADHD symptoms the electroencephalograph (EEG) like NeuralScan by Medeia

appears as an appropriate tool. The EEGs appropriateness is further enhanced when coupled

with suitable behavior/cognitive/motor/psychological tasks/paradigms yielding EEG-based

markers like event-related-potential (ERPs like P3 amplitudes and latency), reaction time

variability (RTV), Theta:Beta ratio (TBR) and sensorimotor rhythm (SMR). At present, these

markers could potentially help in the neurobiological characterization of ADHD and either

help in identifying or lay the groundwork for identifying pathognomonic and/or endopheno-

typic EEG-based markers enabling its diagnosis, treatment and management.
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Introduction
While attention deficit hyperactivity disorder (ADHD) carries the distinction of

being among the most well-researched mental disorders still challenges remain

regarding its diagnosis, management and treatment. For instance, to date diagnosis

is based on subjective clinical examination using standard questionnaires and tests

that capture impairments in behavior and cognition.1–7

As ADHD traits (inattention, hyperactivity, hyperkinectivity and impulsivity)

have both a neurobiological and temporal aspect state-of-the-art electroencephalogra-

phy (EEG) machines like NeuralScan by Medeia (Figure 1) with its easy-to-wear

reusable 10/20 system EEG caps, user/clinician-friendly software and cloud-based

reporting make neurobiological characterization of ADHD possible. However, while

EEG-based confirmation of ADHD has received FDA approval, it has yet to be
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Figure 1 EEG-based frequency analysis using (A) NeuralScan by Medeia showing demo results of: (B) Resting EEG (Eyes Open and Eyes Closed) and Theta/Beta ratio, (C)

Visual and Auditory processing, Working Memory and Attention and (D) Theta/Beta ratio, Visual and Auditory processing, Working Memory, Attention Reaction Time (RT)

and Reaction Time Variability (RTV).
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approved in instances where the clinical diagnosis of

ADHD is negative, the aim being to prevent over-

diagnosis and misdiagnosis.8 Recent features like quantita-

tive electroencephalogram (qEEG) and low-resolution brain

electromagnetic tomography (LORETA) have added both

a power and spatial component to EEG analysis.9–11 With

these new features, one can measure, capture and record

from Theta:Beta ratio (TBR) to a whole range of EEG-

based frequency analysis (alpha, α, beta, β, theta, θ, delta, δ,

gamma, γ, mu, sensorimotor rhythm (SMR)) to event-

related-potential (ERPs) components (P1, N1, P2, N2, P3,

N3, ERN, Pe, CNV, RT, amplitudes and latency) to reaction

time variability (RTV) to power and source analysis.

Furthermore depending on the paradigms and tasks used

to elicit these ERPs one can now achieve better neurobio-

logical, behavioral and psychological characterization and

guide management of ADHD. Thus, EEG machines like

NeuralScan are fast becoming potential pathognomonic

diagnostic tools.

Clinicians could easily study and assess

(a) Neurobiological and EEG-based risk factors of

cognitive impairment, hyperactivity and attention

that will either be potential markers or modifiable

traits,

(b) responder and non-responders to treatment via

medication/behavioral therapy/neurofeedback,

(c) heritable brainwave alterations exclusive to ADHD

or shared with it co-morbid psychiatric disorders

and

(d) tailor treatment.

Taken together the EEG-based findings could in turn add

enormous value in the quest for brain-based pathognomo-

nic and endophenotypic markers of ADHD. The benefit of

endophenotypic markers of ADHD would be that diagno-

sis would be more objective and less symptom-based

especially in light of symptom overlaps with other cross-

border co-morbid mental disorders. However, endopheno-

typing ADHD comes with its own challenge is that ADHD

also shares heritable traits with some of its co-morbid

mental disorders. With this in mind we sought to consider

together I) challenges in identifying markers of ADHD,

current II) neurobiology and III) EEG-based aspects on

ADHD in the hope of either identifying or laying the

framework for identification of potential pathognomonic/

endophenotypic markers of ADHD.

Challenges in Identifying
Endophenotypic/Pathognomonic
Markers of ADHD
Changes in Diagnostic Criteria
Changes in diagnostic criteria impact on: prevalence, inci-

dence, conversion and remission rates, comparison across

studies and long-term follow-up studies. The nosology of

ADHD has changed from the “incapacity to attend” to

a “Neurodevelopmental Neurocognitive Disorder”.12–15

Developments in neuropsychology, neuroimaging, epide-

miology, genetics, and pathophysiology contributed

to Diagnostic and Statistical Manual for Mental

Disorders (DSM) DSM-VI/DSM-VI-TR’s classification of

ADHD as ADHD with inattention (ADHD-I), hyperactivity

(ADHD-H), and combined (ADHD-C) subtypes.5 Barkley

further described ADHD.

as a disorder of executive dysregulation (in behavioral

inhibition, working memory, motivation, and motor con-

trol) rather than simply of attention and hyperactivity16

Barkley worked to ensure it was distinct from concentration

deficit disorder (CDD).16–19 Further developments in mole-

cular biology, psychometrics, and cognitive and affective

neurosciences led to ADHD being classified under

“Neurodevelopmental Disorders” and “Neurocognitive

Disorders” in DSM-V requiring symptoms to be present in

two or more environments.6 Based on the current definition

of ADHD its prevalence is 2.2% in children which translates

to 1:45 children and 2.8% in adults, i.e. 1:36 adults. 50–65%

of childhood ADHD persists into adulthood with the persis-

tence rate of childhood ADHD being 47.4%. The higher

adult prevalence rate seen is a reflection of conversion of

children who were originally below the diagnostic thresholds

and self-reported or new cases of adult ADHD.20–22

Overlapping Symptoms of Cross-Border

Cum Co-Morbid Mental Disorders
While symptoms/behavior manifesting as a spectrum of

