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Abstract: Since the revival of multiferroic laminates with giant magnetoelectric (ME) coefficients,
a variety of multifunctional ME devices, such as sensor, inductor, filter, antenna etc. have been
developed. Magnetoelastic materials, which couple the magnetization and strain together, have
recently attracted ever-increasing attention due to their key roles in ME applications. This review
starts with a brief introduction to the early research efforts in the field of multiferroic materials and
moves to the recent work on magnetoelectric coupling and their applications based on both bulk
and thin-film materials. This is followed by sections summarizing historical works and solving the
challenges specific to the fabrication and characterization of magnetoelastic materials with large
magnetostriction constants. After presenting the magnetostrictive thin films and their static and
dynamic properties, we review micro-electromechanical systems (MEMS) and bulk devices utilizing
ME effect. Finally, some open questions and future application directions where the community could
head for magnetoelastic materials will be discussed.

Keywords: magnetoelastic materials; magnetostriction; magnetoelectric devices; thin films

1. Introduction

1.1. Multiferroic Materials

Multiferroic materials are the materials that inherently exhibit two or more ferroic properties, such
as ferroelectricity, ferromagnetism and ferroelasticity, etc. More recently, both single phase multiferroic
materials and multiferroic composites have attracted intense interests due to the realization of strong
magnetoelectric (ME) coupling, i.e., the control of electric polarization (P) by applying magnetic field
(H) (direct ME effect), or the manipulation of magnetization (M) through electric field (E) (converse
ME effect) [1–8]. Exciting progress has been made on novel multiferroic materials and multifunctional
devices because of their high-performance ME coupling [9–14]. Based on the operating mechanisms
for controlling different orders, multiferroic devices can be classified as the following groups listed in
Table 1. Applications, such as sensors, energy harvesters, etc. [15–25] have been developed according to
the direct ME coupling, while converse ME coupling has been utilized to design voltage tunable devices
including ME random access memory (MERAM), inductors, etc. [26–36]. Besides, another promising
topic that has received the significant research interests during recent years is mechanically actuated
ME antennas, which exploit both direct and converse ME couplings [37–46]. The combined high
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permeability µ and permittivity ε offer great beneficial in compact RF/microwave devices, for example,
miniaturized antennas, etc. [47,48]. Compared to conventional magnetic devices, these electric field
tunable multiferroic devices have the advantages of lightweight, low power-consuming, compact, etc.
For example, an integrated magnetic inductor based on solenoid structure with FeGaB/Al2O3 multilayer
films was reported by Gao et al. [35]. A high quality factor and >100% inductance enhancement
compared with that of the same size air core inductor across a wide frequency band of DC-2.5 GHz
were achieved. Nan et al. [44] proposed the acoustically actuated ME antennas with a released
ferromagnetic/piezoelectric thin-film heterostructures, which could miniaturize the antenna size in 1-2
orders without performance degradation over conventional compact antennas.

Table 1. Categories of various multiferroic devices. Adapted from [4].

ME Coupling Physical Mechanisms ME Devices References

Direct ME coupling H control of P
Magnetic/current sensors,

energy harvesters, gyrators,
transformers

[15–25]

Converse ME coupling E control of M switching MERAM [26–28]

E control of µ Voltage tunable inductors,
filters, phase shifters [29–36]

Direct and converse
ME coupling

Interaction between electric
and magnetic phases

VLF mechanical antennas
Nanomechanical antennas

[37–42]
[43–46]

No ME coupling High µ and ε Compact antennas, etc. [47,48]

Note: E/H, electric/magnetic field; P/M, polarization/magnetization; µ/ε, permeability/permittivity; MERAM, ME
random access memory; VLF, very low frequency.

In order to achieve large tunability in multiferroic devices, strong ME coupling is required in the
heterostructures. The strength of ME coupling can be described by two coefficients: αDirect = ∂P/∂H
(direct ME effect) and αConverse = ∂M/∂E (converse ME effect). Therefore, multiferroic materials are of
great importance in determining the performance of these multiferroic devices listed in Table 1. The
ME effect was proposed by Curie in 1894 [49] and was proved by Landau and Lifshitz on the basis of
the crystal symmetry more than 60 years later [50]. Dzyaloshinskii experimentally demonstrated the
ME effect in single-phase multiferroic material Cr2O3 and intense research efforts have been made to
explore the possibility of achieving ferroelectric and magnetic orders in a single-phase material since
then. However, the single-phase materials, such as BiFeO3, BiMnO3, etc. are still suffering from the
low Curie temperature and weak ME coupling coefficients [51]. By means of utilizing strain-mediated
ME composites, which are composted of ferroelectric and magnetoelectric phases, a giant ME coupling
even above room temperature can be obtained. The first work on combining piezoelectric and
magnetostrictive effects was presented by Van Suchtelen in 1972 [52]. The reported ME voltage
coefficient of BaTiO3/CoFe2O4 is 1-2 orders higher than single-phase multiferroic materials. Later
then, a massive research work was carried out on ME composites including both bulk and thin-film
materials due to their great potential for multifunctional RF/microwave devices. In comparison with
bulk materials, thin-film ME composites have some distinctive advantages such as low interface losses,
complementary metal–oxide–semiconductor (CMOS)-compatible fabrication process, etc. Therefore,
they are more promising candidates for integrated RF/microwave ME devices.

1.2. Magnetoelastic Materials

Owing to the renaissance of multiferroic materials, research works on magnetoelastic materials are
increasing year by year as well. The year number of papers published on multiferroic, magnetoelectric
and magnetoelastic is shown in Figure 1, the data of which is recorded from GOOGLE SCHOLAR. It is
clear that the number of papers on multiferroic and magnetoelectric keeps rising since 21st century,
which means researchers become more interested in this topic. The number of papers published on
magnetoelastic also increases slowly in recent years result from the revival interest in ME effect. The
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selection of appropriate materials plays a key role in fabricating ME devices with good performance.
The properties of different typical piezoelectric and magnetostrictive materials used for ME devices
are listed in Table 2. Pb(Zr,Ti)O3 (PZT)-based ceramics are well-known piezoelectric materials that
have been widely employed in ME devices due to their high piezoelectric coefficients and low cost.
For the magnetostrictive phase, Galfenol (FeGa) and FeCoSiB with large magnetostriction constants
and piezomagnetic coefficients have been mostly used in thin-film ME devices. There are a variety of
properties for both piezoelectric and magnetic phases that need to be considered when developing
novel ME applications, such as dielectric loss, polarization, piezoelectric constant, electromechanical
coupling factor, magnetization, coercive magnetic field, magnetostriction, etc.
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Table 2. Parameters of typical piezoelectric and magnetostrictive materials.