hues, tones, tints and shades, were originally used to frame

the diagnostic criteria they have also added to the confusion

due to symptom-sharing between cross-border cum co-

morbid mental disorders.6,7,23,24 80% of individuals with

adult ADHD have at least one other co-morbid

condition.23–27 While the general consensus is to treat the

dominant functionally impairing illness the overlapping

symptoms make clear-cut diagnosis, treatment and determi-

nation of the burden of disease challenging28–31 Figure 2A
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Figure 2 (A) ADHD and its cross-border co-morbidities: Illustration of symptom sharingandsymptoms unique.6,7 Percentage of Individuals with ADHD and selected

symptom sharing (cross-border) psychiatric comorbidities (32).
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provides an illustration of symptoms shared by and symp-

toms that distinguish ADHD and other mental disorders.6,7

Figure 2B presents the results of a multinational cross-

sectional study in Europe to estimate the prevalence of

ADHD in adult outpatient psychiatric care facilities. Out of

n=2284 individuals included in the study, 349 had ADHD

(17.4%, n=2009 screened using DSM-V).32 Within the

ADHD subgroup (pie diagram) major depressive disorder

(MDD), generalized anxiety disorder (generalized AD) and

substance use disorder (SUD) were the most common co-

morbidities. Study results of the Regional ADHD Registry

database at 18 tertiary care ADHD centers (n=2861) in Italy

between 2011 and 2016 period were, 67% (n=1919) had

ADHD, among whom 34% (n=650) had ADHD alone and

the remaining had ADHD+≥1mental health co-morbidity

(learning disorders/sleep disorders/oppositional defiant dis-

order/anxiety disorders).33 The implications for neurobiolo-

gical and EEG-based studies on ADHD are overlapping

symptoms that could extend to overlaps in neurobiological

and EEG patterns.

Heritability of ADHD and Shared

Heritability of Its Co-Morbidities
Compounding the issue is the heritability and at times

shared heritability of both ADHD and its co-morbidities

and that ADHD is a heterogenous disorder with many

subtypes (ADHD-I, ADHD-H, and ADHD-C). Genetic

studies on ADHD include a) family, b) twin, c) candidate

genes, d)genome-wide approaches (GWAS), e) copy num-

ber variations (CNV), f) environmental risks and g)

endophenotypes.34–47 Siblings of ADHD probands are at

9-times greater risk of ADHD with twins both monozygo-

tic: MZ and dizygotic: DZ, sharing 100% and 50% genetic

inheritance, respectively, as well as environmental expo-

sure exhibit a heritability of ADHD of ~75%.34–36

A GWAS study worth mentioning in detail is one

carried out by the Brain Consortium (Figure 3) to quan-

tify the degree of overlap of genetic risk factors involved

in 10 psychiatric and 15 neurological disorders also

looking at 17 behaviour-cognitive phenotypes among

265,218 patients and 784,643 control participants (total

Attention Deficit Hyperactivity Disorder (ADHD),  Autism Spectrum Disorder (ASD), Major Depressive Disorder 
(MDD), Anxiety disorders (generalized anxiety disorder, panic disorder, social phobia, agoraphobia, and specific 
phobias), Obsessive-Compulsive Disorder (OCD), Post-Traumatic Stress Disorder (PTSD) and Body Mass Index 
(BMI)
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Figure 3 Correlation illustrating the shared genetics of adhd with selected psychiatric co-morbidities and behavioral-cognitive phenotypes.
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of 1,191,588 individuals).46 Results indicated that while

neurological disorders appeared distinct from each other

in terms of genetic risk, psychiatric disorders showed

a high degree of genetic correlation with each other.

Presented in Figure 3 is the correlation between ADHD

and the other psychiatric disorders and the correlation

between ADHD and the behavioral-cognitive pheno-

types. This shared genetic etiology highlights the need

to re-define both clinical and diagnostic boundaries to

prevent diagnostic misclassification. Further, endopheno-

typing strategies need to ensure they reflect phenotypic

heterogeneity that correlates with genetic correlations

where psychiatric disorders are concerned.

Neurobiological Studies on ADHD
Deficits in working memory, cognitive flexibility, attention

and inhibition are seen in ADHD.48–50 Both magnetic

resonance imaging (MRI) and fMRI had highlighted the

role of

(a) The frontoparietal, dorsal frontostriatal composed

of the dorsolateral prefrontal cortex (PFC), dorsal

striatum (DS), and the thalamus: attention and

attention orientation),

(b) mesocorticolimbic circuits composed of the orbito-

frontal cortex (OFC), ventral striatum and nucleus

accumbens (NAcc), ventral tegmental area (VTA),

and anterior hippocampus: reward and emotional

processes, ie, motivation, frustration tolerance,

and reward anticipation and

(c) the default mode network (DMN) that includes the

medial prefrontal cortex (mPFC), posterior cingu-

late cortex (PCC), and lateral parietal cortex (LPC)

and the cognitive control networks (CCN) that

includes the dorsolateral prefrontal cortex

(DLPFC), anterior insular cortex (AIC), and supra-

marginal gyrus (SMG) in ADHD.

Studies on whole-brain structural MRI showed volumetric

reductions in the basal ganglia in children with this reduc-

tion attenuating by adulthood.51–53 These findings help

establish ADHD as a disorder that involved delayed neu-

robiological development. Another finding that supported

this view was a longitudinal study of 223 children with

ADHD with 223 healthy controls which demonstrated that

ADHD children were 2–5 years behind in achieving simi-

lar cortical thickness as healthy controls.54–56

Studies on neural connectivity in ADHD using diffu-

sion MRI (dMRI) showed decreased fractional anisotropy

(anterior corona radiata, internal capsule, and forceps

minor and reduced orbitofrontal white matter organisation

(mesocorticolimbic circuits)).57–59 Resting-state functional

connectivity showed reduced connectivity within the

DMN and task-based functional connectivity revealed

increased activity for rest or introspective thought/tasks;

while in controls DMN deactivation occurred as they

transitioned to extrospective tasks a reduction in deactiva-

tion was seen in ADHD, which is possibly the cause of

lapses or errors in goal-directed behavior.60–64 In terms of

inhibitory control, a study of 287 individuals with ADHD

and 320 healthy controls found that those with ADHD

exhibit reduced activation in frontostriatal regions includ-

ing the right inferior frontal cortex, striatum, and supple-

mental motor cortex during tasks requiring response

inhibition.64–66

Functional MRI and diffusion tensor imaging studies

have revealed impairments in prefrontal-striatal networks

(inattention) and frontal-limbic networks (hyperactivity),

over-activation of DMN-activation of fronto-striatal and

fronto-parietal circuits, other frontal brain region and sys-

tems involved in executive function and attention to be

implicated in ADHD.66–72 In terms of neurotransmitters,

delayed maturation of certain dopaminergic neural path-

ways in children and adolescents with ADHD, lower

levels of available dopamine receptor and transporter

molecules in adults with ADHD and polymorphisms in

the serotonin transporter gene (associated with differential

response to ADHD treatment) and deficiencies in gluta-

mate signaling characterize the disorder.73–77

Electrophysiology and ADHD
Figure 1 illustrates the facility with which EEG frequency

analysis and ERP studies can be carried out using EEG

machines like the NeuralScan by Medeia. Presented below

are EEG-based studies on key aspects of ADHD.

Presented in Tables 1 and 2 is a summary of the approach

followed in a recent review of EEG-based studies between

2000 and 2017 that examined ADHD-specific cognitive

aspects (allocation of attentional resources, performance

monitoring, and processing).78 Findings of the review were

that in ADHD, in aspects of attention: orienting to cues,

signaling response preparation, monitoring of conflict,

rewarding feedback, and diminished inhibitory control were

seen in young adulthood. The review also highlighted the

need for studies between 16 and 26 age-group on ADHD.
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With ADHD being a delay in neural development more

studies that cover childhood and young adulthood (till 25

years) are warranted. The review also highlighted the need

for genetically informed studies (family studies and twin

studies), studies across lifespan in executive functions and/

or decision-making processes, cross-border disorder diseases

comparisons, whether ADHD was classified based on self-,

parent- or teacher-reporting, neuroimaging and studies on

remission and persistence of ADHD.

Another key aspect brought out by this review is ERPs

subtypes exist based on the paradigm used to elicit them

with the odd ball paradigm and its variations being used to

study attention and ADHD. Paradigms used include;

● Stimuli (visual vs. auditory) cued continuous perfor-

mance tasks (CPT), such as cue orienting (cue-trials),

response execution (go-trials), response inhibition (no-go

trials), trial conditions with inhibitory versus response

demands.
● Performance monitoring (various facets of monitoring

within the same task) including; conflict (errors and feed-

back), context monitoring (e.g., social vs. non-social),

● Face processing tasks (covering a range of positive

and negative emotions), emotional conditions.
● Other paradigms used to evaluate cognitive ability

include colour vision, orientation, brightness, pitch,

motion, cross-modality integration, etc.

Such psychological, functional, and behavioral studies keeping

in mind the structural, pathophysiological and environmental

aspects of ADHDwill certainly go a longway in clarifying the

symptom and heritability sharing between ADHD, its co-

morbidities and cross-border disorders, aid in its endopheno-

typing and in identification of a diagnostic marker.79–81

ADHD, Attention, Cognitive

Performance, Default Mode Network

(DMN) Deactivation
The default mode network (DMN) which includes the medial

prefrontal cortex (mPFC), posterior cingulate cortex (PCC)/

precuneus and medial, lateral and inferior parietal cortex

medial prefrontal cortex (mPFC), posterior cingulate cortex

(PCC)/precuneus and medial, lateral and inferior parietal

Table 1 Analytic Approach Followed to Review EEG-Based Cognitive Studies on ADHD from 2000 to 2017

Analytical Approach Prominent Components & Proposed Functional Significance

ERP’s Sensory

processing

P50:sensory gating, N1 (N100): Sensory processing of unexpected (auditory) stimulus,

P1 (P100): Sensory processing of stimulus in the contralateral visual field, N170: Structural encoding of faces, Early

posterior negativity (EPN): Selective visual attention toward emotional stimuli, Mismatch negativity (MMN): Detection

of infrequent and odd deviant stimulus in a repetitive sequence of auditory or visual stimuli

Stimulus

evaluation

N2: Detection of mismatch and/or inhibition of competing response, N250: Storage of face representation in long-term

memory, P2: Sensitivity to various stimulus features, P3a (novelty P3): Novelty processing and involuntary orienting of

attention, P3b (classic P3): Attentional engagement and stimulus evaluation/decision-making, N3 (slow wave or late

posterior negativity (LPN)), Enhanced attention to stimulus, particularly the nonautomatic, controlled part of the stimulus

processing, Negative-going wave over centropariental electrodes peaking at 250–500ms poststimulus

Response

preparation

CNV Negative-going wave rising around 260–470ms after a warning stimulus: Response and motor preparation to

upcoming stimulus, Lateralised readiness potential (LRP) Negative-going wave over motor cortices contralateral to the

responding hands: Motor preparation before action execution, Late positive potential (LPP): Salience of emotional stimuli