Parameters
Piezoelectric Phase Magnetostrictive Phase

PZT-5H PZT-8 PMN-0.33PT LiNbO3 AlN film Metaglas Terfenol-D FeGaC FeGaB FeCoSiB

d31,p(pC N−1) −265 −37 −1330 −1 −2
d33,p(pC N−1) 585 225 2820 21 ~3.5–4

εr 3400 1000 8200 30 ~10
Qm 65 1000 100 100000 500

λs(ppm) ~30 2000 81.2 70 158 *
annealed

d33,m(nm A−1) 50.3 25 121.3 ~88
µr 45000 10 ~400

TC (◦C) 193 300 135 1200 >2000 395 650
References [53] [54] [55] [56] [57–59] [60] [8] [61] [62] [63]

Note: d31,p/d33,p, transverse/longitudinal piezoelectric constant; d33,m, longitudinal piezomagentic constant; λs,
saturated magnetostriction coefficient; εr, relative dielectric constant; µr, relative permeability; Tc, curie temperature;
Qm, mechanical quality factor; * The value is estimated using Young’s modulus and Poisson ratio of the film being
100 GPa and 0.3, respectively.

Magnetoelastic effects refer to the couplings between magnetic and elastic properties of a
material, which can be divided into two categories: direct and inverse effects. The best-known
direct magnetoelastic effects are magnetostriction and ∆E effects while some of the inverse effects are
described by special terms such as Villari effect and Matteuci effect in the literature. The detailed
description of magnetoelastic effects are listed in Table 3. Magnetostrictive materials have been playing
an important role in applications ranging from actuators, sensors and energy harvesters. Here, we
focus on the magnetostriction of magnetoelastic effects. By definition, magnetostriction means the
change of shape or dimensions of a material during the process of magnetization. The magnetostriction
was first identified by James Joule in 1842 when observing a sample of iron [64]. It can be categorized
into spontaneous and forced magnetostriction, which are called volume and Joule magnetostriction.
The illustration of volume and Joule magnetostriction of a spherical sample is shown in Figure 2. The
isotropic expansion of the sample near Curie temperature under zero magnetic field is due to the
spontaneous magnetostriction, while the Joule magnetostriction results in the elongation of the sample
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in the direction of magnetic field. The deformation in the orthogonal direction to the field with the
opposite sign and half the amplitude is called transverse magnetostriction. There are many other
factors that can lead to Joule magnetostriction such as the stress, volume change at high magnetic
fields, etc. which are out of the scope of this review. Figure 3 shows the magnetostriction curves for
volume and Joule magnetostriction. As shown in Figure 3a, a high volume magnetostriction of 0.82%
in FeRh was discovered above room temperature by Ibarra and Algarabel [65], which experimentally
demonstrated the predicted metastable ferromagnetic high-volume state within the antiferromagnetic
phase by applying magnetic field. Dong et al. [66] reported the Joule magnetostriction values of some
typical magnetostrictive thin films including Ni, Co, FeGaB, and FeCoSiB as shown in Figure 3b.

Table 3. Classifications of magnetoelastic effects.

Magnetoelastic Effects

Direct Effects Inverse Effects

Joule magnetostriction
Change of dimensions in the direction of applied

magnetic field

Villari effect
Change of magnetization due to applied stress

Volume magnetostriction
Change of volume due to spontaneous magnetization

Nagaoka-Honda effect
Change of magnetization due to volume change

∆E effect
Dependence of Young’s modulus on the state of

magnetization
Magnetically induced changes in the elasticity

Wiedemann effect
Torque induced by helical anisotropy

Matteuci effect
Helical anisotropy and electric and magnetic fields

induced by a torque
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Figure 3. (a) Thermal dependence of the volume magnetostriction at 14.2 T for FeRh (the line is a
visual guide). Reprinted with permission from [65]. Copyright [1994], American Physical Society.
(b) Measurement results of the magnetostriction constant in the absolute value of different magnetic
thin films (the line is a visual guide).

1.3. Magnetoelectric Applications

Due to the advantages of thin-film devices such as lightweight, low cost, high spatial resolution
and CMOS-compatible fabrication process, thin-film ME heterostructures are preferred in specific
applications where miniaturization of the device is crucial. Therefore, we focus on the recent progress
on thin-film magnetostrictive materials in this article. Several types of integrated multiferroic devices
based on thin-film ME heterostructures including ME sensors [18,63,67–71], inductors [35], filters [32]
and antennas [43,72,73] are presented in this section. Based on the direct ME effect, a giant ME
coefficient (αME) as high as 5kV/cm Oe was obtained by the direct deposition of FeCoSiB on Si substrate
with a Si/SiO2/Pt/ AlN/FeCoSiB layer stack [71]. The high quality of AlN and FeCoSiB films allows
the enhancement of limit of detection (LoD) to be an extremely low value of 400 f T/Hz1/2 at the
mechanical resonance frequency of 867 Hz. Here, LoD is also frequently referred to as equivalent

magnetic noise floor and given in the equation: LoD =
√

P
S2 , where P is the power spectral density of

the arbitrary quantity in units of au2/Hz, such as V2/Hz and rad2/Hz; S is the magnetic field sensitivity
of the arbitrary quantity in units of au/T, such as V/T and rad/T. Therefore, the unit for LoD is T/

√
Hz.

The single cantilevers were cut from wafers with a width of 2.2 mm and a length of 25.2 mm as shown
in Figure 4a. These cantilevers were mounted on printed circuit boards (PCBs), and the top-bottom
electrode connections were established manually. Operating at the working point with a bias dc field
of 2.1× 10−4T and a constant ac driving field of 1× 10−7T, the ME coefficients of the sensor with respect
to frequency were measured and pictured in Figure 4b. The electromechanical resonance frequency
and quality factor fitted to Lorentzian equation were observed as 867 Hz and 310. By performing 15
consecutive sensitivity measurements and averaging them, an estimation of the LoD of the sensor was
determined as 400± 37 f T/Hz1/2 and shown in Figure 4c. The influences of different noise regimes on
the LOD of a ME sensor were investigated by measuring LoD at various frequencies, which is depicted
in Figure 4d. Based on the converse ME effect, a voltage tunable inductor and bandpass filter were
successfully demonstrated by Lin and Gao et al. [32,35] The schematics and SEM images are presented
in Figure 5. The solenoid structure using FeGaB/Al2O3 multilayer was bonded to a lead magnesium
niobate-lead titanate (PMN-PT) piezoelectric slab to fabricate the tunable inductor. Figure 5b shows the
measured inductance under different E-field applied across the thickness of the PMN-PT slab, in which
the inset shows the SEM picture of the inductor. A high tunable inductance of >100% is obtained
over a large frequency range from 0 to 2 GHz and a peak inductance tunability of 191% at 1.5 GHz
is obtained. The quality factor is also enhanced more than 100% over the frequency range from 0 to
1.5 GHz. Two coupled elliptic-shape nano-mechanical resonators consisting of FeGaB/Al2O3 multilayer
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and AlN film are excited in in-plane contour mode to realize the electromagnetic (EM) transduction.
The dependence of the measured resonant frequency on the applied magnetic field was measured
and shown in Figure 5d. Both E-field and H-field tunability were also measured and the frequency
dependence on DC voltage across the thickness of AlN film is shown in ref. [13]. The H-field frequency
tunability of 5 kHz/Oe and E-field frequency tunability of 2.3 kHz/Oe were observed in same device.
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Figure 4. (a) Schematic illustration of the cantilever-based thin-film magnetic sensor using inversed
bilayer ME heterostructures. (b) ME coefficient as a function of frequency (Hac = 1 × 10−7T and
Hbias = ±2.1× 10−4T). The electromechanical resonance frequency was measured to be 867 Hz and the
quality factor is determined as 310 from the applied Lorentzian fit. (c) Averaged LoD plot with error
bars that indicate standard deviation. (d) The measured ME sensor’s LoD with respect to frequency.
Reproduced with permission from [71]. Copyright [2016], American Institute of Physics.
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Figure 5. (a) Structure model of the voltage tunable inductor based on FeGaB/PMN-PT heterostructures.
(b) Measured inductance under different E-field applied across the thickness of the PMN-PT slab (inset
shows the SEM picture of the inductor). (c) Schematic of the voltage tunable filter based on FeGaB/AlN
multilayers. (d) Dependence of the measured resonant frequency on the applied magnetic field (inset
shows the SEM picture of the filter). Reproduced with permission from [32]. Copyright [2016], IEEE.
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Utilizing both direct and converse ME effects, the unprecedented demonstration of ultra-compact
ME NEMS antennas was proposed by us in 2017 [43] and was expected to have great impacts on
our future antennas and communication systems. Two structures were designed to demonstrate the
novel receiving and transmitting mechanism: nano-plate resonator (NPR) and thin-film bulk acoustic
resonator (FBAR). The mechanism of the new antenna is explained as follow: from the receiving aspect,
the magnetostrictive layer can detect the RF magnetic field component of the EM wave and induce
an acoustic wave on the ferromagnetic layer. When this acoustic wave transfer to the piezoelectric
thin-film, the dynamic voltage/charge would be generated due to the direct piezoelectric coupling;
Reciprocally, from the transmitting aspect, the mechanical resonance, which is generated by applying
RF electric field to the MEMS resonator, would induce acoustic wave that can be directly transfer to the
upper ferromagnetic thin film. Then a dynamic change of the magnetization induced by acoustic wave
due to the strong magnetostriction constant would generate magnetic current for radiation. As shown
in Figure 6a,b, the antenna measurement setup is consisted of a horn antenna and our ME antenna
whose radiative element is the suspended FeGaB/AlN circular disk. The electromechanical resonance
frequency (fr,FBAR) of the ME FBAR is defined by the thickness of the circular resonating disk and can be

expressed by fr, FBAR ∼
1

2T

√
E
ρ , where T is the total thickness, E is the effective Young’s modulus, and

ρ is the effective density of the ME disk. The performance of ME FBAR was measured and presented in
Figure 6c,d,a resonance frequency of 2.53 GHz and calculated gain of −18 dBi were achieved from the
results of return loss (S11), transmission and receiving (S12 and S21) curves. A non-magnetic aluminum
(Al) FBAR structure was fabricated as a control device to demonstrate that the source of radiation
is from the ME coupling. A similar electromechanical properties of the control device is shown in
Figure 6e, however, the much lower gain in Figure 6f suggests that the ME coupling dominates the
radiation of FBAR antennas.
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Figure 6. Thin-film based ME FBAR antennas. (a) Illustration of the antenna measurement setup.
(b) SEM image of the fabricated the ME FBAR. (c) Return loss curve (S22) of ME FBAR. The inset shows
the out-of-plane displacement of the circular disk at resonance peak position. (d) Transmission and
receiving behavior (S12 and S21) of ME FBAR. (e) Return loss (S22) curve of the non-magnetic Al/AlN
control FBAR. (f) Transmission and receiving behavior (S12 and S21) of the non-magnetic Al/AlN control
FBAR. Reprinted with permission from [43]. Copyright [2017], Springer Nature.
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2. Fabrication and Characterization Methods

2.1. Fabrication Techniques of Thin Films

Due to the advantages of thin films, there are a variety of thin-film preparation techniques that
have been developed such as physical vapor deposition (PVD) [74,75], chemical vapor deposition
(CVD) [76,77], atomic layer deposition (ALD) [78,79], and sol-gel [80] etc. Here, we focus on the
description of PVD process which is the most commonly used method for thin film deposition. PVD is
a thin-film deposition process in a vacuum and plasma environment in which films with thickness in
the range of a few nanometers to a few micrometers are produced. The source materials are vaporized
and nucleated onto a substrate surface in a vacuum environment to fabricate the thin films. The
vapor phase is usually consisted of plasma or ions. There are three major PVD process: evaporation,
ion plating and sputtering, where the mechanisms for creating vapor phase are thermal effect, ion
bombardment and gaseous ions, respectively. Tungsten wire coils are normally utilized as the source
for heating the target materials and the deposition rate of the thermal evaporation is high compared to
other PVD processes. Different configurations of evaporation such as molecular beam epitaxy (MBE)
and activated reactive evaporation (ARE) are exploited to improve the films’ qualities as well. Based
on the sources of sputtering deposition, various sputtering processes were developed such as diode
sputtering, reactive sputtering and magnetron sputtering etc. Our PVD system is magnetron sputtering
which is able to do both DC and radio frequency (RF) sputtering. DC voltage is provided between
the anode and cathode, which are used to place substrate and target material, to sustain the glow
discharge. The target material for DC sputtering is usually metallic so that the glow discharge can be
maintained. RF sputtering is specifically designed to avoid charge building up on the surface of target
materials, such as insulators. The magnetic field is exploited to restrict the movement of the secondary
electrons emitted from the target surface and therefore efficiently increase the deposition rate.