Error detection Error-related negativity (ERN) Negative-going wave rising 50–100 ms following erroneous response execution over

frontocentral electrodes: Unconscious error processing

Error-related positivity (PE) Positive-going wave over centro-parietal electrodes peaking around 200–500 ms post-

error, after the occurrence of ERN: Conscious error processing

Quantitative EEG (qEEG) Very-low frequency (VLF, 0.02–0.2 Hz): Default-mode network, Delta: Attention and inhibition, Theta: Cognitive

control, learning and memory, Alpha (8–12 Hz, over occipital cortex): Alertness, attention and inhibition, Mu rhythms

(8–13 Hz, over sensorimotor cortex): Action execution and observation of others’ actions, Beta: Sensorimotor

processing and sensory gating, Gamma:Sensory binding

Time-frequency analyses Evoked power & Induced power: Dynamic changes in power of a given frequency band over time, Event-related phase-

locking OR inter-trial coherence (ITC), Consistency of timing of ERPs across trials (eg, neural variability), Coherence &

Cross-frequency coupling: Brain’s regional connectivity and interregional interaction
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cortex is active when the brain is at rest and deactivates with

the onset of goal-directed tasks.82–90 Further, the DNM is

comprised of both task-positive (extrospective attention) and

task-negative (introspective attention) components with

attenuation being directly correlated to the degree of com-

plexity and cognitive challenge a task presents.82–90 DMN

oscillations are very low frequency (VLF) oscillations with

individuals with ADHD exhibiting reduced DMN deactiva-

tion when transitioning from rest to a specific task, ie,

increased reaction time variability (RTV).91–93 In a study

on adults with low and high levels of ADHD Broyd et al

compared EEG at rest and during a task that demanded

attention.94 While both groups exhibited equivalent attention

and performance via sLORETA it was found that both groups

showed atypical deactivation, ie, the DMN regions deacti-

vated differed. Attention-induced DMN deactivation

occurred in the medial prefrontal regions (mPFC) in those

with low-level ADHD while in those with high ADHD the

temporal regions were deactivated.

Inhibitory Control
A study on inhibition control and ADHD highlighted

deficits in the ‘inhibition of interferences’ and “action

inhibition” via “Simon Tasks” and “Go/Nogo tasks”.

Table 2 Neurocognitive Domains and the ERP Components Elicited via Appropriate Paradigms in EEG-Based Cognitive Studies on

ADHD from 2000–2017

Neurocognitive

Domain

Subprocesses

Investigated

EEG/ERP Components Paradigms Used to Elicit ERPs ADHD

Attention Processing Cue processing P50, P1, N1, P2, N2, P3a, P3b, TF-PCA of P3b,

LRP, CNV, VLF, delta, theta, alpha, beta, gamma

Visual oddball, Auditory oddball & go/no-

go, Fast task,Cued CPT

Eriksen flanker task, Two choice reaction

Response preparation CNV Auditory oddball & go/no-go

Novelty processing

Sustained attention VLF Cued CPT

Perceptual binding

Inhibition Control P1, N1, P2, N2, P3b, LRP Stop-signal Go/no-go

Performance

Monitoring

Conflict monitoring N2, ERN, Pe, CNV, LPP, ITC, theta, early

positivity,

Flankers task, Go/no-go, Incentive delay

task

Error processing ERN, Pe Go/no-go *

Predictions

Face Processing Structural encoding N170, P1 Visual oddball with faces

Sensory Processing Visual processing P1, theta, alpha cVEP, Light flash paradigm Tone

processing during film. Brightness

detection task

*

Auditory processing N1, theta, alpha Tone processing during film *

Context modulation

Memory and

Language

Working memory Alpha; P3b Delayed match-to-sample task Modified

1-back task

Semantic processing

Speech processing

Note: EEG and ERP components where ADHD-autism spectrum disorder (ASD) shows an overlap. Boxes shaded grey indicates studies where the ERPs reflective of

cogitative status in ADHD were elicited using appropriate paradigms. Blank cells indicate areas on EEG aspects of ADHD not yet studied. Note: Adapted from Lau-Zhu A,

Fritz A, McLoughlin G. Overlaps and distinctions between attention deficit/hyperactivity disorder and autism spectrum disorder in young adulthood: Systematic review and

guiding framework for EEG-imaging research. Neurosci Biobehav Rev. 2019;96:93–115. Creative Commons license and disclaimer.78 Available from: http://creativecommons.

org/licenses/by/4.0/legalcode”http://creativecommons.org/licenses/by/4.0/legalcode
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Findings revealed that inhibitory control operates on

a hierarchical “first come, first serve” basis which is not

integrated in ADHD. The defect was attributed to dysfunc-

tions at the response selection level and fronto-parietal

cortices. The clinical benefit of this finding it that it indi-

cated that ADHD children required to be given simple

step-wise instruction arranged in priority rather than com-

plex situations requiring “if-then” decisions. Findings are

also suggestive that behavioural, pharmacological and

neurofeedback might help in this area.95

Cognitive and Neurophysiological Markers

of ADHD Persistence and Remission
Childhood ADHD tends to persist into adulthood.96–98 In

a six-year follow-up study of 279 individuals, 169 were

controls, all with IQ>70; 23 (21%) were remitters and the

remaining were individuals in whom ADHD persisted

among 110 individuals with childhood ADHD.99 Tests admi-

nistered included; i) diagnostic (Diagnostic Interview for

ADHD in adults, DIVA, Barkley Functional Impairment

Scale, BFIS, ii) IQ (Wechsler Abbreviated Scale of

Intelligence, WASI-III and digit span subtest for adults and

children) and iii) activity level (Actigraphy).100–107

Neurophysiological tests using the i) the fast task, ii)Go/No-

Go (GNG) task, and iii) cued flanker continuous performance

task (CPT-OX) paradigms to elicit and measure EEG-based

RTV, CNV, cue-P3, nogo-P3, commission error (CE) and

omission error (OE) as well as delta, theta, alpha and beta

power following Fast Fourier Transform (FFT) to evaluate

attentional and inhibitory processes.102,108-113

The study was able to identify key markers of i) remis-

sion: preparation-vigilance measures (CNV, delta activity,

RTV and OE) ii) moderator/s: IQ and iii) cognitive factors

that did not influence the outcome of remission or persis-

tence: executive control measures of inhibition or working

memory (nogo-P3, CE and digit span backwards, DSB).21

Among the findings, preparation-vigilance processes have

enormous clinical impact and potential in designing non-

pharmacological interventions (cognitive training and neuro-

feedback) for individuals with ADHD.21 In terms of

replication of results, this lack of association of executive

control measures with ADHD remission was seen in some

studies while in others no similar association was seen.114–121

Studies carried out to further examine factors influen-

cing ADHD remission by Cheung et al, Michelini et al and

James et al used the Fast Task with incentive paradigm and

measured hypoarousal via skin conductance level

(SCL).122–124 ADHD remitters were similar to controls in

baseline allocation (P3) and fast-incentive CNV amplitude

both of which were found to be malleable components

under fast task conditions. However, ADHD remitters

differed to controls and were similar to ADHD persisters

in terms of baseline peripheral arousal (SCL) which was

also found to be modifiable under fast-task conditions.

Thus, baseline SCL levels could prove as an enduring

marker both in ADHD remitters and persistors. Here too

treatment with MPH is found to improve both ADHD

symptoms and peripheral arousal.125–127

Cheung et al, Du Reitz et al and Michelini et al worked

on other aspects pertinent to diagnosis of ADHD persis-

tence and remittance studies.123,128,129 Du Rietz et al

examined cognitive-neurophysiological and movement

correlates of ADHD diagnosis of persistors and remitters

based on parent/teacher reporting (common practice for

childhood ADHD diagnosis) versus self-reported (com-

mon practice for adult ADHD diagnosis) among the

same study population (6–year follow-up study).123,128

By DSM-V, ADHD persisters were 47% for self-

reporting and 79% for parent-reporting. A key finding of

the study was that self-report of ADHD persistence and

remission did not correlate with neurophysiological and

movement results obtained. The implications for follow-up

studies of childhood ADHD are that both self-reported and

parent/teacher reporting might need to be obtained.128

Michelini et al examined cognitive-performance mea-

sures and ERP’s involved in conflict monitoring: N2 and

error processing: error-related negativity, ERN, and posi-

tivity, Pe, from an arrow flanker task with low-conflict and

high-conflict conditions. N2 is a frontocentral negative

deflection obtained at 200–400ms following a high con-

flict/incongruent stimulus (two competing responses and

evaluation) when a correct response is made.129–131 If the

subject makes an error, the ERN is recorded (frontocentral

response-locked negative deflection at 0–150 ms) followed

by the Pe (centroparietal positive enhancement at 200–400

ms after response), ie, the ERN reflects unconscious

response-monitoring system following a mistake while

Pe represents conscious error processing to adjust response

strategy.132–135 While N2 (for flanker task) showed no

difference between persisters and remitters, enhancement

of Pe (for Go/NoGo tasks) and ERN (for performance-

monitoring tasks) was seen both in this study and has been

reported in ADHD remitters.130,136-141 The findings of this

study also illustrated the malleability of Pe and ERN and
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in turn the possibility of nonpharmacological interventions