2.2. Characterization Methods of Thin Films

The properties of magnetic and piezoelectric phases are crucial on achieving large ME coupling
strength, in which piezomagnetic and piezoelectric coefficients play significant roles among a variety of
thin film properties. Given that ME heterostructures are widely applied in RF devices, extensive works
have been carried out to develop the characterization methods for thin film materials. Some well-known
techniques have been developed for decades, such as X-ray photoelectron spectroscopy (XPS) and
X-ray diffraction (XRD), which are utilized to measure the compositions and crystal structures of thin
films. Magnetic properties including hysteresis loops and ferromagnetic resonance (FMR) curves can
be measured using vibrating sample magnetometers (VSM), superconducting quantum interference
devices (SQUID), and FMR tester. A waveguide and vector network analyzer (VNA) are utilized to
extract the permeability, loss tangent and FMR linewidth of magnetic thin films from the measured S
parameters [81]. With regard to characterization of magnetostriction constants, both direct and indirect
methods were proposed with different mechanisms [82–87]. Since the deflection of a cantilever structure
with the magnetic film on the upper side is proportional to the magnetostriction, an instrument was
devised to measure the magnetostriction as a function of applied field by measuring the change of
mechanical resonance frequency [83]. By utilizing a continuous laser beam system, a non-contact
method was developed to measure the saturation magnetostriction of a thin soft-magnetic film
deposited on a thin glass substrate under a rotating magnetic field [84].

In addition to the increased interest in magnetostriction, ∆E effect that represents the change
of Young’s modulus as a function of magnetic field has drawn a great amount of attention to build
ultra-sensitive ME sensors. Based on the non-contact optical technique, a simple, compact, and
sensitive system to measure the magnetostriction and ∆E effect of magnetic thin films was developed
by us recently [66]. The schematic of the proposed magnetostriction tester is shown in Figure 7a.
A rotating adjustable AC magnetic field with a maximum value of 300 Oe is generated by two pairs of
mutually perpendicular set Helmholtz coils with equivalent amplitude and 90◦ phase shift current.
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Similar to the cantilever method for measuring piezoelectric coefficients, the tip displacement of the
cantilever is detected by a MTI-2000 fiber-optic sensor due to the strain change in the magnetostriction
film. Figure 7b shows the schematic of the proposed delta-E tester, which is very similar to the
magnetostriction tester. Second vibration mode of the cantilever is excited by applying a 0.1 Oe AC
driving field through a solenoid with the frequency swept around 1555 Hz. A DC bias magnetic field
is generated by the Helmholtz coil to induce magnetic domain change in the magnetostrictive films,
and thus resulting in the change of Young’s modulus. According to the modified Euler-Bernoulli
beam theorem, the change of Young’s modulus can be derived by measuring the shift in resonant
frequency of the cantilever. Some typical magnetostrictive films such as Ni, Co, FeGa etc. with
well-known magnetostriction values are used to calibrate the system. Figure 7c shows the measured
magnetostriction and piezomagnetic coefficient for as-deposited and annealed FeGaB thin films. The
change in Young’s modulus of FeGaB thin film is also measured and shown in Figure 7d by using
delta-E tester.
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Figure 7. (a) Schematic of the proposed magnetostriction tester in three-view. (b) Schematic of the
proposed delta-E tester in three-view. (c) Measured magnetostriction and piezomagnetic coefficient
for as-deposited and annealed FeGaB thin films. (d) Measured delta-E effect for as-deposited and
annealed FeGaB thin films. Reprinted with permission from [66]. Copyright [2018], American Institute
of Physics.

Both the fundamental studies of magnetism and boosting of magnetic industry are greatly
influenced by the imaging of magnetic microstructures. One of the most effective ways to characterize
the performance of ME-based devices is the analyzation of magnetic domain activity. There are
only a few methods for observing magnetic domains down to device level including magnetic force
microscopy (MFM) [88], scanning electron microscopy with polarization analysis (SEMPA) [89] and soft
X-ray magnetic circular dichroism–photoemission electron microscopy (XMCD-PEEM) [90]. Due to
magnetic fields emitting from the domain in the magnetic materials, the force gradient acting on a small
magnetic tip can be sensed by using ac detection method [88]. A high contrast and spatial resolution of
magnetic domain was seen from the magnetization patterns. SEMPA is another imaging technique
with high spatial resolution for surface magnetic microstructures on the 10-nm-length scale [89]. By
employing a SEM electron optical column, the secondary electrons whose spin polarization are directly
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related to the local magnetization orientation are excited and emitted from the ferromagnetic sample
surface. Therefore, the surface magnetization map can be generated when the spin polarization of
secondary electrons is analyzed across the sample surface. A very large average velocity of 600 m/s
was detected for domain-wall motion in the NiFe layer by using XMCD-PEEM [90]. In particular,
magnetic domain imaging by magneto-optical Kerr effect (MOKE) microscopy offers direct access to
the behavior of local magnetization [91–94]. MOKE microscopy based on the Kerr and the Faraday
effects is one of the most prominent techniques for observing magnetic domain and is able to visualize
the magnetic dynamics on fast time-scales. Allowing for the direct imaging under a continuous
field excitation, a picosecond wide-field MOKE microscopy for imaging magnetization dynamics
is demonstrated in [92]. An example of nanosecond domain wall displacements and spin-wave
generation are observed and displayed in Figure 8 [93]. Figure 8a shows the precessional domain
wall motion with out-of-plane magnetization components of a (Fe90Co10)78Si12B10 sample. The spin
waves, which origin from the domain wall precession within the central magnetic domains shown in
Figure 8b, propagate with a velocity of 650 m/s. Moreover, the direct imaging of standing spin waves
at field excitations in a Co40Fe40B20/Ru/ Co40Fe40B20 anti-dot array at 2 GHz is exhibited in Figure 8c.
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Co40Fe40B20 anti-dot array at 2 GHz. Reprinted with permission from [93]. Copyright [2015], American
Physical Society.

3. Magnetostrictive Thin Films

3.1. Rare-Earth-Transition Metal Inter-Metallics

Magnetostriction was first reported by James Joule in the early 1840s, who observed the change of
length in iron particles when exposed to magnetic fields [64]. Villari discovered that applying stress to
magnetostrictive materials changes their magnetization [95]. However, magnetostrictive materials
have not been extensively used until World War II, when nickel-based alloys were employed in building
sonar applications. The magnetostriction of 3d transition metals Fe, Co and Ni can produce very high
forces, but the range of motion is small. The extraordinary magnetostrictive properties of the rare-earth
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elements such as terbium and dysprosium were first recognized in the early 1960’s, which can achieve
magnetostriction of up to 10000 ppm at low temperatures [96]. However, they do not demonstrate
significant magnetostriction at room temperature where practical devices must operate due to the low
Curie temperature. The solution to this problem was pointed out by Callen in 1969, who suggested
there was great promise that strong magnetism of the transition metals such as iron, which exhibit
higher Curie temperatures, could increase the rare-earth magnetic order at high temperatures [97].
In attempt to produce large magnetostriction at room temperature, rare-earth elements were alloyed
with 3d transition elements as rare-earth-transition metal inter-metallics.

3.1.1. TbDyFe

In 1979, the magnetic materials group at Carderock which was funded by the Office of Naval
Research (ONR) discovered that the magnetocrystalline anisotropy of rare-earth-transition metal
inter-metallics can be significantly reduced by adding Tb and Dy in certain proportion into iron. This
led to the development of the Terfenol-D alloy (Tb0.3Dy0.7Fe2), which exhibits giant magnetostriction
of about 2000 ppm at room temperature [98]. The large strain produced by Terfenol-D is useful in
applications as production of high amplitude, low frequency sound wavs in water, certain types
of strain gages, vibration compensation and compensation for temperature induced strains in large
laser mirrors. One of the draw backs of Terfenol-D is its brittleness in withstanding tensile stress,
which limits its ability to withstand shock loads or operate in tension.

In terms of Terfenol-D thin films, several efforts on the fabrication techniques and characterization
studies have been conducted during the last two decades [98,99]. Terfenol-D thin films are commonly
prepared by magnetron sputtering with a single alloy target or by co-sputtering with multiple targets.
However, the as-deposited films are always amorphous and their magnetoelastic behaviors and
magnetic properties are inferior than their bulk counterpart. To overcome these drawbacks and
enhance their mechanical and magnetic properties, the thin films must be crystallized either by
post-annealing or by depositing the film on a heating substrate. In 1994, Williams P. I. et. al. observed
in-plane magnetostriction coefficient of 500 ppm in Tb0.3Dy0.7Fe2 polycrystalline thin film as shown
in Figure 9 [100]. However, the saturation field achieved at 4 kOe was still too high, which made it
impractical for the usage in MEMS applications, as it would be very difficult to apply such a high bias
magnetic field on chip.
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and (b) λ‖ and λ⊥ as a function of x for TbxDy1-xFe2 films. Reprinted with permission from [100].
Copyright [1994], American Physical Society.

3.1.2. SmFe and SmFeB

In addition to Terfenol-D alloys, samarium-based alloys have also been of great research
interests due to their high Curie temperature. Unlike Terfenol-D alloys, which start to degrade
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their magnetostrictive performance at 200 ◦C, Samarium-based alloys can be applied to much higher
temperature environment without losing their magnetic properties [101]. One special character of
Sm-Fe alloy is their negative sign of giant magnetostriction, which lies in the relationship between
the magnetoelastic behaviors and the stress state of the magnetostrictive materials. Specifically, the
compressive stress can increase the strain for magnetostrictive materials with positive sign, whereas
decrease the strain for materials with negative sign. Therefore, in device applications using bulk
magnetostrictive materials, usually they are intentionally applied with compressive stress rather than
tensile stress for convenience to achieve the largest strain. However, in thin film applications, it is
not necessary to apply any stress on the thin films, therefore, Sm-Fe based alloys do not suffer from
the problem related to the reduction of strain due to the applied stress on negative magnetostrictive
materials. Another advantage is that the light rare-earth element samarium is more abundant than
the heavy rare-earth element terbium. Therefore, Sm-Fe based alloys have a price advantage over
Terfenol-D alloys. These advantages lead to the investigation and development of Sm-Fe based thin
films with good magnetostrictive characteristics.

In 1998, Kim et al. conducted a systematic investigation on the magnetostrictive behavior of Sm-Fe
and Sm-Fe-B thin films over a wide composition range from 14.1 to 71.7 at% Sm [102]. As displayed in
Figure 10, good magnetostrictive characteristics has been found at low magnetic fields in both Sm-Fe
and Sm-Fe-B thin films. At 100 Oe, magnetostriction of −350 ppm and −470 ppm have been achieved
for Sm-Fe with 25% Sm and for Sm-Fe-B with 27–31% Sm respectively. The addition of B has formed
an amorphous phase in Sm-Fe-B thin films, which effectively modified the microstructure and thereby
improved the magnetic properties. At the same time, a very high λs of −1200 ppm has been achieved
with an optimum Sm content at 36.8% for Sm-Fe-B thin films, which is three times larger than Tb-Fe
based thin films. The excellent magnetostrictive characters of Sm-Fe and Sm-Fe-B thin films made
them good candidates for the applications in MEMS device.
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3.2. Rear-Earth-Free Alloys

The well-known problem of the magnetostrictive rear-earth-transition metal films is that a
large bias magnetic field is usually required to achieve giant magnetostriction due to the large
magnetocrystalline anisotropy induced from the rear-earth elements, which is particularly impractical
for these magnetostrictive thin films to be applied on MEMS devices. Also, at RF and microwave
frequencies, even small amount of rear-earth elements can result in a very lossy magnetic film.
Recently, strong magnetostrictive behaviors have been observed in Fe-Ga and Fe-Al alloys, which
exhibit large magnetostriction of more than 400 ppm for Fe81.3Ga18.7 and 200 ppm for Fe83.4Al16.6
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respectively [103,104]. In these alloys, it has been found that the giant magnetostriction always occurred
in the vicinity of ordered D03 and disordered A2 phase boundaries. In addition, since the first report
on the magnetostrictive properties of Fe-Co alloy by Masiyama, much efforts have also been devoted
in developing giant magnetostrictive Fe-Co alloys [105].

3.2.1. FeGa Based Alloy

To overcome the intrinsic drawbacks in RFe alloys, researchers began to search for other
rear-earth-free magnetic materials with large magnetostriction, low saturation field, low cost and
high mechanical durability. In 1999, the group at Carderock which was funded by the Office of
Naval Research (ONR) invented a new exciting material, the Fe-Ga (Galfenol) alloy system. Galfenol
alloys exhibit large saturation magnetostriction of 400 ppm in single crystal form and 300 ppm in
polycrystalline form with a much lower saturation field of less than 200 Oe [106,107]. In addition,
these alloys are stable over a wide temperature range from −265 ◦C to 150 ◦C and can sustain
approximately 350 MPa tensile stress. Galfenol alloys can be stress-annealed by applying a compressive
force during the annealing process, which eliminates the need to apply external compressive stress for
certain usage [108].