via Neurofeedback and behavioral training.129

Reaction Time (RT), Reaction Time

Variability (RTV), Malleability of RTV and

Response Speed – ERP
The EEG’s and ERP’s temporal precision was used by

Cheung et al to study the relationship between cognitive

performance via RTV both a heritable and malleable trait

and response speed.122 The group examined P3 ampli-

tudes (attention allocation) and contingent negative var-

iation (CNV) a marker of preparation in 174 controls and

93 individuals with ADHD at baseline and following

fast-incentive conditions of a four-choice reaction time

task. P3 amplitudes were attenuated in ADHD indivi-

duals and RTV increased, with both ERP components

proving malleable to fast-paced reward conditions. Twin

studies have highlighted both heritability and the rela-

tionship between theta oscillations, RTV and ADHD.142

The CNV, reflecting cognitive anticipation and motor

preparation, has been shown to be another heritable trait

reduced in ADHD, neuro-developmentally delayed based

on topographical studies.108,109,143-147 A key aspect worth

noting is that the CNV calculated as the mean amplitude

at Cz or Pz, in milliseconds, varies in site and interval

depending both on the age group studied and the para-

digm used to elicit it.144,146,147

Studies have demonstrated the possibility of normalization

of P3 and CNV amplitudes in ADHD following stimulant

medication and methylphenidate (MPH) respectively.148–151

Studies using go/no-go tasks in combination with either neu-

rofeedback or rewards/incentives have also shown them to be

malleable to non-pharmacological techniques.152–157 One

aspect to be kept in mind when considering comparison and

efficacy studies is that while these interventions did help

normalize response speeds in ADHD individuals, the use of

rewards/incentives further also increases CNVamplitudes and

reduces RTV/response times in healthy adults.158 Further as

the mode of action of MPH which normalize CNVamplitudes

is via the catecholaminergic pathway; the converse also

applies, ie, CNV could serve as a catecholaminergic system

marker.108,158 Cheung et al also looked at the relationship

between P3, CNV, RTVand intellectual quotient (IQ) between

controls and individuals with ADHD. While IQ exhibited

a negative association with P3 amplitude such an association

was absent among ADHD individuals.122,159

Reaction time variability (RTV) another candidate neu-

rocognitive marker of ADHD refers to the degree of intra-

individual variation in responding to a target stimulus, and

increased reaction time variability on attention tasks has

been commonly reported in ADHD youths.65,160,161

Frontal lobe damage increases RTV, while individual dif-

ferences in RTV predict inhibitory success, subjects with

increased RTV show greater activation during response

inhibition tasks.162,163

A recent study (n=1538 youths) examined the relation-

ship between ADHD symptoms, maps of dopaminergic gene

expression (DRD1 and DRD2 gene), brain structure (ventro-

medial prefrontal cortex, vmPFC), and reaction time varia-

bility – an index of lapses in attention. It also tested for

associations between brain structural correlates of ADHD

symptomatology andmaps of dopaminergic gene expression.

Parent ratings, adolescent self-reports, and reaction time

variability were negatively associated with gray matter

volume (GMV), while DRD1 and DRD2 gene expression

were associated with brain structural correlates of ADHD

symptoms. Increased RTV on tasks of vigilant attention is

common when comparing children with ADHD versus typi-

cally developing controls.65,161 The hypothesis is that

increased RTV is linked to default mode network (DMN)

activity typically attenuated during goal-directed tasks, can

persist into periods of task-related processing and, as a result,

compete with task-specific neural processing, eg, like work-

ing memory tasks.63 The vmPFC is a primary hub in the

brain’s DMN – a network posited to play a central role in

mind-wandering and task-unrelated thought. Although spec-

ulative, it is possible that the volumetric reductions in the

vmPFC may be linked to DMN dysfunction.

ADHD is characterized by greater intra-individual RTV

during cognitive tasks. One commonality among these var-

ious populationswith increasedRTVare problemswith atten-

tion, although there seems to be considerable variability in the

types of attentional difficulties across populations (such as:

selective, sustained and divided attention, and combinations

of these).164–167 Studies on RTV and ADHD subtypes show

poor correlation, RTVand reducedwhitematter volume show

high correlation and RTV has been shown to improve with

both stimulant medication and cognitive training.168–186

Theta Beta Wave Power (TBR) and

ADHD
EEG studies on frequency analysis revealed an increase in

theta wave power and/or decrease of beta wave power
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(TBR) in frontal areas, or a decrease in sensorimotor

rhythm (SMR) power in the central area.187–210 Theta

and TBR studies between 1930 and 1970 led to TBR to

being a candidate diagnostic marker both in children and

adults. However, TBRs variability with age, ADHD sub-

types, its 63% sensitivity and 58% specificity when com-

pared with clinical diagnosis of ADHD (gold standard)

and its poor correlation with ADHD symptoms (r =0.10

for children and r =−0.14 for adults) have raised questions

on its candidature.187–210 While some studies has revealed

THBR to be a reliable marker of ADHD resulting in it

being cleared by the FDA and the BlueCross others have

had contrary results.211–213 No consistent theta or theta/

beta increases to diagnostically useful levels were found

with ADHD. Thus, in order to prevent over diagnosis and

misdiagnosis the TBR has been advocated only as an add-

on tool following clinical diagnosis. However, TBR has

been very used successfully both as a tool to determine

treatment efficacy and as a neurofeedback, NFB

tool.187,191,208,209

The effects of an acute dose (0.7 mg/kg) of methylphe-

nidate (MPH), known to improve home, school and cog-

nitive task performance were evaluated via quantitative

electroencephalography (QEEG) study following a one-

week washout period.214 The chief reason for use of

QEEG was that it enabled both temporal and spatial

study of attention using the continuous performance test

(CPT) and test of variables of attention (T.O.V.

A.).196,211,212,215,216 Results of the study (n=20, 6–

12years) were; for TOVA measures: omission error (oe,

p<0.01), commission errors (not-significant at p>0.05),

response time (RT, p<0.05) and standard deviation

(p<0.01) for MPH-washout versus MPH-single-dose.

MPH showed no brain wave frequency changes in the

resting EEG state. However following CPT, increase in α
(right and left frontal and occipital areas), β activity (all

areas except temporal brain region) and θ/β ratio (right

frontal and parieto-occipital, and left temporal areas) was

seen with decrease in θ (occipital and right temporo-

parietal areas), and δ activity (occipito-parietal areas).196

Another controlled, randomized, multigroup design,

with pre-, post- and follow-up treatment phase study eval-

uated treatment efficacy of Neurofeedback, NFB (n=19)

versus pharmacological, Rx (n=19, MPH: 1 mg/kilo/day)

therapy versus behavioral therapy, BT (n=19) and

ADHD.177,191 NFB: 30 sessions of θ/β training at 4/sessions

week (30-s initial baseline + 24-min, ie, six 4-min runs,

with a choice of 5 different screens like games, puzzles,

etc., with rewards to ensure reinforcement). BT: 15 one-on-

one 50-min sessions of cognitive-behavioral therapy.