Although single crystal Fe-Ga alloys exhibit the advantage of large magnetostriction at relatively
low saturation field, and can tolerate substantial compressive and tensile stress, however, they have
large ferromagnetic resonance linewidth of 400–600 Oe at X band, which make them very lossy for
integration into microwave devices [109]. Previous studies have found that the addition of trace
amounts of metalloid atoms of C, B, and N into binary alloys has a beneficial effect on increasing
magnetostriction. In 2007, Lou et al. reported magnetostrictive behavior of Fe-Ga-B thin films with
different B contents [62]. As shown in Figure 11, through the incorporation of boron at 9–12 %, the gain
size has been refined and the magnetocrystalline anisotropy has been effectively reduced, which results
in the combination of excellent magnetic softness with a maximum saturation magnetostriction of
70 ppm at saturation field lower than 20 Oe. The reason for this, is that small amount of B atoms
would stay in the interstitial sites of the bcc lattice and destabilize the D03 phase which is detrimental
to magnetostriction, while higher amount of metalloid atoms would form clusters that decrease the
magnetostriction constant [110]. It is also believed that a low concentration of metalloid atoms could
lead to atomic pairs such as Ga–Ga or B–B, which enhance the magnetostrictive behavior.

Beside boride Fe-Ga alloys, the magnetostrictive behavior of carbide Fe-Ga alloys have also been
investigated. In 2018, Liang et al., reported the C-concentration dependence on magnetostriction
of Fe-Ga-C films [61]. Figure 12 shows the saturation magnetostriction constants and maximum
piezomagnetic coefficients of Fe-Ga-C films with different C content. The saturation magnetostriction
λS reaches the maximum value of 81.2 ppm when C atoms incorporate into a Fe-Ga lattice with 11.1
at. % C content and continually reduces to 22 ppm with C composition of 14.2 at. %. The gradually
increasing value of λS with the C content increasing from 0 at. % to 7.1 at. % is illustrated by the slowly
transition from crystalline structures to amorphous state of Fe-Ga-C films.

When the C content becomes more and more, the λS reaches its maximum value near the
amorphous/crystalline phase boundary, where Fe-Ga-C films change from crystalline structure to
amorphous phase. The maximum λS of Fe-Ga alloy systems occurs at the composition of Fe80Ga20,
which is near the A2/D03 phase boundary and is consistent with Fe-Ga-C systems. The maximum λS
value of Fe-Ga-C films is 81.2 ppm and is six times larger than that of the binary Fe-Ga film, while the
maximum λS value of Fe-Ga-B systems only tripled, which means a better influence of C addition
on enhancing magnetostriction constant of Fe-Ga films. Moreover, Fe-Ga-C films are more magnetic
sensitive than that of Fe-Ga-B films due to their higher piezomagnetic coefficient of 9.71 ppm/Oe.
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3.2.2. FeCo Based Alloys

It is well-known that Fe–Co alloy systems have very soft magnetic properties. Besides, Fe-Co
alloys own the largest saturation magnetic flux density among the Fe, Co and Ni systems due to its
largest number of Bohr magnetons according to the Slater–Pauling curve [111].

It is reported that the magnetostriction of Fe–Co binary alloys greatly rely on their composition
over a wide range in Masiyama’s researches. There were two obvious peaks of magnetostriction
that were clearly measured, the 1st peak being around the composition of Fe30Co70 (90 ppm) and
the other one being around the composition of Fe60Co40 (70 ppm) [105]. From the phase diagram of
the Fe-Co binary systems, we can see a phase boundary between the bcc structure and its coexisting
region with fcc phase at a Co content of ~75 at. %. It was found in the previous report that the
magnetostriction of Fe-Co systems could be enhanced by forming a phase boundary, which is analogous
to the magnetostriction augment of Fe-Ga alloys near the D03/A2 phase boundary. And they indeed
achieved the largest magnetostriction at a Co content of ~70 at. % in that report.

In 2019, Wang investigated the magnetostrictive behavior of (Co0.5Fe0.5)xC1-x alloy thin films
with different carbon content [112]. Figure 13 presents the magnetostriction results of these Co-Fe-C
films with increasing carbon content as a function of the in-plane driving magnetic field. There is no
magnetostrictive response for those samples with carbon content lower than 4% when the magnetic
field is less than 30 Oe. However, when the carbon content of Co-Fe-C films is higher than 4%,
the AC driving field reduces to 20 Oe and gradually becomes smaller. This magnetostrictive behavior
indicates that the carbon content of 4% is a critical value for the Co-Fe-C films’ phase boundary
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between nanocrystalline and amorphous structures. As shown in Figure 13b, black squares denote the
magnetostriction constants of Co-Fe-C films. The saturation magnetostriction λS reaches a maximum
value of 75ppm when carbon atoms are added to a Fe-Co lattice with 5.2 at. % carbon content, and then
gradually reduces to 10 ppm at carbon content of 15.8 at. %.
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Figure 13. (a) Magnetostriction constant of (Co0.5Fe0.5)xC1−x films with x = 0 to 15.8%. (b) The
saturated magnetostriction constant (black) and piezomagnetic coefficient (red) with different carbon
content. The structural boundaries of the alloy are marked with light orange and green dotted lines.
(c) Piezomagnetic coefficient versus corresponding driving magnetic field for (Co0.5Fe0.5)xC1−x films
with x = 0 to 13.2%. (d) The Ms (black) and Hc (red) versus carbon content. The blue open triangles are
the fitted Ms from broadband FMR measurement. Reproduced with permission from [112]. Copyright
[2019], American Physical Society.

The piezomagnetic coefficient of the Co-Fe-C films was shown by the red cycles in Figure 13b.
The curve can be divided into three regions: When the carbon content is less than 4 at. %, the Co-Fe-C
films remain to be bcc nanocrystalline phase; as the carbon content increases and is less than 6 at. %,
there is a coexistence region of both nanocrystalline and amorphous phase and the phase boundaries
are labelled as the dotted orange and green lines; when the carbon content goes beyond 6 at. %,
they transition to amorphous structure. A clear peak is obtained in the coexistence region and the
largest value of piezomagnetic coefficient is achieved of 10.3 ppm/Oe at 4.8 at. %. They also confirmed
the coexistence region by analyzing FFT results of the HRTEM images, which are shown in Figure 14.
The formation of atom pairs or clusters during the doping of metalloid atoms also destabilize the
D03 phase. Therefore, the magnetostriction constants and piezomagnetic coefficients of Co-Fe-C films
are optimized with the carbon content ranging from 4% to 6%. Compared to the reported value of
magnetostriction constants for Ga-Fe-B and the widely used Co-Fe-B films, the values measured in this
paper are much higher. Moreover, the maximum piezomagnetic coefficient dλ/dH of Co-Fe-C films is
much larger than other well-known magnetostrictive materials such as Metglas and Terfenol-D.
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Figure 14. (a) A bright-field STEM image of Ta/(Co,Fe)C/Ta/SiO2/Si (001) substrate. (b) The
corresponding energy-dispersive x-ray spectroscopy mappings for Fe, Co, and Ta elements, respectively.
(c) Cross sections of lowresolution TEM with white solid rectangle displaying the corresponding
location of HRTEM. (d–f) HRTEM images of Co-Fe-C alloy films with carbon content 0%, 4.4%, and
13.2%, respectively. The FFT of selected zones (yellow dotted squares) are inserted at the bottom left
corner. Reproduced with permission from [112]. Copyright [2019], American Physical Society.

3.3. Exchange Coupling in Multilayers

In addition to the state-of-the-art magnetostrictive single layer materials, the combination of
different materials in multilayer structure has recently been proposed as an alternative approach to
develop giant magnetostrictive thin films with low loss and low saturation field. In multilayer thin films,
the magnetic properties in different layers can be synthesized through the process of exchange coupling,
which arises when the thickness in each layer is smaller than the length of magnetic exchange [113].
Through exchange coupling, spin information can be transmitted between two different magnetic
materials, and the overall magnetic properties are determined by the average value of each layer.
By combining two different materials with excellent softness and giant magnetostriction, exchange
coupling can be used to reduce the saturation field and improve the piezomagnetic coefficient.

3.3.1. FeGa/NiFe Multilayers

In 2019, Shi et al. studied the effect of exchange coupling between Fe83Ga17 and Fe50Ni50 multilayer
films for enhancement of the ME effect [114]. As shown in Figure 15, all of the magnetic domain
structures are stripe domain. However, with the total film thickness fixed at 480 nm, as the thickness
in each layer of Fe-Ga and Fe-Ni become thinner, the stripe width become narrower. This means the
domain density has been increased, which intensified the domain rotation and domain wall motion,
thereby enlarged the magnetostriction. It is believed that stripe domain structure indicates the films
have weak out-of-plane anisotropy [115], and the magnetic moments on the surface of the films rotate
upward and downward alternatively. With the Fe-Ni layers, the permeability increased and the total
magnetocrystalline anisotropy reduced, which in turn make the 90-degree domain wall motion easier.
For the (8 nm Fe-Ga/8 nm Fe-Ni)30 multilayers, the small magnetic anisotropy resulting from the
exchange coupling makes the domains rotate more easily under low magnetic field. The rotation
of the magnetic domains in the Fe-Ni layers also drive the rotation of the magnetic domains in the
Fe-Ga layers, which makes the Fe-Ni layers act like a lubricant. As shown in Figure 16b, the d33,m of
the (8 nm Fe-Ga/8 nm Fe-Ni)30 multilayers achieved to 8.1 ppm/Oe. Compared to the Fe-Ga-B film,
the piezomagnetic coefficient of the multilayer film has an increment of about 14%.
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ppm,115 ppm and 97 ppm, d33,m of the (8 nm Fe-Ga/8 nm Fe-Ni)30 reaches 8.1ppm/Oe. Reprinted with
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3.3.2. TbFe/FeCo Multilayers

In 1999, Quandt et at. reported exchange coupled Tb40Fe60/Fe50Co50 multilayers which exhibits
high saturation magnetoelastic coupling coefficients in combination with low saturation field of
20 mT [116,117]. It has been found that the saturation magnetostriction was strongly depended on the
layer thickness ratio and the post annealing treatment, as shown in Figure 17c,d.

The optimum data of the TbFe/FeCo multilayers show that post annealing at 250◦C improves the
magnetoelastic behavior, and the coercivity has been reduced from 10 mT to 2 mT, which reflects that
post annealing can release almost all stress induced anisotropies, leading to a stress-free state of these
multilayers. It is also believed that under these conditions any significant diffusion does not exist and
nanocrystallization begin to appear in the TbFe layers, which leads to the enhancement of the saturation
magnetoelastic coupling coefficient by 15%. At the same time, the overall temperature behavior is
also compromised by the exchange coupled multilayers, and it is expected that the strong Fe50Co50

moments can help stabilized the Tb40Fe60 moments, resulting in an increment of the Curie temperature.
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Figure 17. (a) Comparison of the magnetoelastic coupling coefficient of 250 ◦C annealed (7 nmTb40Fe60/9
nmFe50Co50) × 70 multilayer with an optimized Tb40Fe60 and a SmFeB film. (b) Comparison of the
magnetoelastic coupling coefficients of (Tb40Fe60/Fe50Co50), (Tb18Co82/Fe75Co25), (TbDyFe/FeSiCuNbB)
and (Tb33Fe67 /Fe80B20) multilayer films. (c) Saturation magnetoelastic coupling coefficient of TbFe/FeCo
multilayers as a function of the soft magnetic layer thickness. (d) ∆E effect of as-deposited and at 250
◦C annealed (7 nm TbFe/8 nm FeCo) multilayers. There figures are reproduced with the permission
from [116,117]. Copyright [1999] and [2000], American Physical Society.

3.4. Heat Treatment on Magnetostrictive Thin Films

3.4.1. Stress Release by Post Annealing

As a highly magnetostrictive material, FeCoSiB is one of the most commonly used composition
in Metglas foils. In 2002, Quandt et al. investigated the optimization of the ∆E effect and the
magnetostriction of amorphous (Fe90Co10)78Si12B10 thin films by magnetic field annealing [118]. They
discovered a strong correlation between the magnetostrictive susceptibility and the stress state, which
can be controlled by the annealing temperature. As shown in Figure 18c, the as-deposited FeCoSiB film
was initially in compressive stress state before the annealing temperature reach to 170 ◦C. However, as
the annealing temperature continue to increase, the stress state gradually switched to tensile stress.
After annealing treatment, the compressive stress in the film has been effectively reduced, leading to the
reduction of anisotropy energy. The change of the Young’s modulus with applied magnetic field has
been shown in Figure 18d. After magnetic annealing, a distinguished Young’s modulus reduction of
50 GPa has been observed, which contributed to 30% change of the Young’s modulus at saturation state,
assuming the Young’s modulus of FeCoSiB thin film at saturation is 150 GPa. In Figure 18a,b, we can
see the magnitude and the field dependency of the magnetostrictive susceptibility are highly depends
on the stress state and the corresponding annealing temperature. To achieve high magnetostriction at
low magnetic fields, a precise control of film stress has to be executed. For positive magnetostrictive
thin films, usually tensile stress state is favorable to obtain the optimum performance.
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Figure 18. (a) Magnetoelastic coupling coefficient (b) negative absolute value of the first derivative
of the magnetostrictive hysteresis (c) stress as a function of annealing temperature (d) ∆E effect of an
optimized annealed (Fe90Co10)78Si12B10 thin film. Reproduced with permission from [118]. Copyright
[2002], IEEE.