Parents training: 10 weekly 90-min sessions and teachers

training: 5 group sessions, 90 min each.197–199 Evaluators

were blinded to which child received which therapy. All

three therapies showed similar TBR improvements (p>0.05)

indicating that they were equally effective (Hypothesis (H),

HRx=HNFB=HBT). While global attention (p=0.002), audi-

tory attention (p=0.017) and visual attention (p=0.028) were

significant during treatment phase with the group on med-

ication (Rx) showing the most improvement, the differences

reached non-significance (NS) post-treatment. Classic rest-

ing-EEG patterns for children ADHD versus healthy devel-

oping controls indicate elevated θ and reduced α and β.
A study to determine if these resting-EEG patterns were

seen in adults evaluated 18 college students with ADHD

and 17 controls.199 Adults with ADHD also exhibited the

same neural abnormalities as children with ADHD with

decrease in α and β, increase in θ and θ/β when relative

power computation was carried out and this was more

marked for eyes closed that eyes opened condition. vi.P3:

In terms of P300 and ADHD, a recent meta-analysis

observed that while P3b amplitude declines with age in

non-ADHD controls, this decline was more marked in

individuals with ADHD.78,217,218 The neurobiological

aspects linked with this finding are that cortical maturation

in ADHD is delayed.219 The prefrontal cortex provides

input signals for the ventral attention network, which is in

turn linked with the P300b ERP component.220 Thus, if one

wanted to examine the contributions of the prefrontal cortex

to P3 generation it would be best to study prefrontal cortical

maturation and P3 both in adolescence and young

adulthood;221 P3 indexes attention and memory processes,

updating of mental representations stored in working mem-

ory based on novel incoming stimuli, attentional orienting

either rapid, or passive attentional shifts to new/unexpected

stimuli, or active attention shift due to a task.222–227

Auditory P3 amplitude increases across childhood-till 20

years whereas its latency decreases across lifespan.225 P3

amplitude also shows variations in terms of electrode

regions for which it is at peak across development.223,224

P300 variations have also been associated with, externaliz-

ing problems which are genetically mediated, social infor-

mation processing style and high levels of aggression. P300

variations have also been associated with the distributed

neural circuit including the lateral prefrontal cortex, both

of which have shown impairments in externalizing

disorders.228–236 P3 amplitudes have been also shown to
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vary depending on the paradigm used to elicit them.237–241

One study examined P3 amplitudes and topographical maps

among the ADHD subtypes following the Go/NoGo task.141

The chief findings are (Figure 4) individuals with ADHD

showed deficits in the anterior (frontal site) attentional

system. ADHD-I and ADHD-H groups showed impair-

ments for attention-demanding Go/NoGo respond-to-target

task, while the ADHD-H and ADHD-C exhibited slightly

less impairment for inhibition-demanding Go/NoGo sup-

press-to-target task.141

Sensori-Motor Rhythm (SMR) and ADHD
Several sleep disorders (sleep apnea and restless legs syn-

drome, idiopathic “sleep-onset insomnia” (SOI), also

called “delayed sleep phase syndrome”) are associated

with ADHD.242,243 Sensori-motor rhythm (SMR)

Neurofeedback studies revealed that this intervention nor-

malized sleep and thus improved ADHD symptoms such

as inattention and hyperactivity/impulsivity, demonstrated

the role of sleep in cognition, reported that adult ADHD is

characterized by a higher prevalence of “evening types”,

characterized by a delayed circadian phase.242–246 Arns

et al demonstrated an association between high sunlight

intensity and low ADHD prevalence in ADHD.242 Several

studies have demonstrated that Sensori-motor rhythm neu-

rofeedback (SMR) results in increased sleep spindle den-

sity during sleep, decreased sleep latency and increased

total sleep time.247,248 Research has also demonstrated that

melatonin results in an increased sleep spindle density and

decreased sleep latency, suggesting overlap in the working

mechanisms of SMR neurofeedback and melatonin.249

Sleep spindles are generated by the GABA-ergic thalamic

reticular neurons and are synchronized through glutama-

tergic cortico-thalamic projections.250 SMR neurofeedback

had its most specific effect on decreasing SOL. For TBR

neurofeedback no association between clinical improve-

ment and change in SOL or PSQI were found. Clinically,

TBR and SMR neurofeedback had similar effects on

symptom reduction in ADHD (inattention and hyperactiv-

ity/impulsivity); therefore, these results suggest differen-

tial effects and different working mechanisms for TBR and

SMR neurofeedback in the treatment of ADHD.

Sleep and ADHD
A meta-analysis of sleep (polysomnographic and EEG)

studies carried out over the last 15 years to examine

macro- and microstructural alterations of sleep in

ADHDS. Higher slow-wave activity (SWA) and theta

oscillations were found to occur in ADHD during Non-

REM (NREM) and REM sleep. Higher theta activity is

harmful to memory, performance and inhibitory control in

ADHD. These changes in brainwave patterns could be due

to delay in cortical maturation. Poor sleep quality in turn is

known to affect cognitive function.187

Resting State Studies and ADHD
A meta-analysis on resting state condition (eyes open and

closed) to examine the reliability of spectral analysis in

studying psychiatric disorders identified 67 out 184 studies

were ADHD. In the eyes closed condition for ADHD-

children power increases for delta and theta and decreases

across alpha, beta and gamma and increase in absolute

power for both delta and theta was seen. In the eyes

open condition, an increase was dominant in both delta

and theta for ADHD-children and in the delta band for

ADHD-adults. Decreases in absolute power were domi-

nant in the beta band for ADHD-children. Meta-analysis

revealed that diametrically opposite results for absolute

power vs relative power were only seen in the delta band

for ADHD-children in the eyes closed condition. Relative

power comparisons of controls to ADHD in children with

eyes closed yielded a highest consistency score of 7.0

while the highest consistency scores for absolute power

with eyes closed was 2.8 for ADHD in children.251

Neurofeedback (NFB) and ADHD
Meta-analysis of studies on neurofeedback where stan-

dard’ neurofeedback protocols revealed three main factors

impacted NFB efficacy: first, a intensity of treatment, but

not treatment duration, second, using parent rating was

better than teacher rating and third, using high-quality

EEG equipment.188,189

Stimulant Medication and ADHD
A study was carried out to predict clinical gain and assess

the risk of acute side effects of stimulant medication

between without treatment (T1) and T2 on a single dose

of stimulant medication groups using resting EEG (3-min

eyes-closed, 3-min eyes-open), and 20 min cued visual

GO/NOGO. EEG spectra, ERPs, omissions, commissions,

RT, and RTV variability were computed. Excess theta in

the ADHD group on treatment (T2) indicated positive

treatment response and increased level of posterior alpha

indicative of posterior hypoarousal were seen in non-

responders.191
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A Peak Amplitude and Latency of the P3a and P3b components associated with Go/NoGo targets

B Topographical Maps associated with Go/NoGo targets

Figure 4 Attention among controls and individuals with self-reported ADHD captured via P3 following Go/NoGo Task Note: Adapted from Rodriguez PD, Baylis GC.