3.4.2. Phase Boundary Changes by Cooling Processes

In 2011, Hunter et al. investigated the magnetostrictive behavior and microstructural properties
of Co-Fe alloy thin films in relation to the composition and thermal process [119]. Strong dependence
of magnetostriction on the cooling process has been found. The analysis of the microstructure
through synchrotron X-ray micro-diffraction shows that the maximum magnetostriction occurs
at the (fcc+bcc)/bcc phase boundary. As shown in Figure 19a,b, after annealing, the peak of
magnetostriction shifts to lower Co composition by the same amount as the (fcc + bcc)/bcc
phase boundary shifts, indicating that the peak magnetostriction is linked to this phase interface.
At the temperature/composition close to the (fcc + bcc)/bcc phase boundary, a remarkable giant
magnetostriction has been yield after annealing followed by quenching, which is more than three times
of its as-deposited state.

The Co-Fe phase diagrams in Figure 19 b show that the bcc phase intersects with a mixed phase
region of fcc Co and bcc Fe phases at temperatures lower than 912 ◦C and Co concentrations greater
than 50%. The coexistence of the predominant bcc phase and a secondary fcc phase has also been
confirmed by the TEM data shown in Figure 20c,d. It is believed that the precipitation of the fcc Co-rich
grains into the bcc α-Fe matrix is the cause of the enhancement in magnetostriction, which function in
the same way as the D03 precipitates in the Fe–Ga alloys.
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Figure 19. (a) Magnetostriction variation versus atomic percent cobalt for three differently prepared
Co1−xFex composition spreads, as-deposited (black dots), slow-cooled (blue dots), quenched (red dots).
(b) Co–Fe-phase diagram. The red curve highlights the approximate phase boundary between (fcc Co
+ bcc Fe) and bcc Fe. (c–e) Intensity plots of the synchrotron microdiffraction of Co1−xFex thin films.
(c) as-deposited, (d) annealed and slow-cooled, (e) annealed and water-quenched composition spread
samples. The black line marked λmax in each spread indicates the approximate composition of the (fcc
+ bcc)/bcc phase boundary. Reprinted with permission from [119]. Copyright [2011], Springer Nature.
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Figure 20. TEM images of Co0.73Fe0.27 of (a) (110) dark field image of as-deposited sample, the scale
bar is 50 nm. (b) corresponding SAED pattern of the as-deposited, (c) bright field image of annealed
sample, the scale bar is 200 nm. (d) SAED pattern of the same sample as (c) using ~1.5-µm-diameter
aperture showing the mixture structure of bcc and fcc phases, (e) [11] bcc diffraction pattern from
grain marked ‘A’ in (c), and (f) [11] fcc diffraction pattern from grain marked ‘B’ in (c). Reprinted with
permission from [119]. Copyright [2011], Springer Nature.

4. Summary and Conclusions

Although lots of studies have been done on the magnetostrictive thin films, there are still many
challenges and opportunities need to be addressed in the coming years. The essential figure of merits
in developing thin film magnetoelastic materials are the piezomagnetic coefficient, coercivity, and FMR



Sensors 2020, 20, 1532 21 of 27

linewidth. Figure 21 summarizes the current status of the developed magnetostrictive materials in
terms of these figure of merits. The direction of developing desired magnetostrictive materials goes to
high saturation magnetostriction, high piezomagnetic coefficient with low coercivity and narrow FMR
linewidth. The light rare-earth-based alloys, such as SmFe, tend to be the focus of researches in rare
earth magnetostrictive materials due to the lack of heavy rare earth sources. As for rare-earth-free
magnetostrictive materials, Fe-Ga and Co-Fe systems with large magnetostriction and low saturation
field are found to be the most promising. New structures such as multilayers that combine properties
of high magnetostriction and low anisotropy are promising for developing magnetoelastic materials
with both softness and large magnetostriction constants. The stress state and the phase boundary can
also be tuned to achieve the optimal magnetostrictive thin films through heat treatment process.
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In summary, during last decades, extensive progress has been made for achieving high-performance
magnetostrictive materials and different kinds of thin film based integrated multiferroic devices. In this
review paper, we primarily devoted our efforts on the thin film types of magnetostrictive materials
and their applications of RF MEMS devices based on strain-mediated ME coupling, which have drawn
a great deal of interests in the past years. The performance of these RF MEMS devices was greatly
benefited from the large piezomagnetic coefficients of the magnetostrictive materials, which leads to a
strong ME coupling. From the science point of view, understanding, modelling and characterizing
of thin film magnetostrictive materials are of great importance for the multiferroic society. From the
materials point of view, new magnetostrictive materials with higher piezomagnetic coefficients are
always more than welcome. From the perspective of engineering applications, integration and scale-up
with existing silicon processing flows and electronics are in particularly valuable. Low-temperature
process methods are desired for fabricating RF multiferroic devices with low loss as well. In addition,
magnetic sensors have been introduced long ago to electrical and biomedical research areas and various
types of magnetic field sensors are proposed [120]. Recently, flexible magnetic sensors that based on
various mechanisms, such as anisotropic magnetoresistance (AMR) [121], giant magnetoimpedance
(GMI) [122], etc. have received significant research interests because of their applications in wearable
and portable devices. Magnetic field sensors that are fabricated on flexible substrates, which can be
attached or transferred into the human body, grant us more freedom to design different healthcare
devices. Therefore, flexible thin film magnetoelastic materials that can be compatible with wearable
electronics are also significant for developing functional device applications. Through the better
understanding in the origination of magnetostriction and the loss mechanism of magnetostrictive
thin films, there exist a bright future and great challenges for thin film magnetoelastic materials.
These materials will very likely facilitate the development of novel integrated RF multiferroic devices,
which are compact, lightweight, and power efficient and will have huge influences on our daily life.
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