Activation of brain attention systems in individuals with symptoms of ADHD. Behav Neurol. 2007;18(2):115–30. Creative Commons license and disclaimer available from:

http://creativecommons.org/licenses/by/4.0/legalcode”http://creativecommons.org/licenses/by/4.0/legalcode.141
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Pathagnomic/Endophenotyping
Markers of ADHD . . .. Are We There
Yet?
With the shared heritability and symptom overlap seen in

ADHD EEG-based endophenotyping holds promise in

defining the etiology of ADHD.80,81,252,253 A recent

study on heritability/genotyping of attention and inhibition

processes in twins (67 male-only twin pairs) concordant

and discordant for ADHD via ERPs and flanked CPT was

carried out. ERPs were obtained for cue (P3, CNV or

contingency negative variation), go (P3, N2) and nogo

trials (P3, N2). No phenotypic associations were found

between CPT-derived ERPs and ADHD.78 Do these find-

ings imply that the quest for pathognomic/endophenotyp-

ing markers of ADHD is a futile one?

The present paper looked at EEG-based studies of

ADHD on attention, cognitive performance, default mode

network (DMN) deactivation, inhibitory control, cognitive

and neurophysiological markers of ADHD persistence and

remission, reaction time (RT), reaction time variability

(RTV), malleability of RTV and response Speed – ERP,

Theta Beta wave power (TBR), P3, sensori-motor rhythm

(SMR), sleep, resting state studies, neurofeedback (NFB)

and stimulant medication. Study findings illustrated dis-

tinct patterns in ADHD versus normal individuals. We also

looked at key challenges in identifying potential

pathognomic/endophenotyping markers of ADHD. Taken

together the present work points at a framework, a step-

wise systematic approach in the search for potential mar-

kers of ADHD (Figure 5):

Step-1: Defining the ADHD population and sub-groups

if required,

Step-2: Symptom grouping (psychological phenotyping),

Step-3: Carrying out appropriate EEG-based studies (neu-

robiological phenotyping) for each symptom,

Step-4: Genotyping,

Step-5: Environmental risk factor grouping,

Step-6: Looking for patterns, association or causation

depending on the study design.

Questions This Step-Wise Approach
Will Help Raise and Answer
* Could one predict persisters/remitters and responders/

non-responders via neurobiological/EEG-based studies?

* Could overlapping symptoms among the cross-border

co-morbid mental disorders extend to overlap in neuro-

biological and EEG patterns?

* If these psychiatric disorders share a common genetic

risk then what causes a particular psychiatric disorder to

dominate and clinically present? There are possibly dis-

tinct precipitating factors (genetic and non-genetic

Figure 5 Diagrammatic illustration of the contributing factors to clinical phenotypic presentation of ADHD.
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perhaps environmental) yet unknown that eventually

contribute to the clinical dominant outcome (Figure 5).

* Should shared genetic etiology highlight the need to

re-define clinical and diagnostic boundaries to pre-

vent diagnostic misclassification?

* Should endophenotyping strategies need to ensure

they reflect phenotypic heterogeneity that correlates

with genetic correlations where psychiatric disorders

are concerned?

* Could another possible strategy be symptom-based-

endophenotyping given the challenges in successful

endophenotyping, diagnosing and treating psychiatric

disorders with shared genetic heritability? For example,

studying executive functioning in schizophrenia and

ADHD or studying shared mechanism underlying cog-

nitive biases in anorexia nervosa, obsessive-compulsive

disorder (OCD) and schizophrenia.47

Conclusion
The quest for a pathognomonic marker for ADHD seems

challenging when one considers the overlapping symptoms

and shared heritability between its psychiatric co-morbidities

and cross-border disorders. For the same reasons, endopheno-

typing has also proved challenging. With deficits in neurobiol-

ogy via developmental delay being the core factor contributing

to behavioural and clinical symptoms seen, it seems logical

that neurobiological characterization of ADHDmight hold the

answer to a pathognomonic marker for ADHD. The interplay

of heritable, developmental and environmental factors that

cause ADHD to manifest as a fully developed condition

while related disorders possessing the same risk factors do

not remain to be fully explained (Figure 4). However, among

the neurobiological tools available, EEG machines like

NeuralScan by Medeia are a cost-effective tool providing an

accurate temporal resolution which is vital in studying atten-

tion and inhibition and fast task responses in ADHD. Through

these new state-of-the-art technologies it is now possible to

achieve both temporal and spatial (sLORETA) resolution and

power analysis (QEEG) which will enable and facilitate step-

wise neurobiological characterization, diagnosis and manage-

ment of ADHD. In addition, the EEG could help in identifying

potential EEG-based pathognomic/endophenotyping markers

of ADHD if a step-wise approach is followed. The framework

for identifying potential EEG-based pathognomic/endopheno-

typingmarkers of ADHD is described in the present paper that

takes into consideration the psychological and neurobiological

phenotypes seen, the EEG-patterns observed, the genotype

expressed and the environmental factors at play.
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