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Background: Mounting research studies have suggested the indispensable

roles of N6-methyladenosine (m6A) RNA modification in carcinogenesis.

Nevertheless, it was little known about the potential function of m6A-related

lncRNAs in sample clustering, underlying mechanism, and anticancer immunity

of pancreatic ductal adenocarcinoma (PDAC).

Methods: PDAC sample data were obtained from TCGA-PAAD project, and a

total of 23 m6A regulators were employed based on published articles. Pearson

correlation and univariate Cox regression were analyzed to determine m6A-

related lncRNAs with prognostic significance to identify distinct m6A-related

lncRNA subtypes by consensus clustering. Next, the least absolute shrinkage

and selection operator (LASSO) algorithmwas applied for constructing anm6A-

related lncRNA scoring system, further quantifying the m6A-related lncRNA

patterns in individual samples. Gene set variation analysis (GSVA) was employed

to assign pathway activity estimates to individual samples. To decode the

comprehensive landscape of TME, the CIBERSORT method and ESTIMATE

algorithm were analyzed. The half-maximal inhibitory concentration (IC50) of

chemotherapeutic agents was predicted with the R package pRRophetic.

Finally, a quantitative real-time polymerase chain reaction was used to

determine TRPC7-AS1 mRNA expression in PDAC.

Results: Twodistinctm6A-related lncRNApatternswithdifferent clinical outcomes,

TEM features, and biological enrichment were identified based on 45 prognostic

m6A-related lncRNAs. The identification of m6A-related lncRNA patterns within

individual samples based on risk scores contributed to revealing biological

signatures, clinical outcomes, TEM characterization, and chemotherapeutic

effects. A prognostic risk-clinical nomogram was constructed and confirmed to

estimate m6A-related lncRNA patterns in individual samples. Finally, the biological

roles of TRPC7-AS1 were revealed in PDAC.

Conclusion: This work comprehensively elucidated that m6A-related lncRNA

patterns served as an indispensable player in prognostic prediction and TEM

features. Quantitative identification of m6A-related lncRNA patterns in

individual tumors will contribute to sample stratification for further

optimizing therapeutic strategies.
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Introduction

Methylation of N6 adenosine (m6A), characterized as the

most predominant type of RNA modification, serves as a pivotal

regulator in multiple biological progression and pathological

processes (Zhao et al., 2017; He et al., 2019). m6A

modification was mainly controlled by dynamic and reversible

regulation of methylation enzymes identified as the binding

proteins (readers), the demethylases (erasers), and

methyltransferases (writers) (Zaccara et al., 2019).

Furthermore, m6A modification was affected by the

expression pattern and biological function of these methylase

complexes, and the exploration of these regulatory proteins

contributes to the determination of underlying mechanisms of

m6Amodification (Zhou et al., 2020). Accumulating studies have

supported that abnormal expression and mutation variation of

m6A regulators held crucial players in tumorigenicity and

dysregulated immunity (Chen and Wong, 2020; Shulman and

Stern-Ginossar, 2020). A comprehensive landscape of the

expression pattern and genetic alteration of m6A will facilitate

the recognition of m6A-based therapeutic targets further predict

prognosis and improve clinical outcomes accordingly (Li et al.,

2019).

Pancreatic ductal adenocarcinoma (PDAC) is one of the

most common human cancers and the seventh leading reason

of tumor-associated death globally (Mizrahi et al., 2020).

There were approximately 496,000 newly diagnosed

patients and almost 466,000 related deaths according to the

2020 global cancer statistics (Sung et al., 2021). Given the

difficulty of early precision diagnosis and rapid tumor

progression, a large number of PDAC cases presented

advanced clinical stage or distant metastatic disease at

diagnosis (Mizrahi et al., 2020; Tang et al., 2021). It is of

great importance, thus, to develop novel and reliable

indicators for prognostic estimation and therapeutic

efficacy prediction to further advance tailored therapy.

Currently, antitumor immunotherapy has attracted people’s

interest with the flourish of immune checkpoint inhibitors, but

only a minority of cancer patients could benefit from them.

Immune checkpoint blockade immunotherapy (anti-CTLA-4)

has made great progress in numerous malignant cancers;

however, the results of clinical trials remained unsatisfactory

in PDAC (Royal et al., 2010; Brahmer et al., 2012). The

immunosuppressive tumor microenvironment (TEM)

contributed to limited therapeutic effect of immunotherapy

(O’Reilly et al., 2019). Account for almost half of immune

infiltration and tumor cellular population functioned as

opposing players in anticancer immunity (Clark et al., 2007).

There are increasing numbers of tumor-associated fibroblasts,

regulatory T cells, myeloid-derived suppressor cells, and tumor-

associated macrophages in TEM, most of which significantly

inhibited antitumor immunotherapy (Hessmann et al., 2020).

Long noncoding RNA (lncRNA) with >200 bp RNA

transcripts did not possess the ability of protein-coding

(Wang et al., 2011). Currently, an increasing number of

studies have suggested that lncRNAs have critical roles in

regulation of anticancer immunity, including immune

activation and antigen release (Carpenter and Fitzgerald, 2018;

Denaro et al., 2019). Notably, more and more researchers

concluded that m6A and lncRNAs may share synergistic

interactions in cancer progression (Ma et al., 2019).

An independent research study indicated that ALKBH5 was

discovered to cooperate with lncRNA forkhead box protein M1

(FOXM1)-AS to accelerate tumorigenicity and proliferation of

glioblastoma stem cells (GSCs) (Zhang et al., 2017). Moreover,

the m6A modification level of lncRNA 1281 could significantly

regulate the differentiation of embryonic stem cells (ESCs) by

affecting let-7 levels (Yang et al., 2018). A previous research study

has proposed the m6A-related lncRNA risk model for predicting

prognosis for patients with pancreatic adenocarcinoma.

Nevertheless, m6A-related lncRNAs involved in subtype

identification, underlying mechanism, and chemotherapeutic

prediction in PDAC remained to be revealed.

In this work, m6A-related lncRNA patterns were

comprehensively analyzed by using the transcriptomic

information of PDAC samples from TCGA-PAAD project.

Two different m6A-related lncRNA pattern subtypes were

identified using consensus clustering, and biological processes

of different clusters were assigned. In addition, an m6A-related

lncRNA scoring scheme was constructed to quantify the m6A-

related lncRNA risk of each sample. Finally, the underlying

signaling pathways, TEM features, and chemotherapeutic

prediction were analyzed under the risk score. Finally, the

biological functions of TRPC7-AS1 in prognostic prediction

and pathway enrichment were further explored to provide

robust insights into the clinical therapeutic strategy in PDAC.

Our findings highlighted that m6A-related lncRNAs played

critical roles in prognostic prediction and tumor progression

in PDAC, facilitating advanced therapeutic strategies.

Methods and materials

Public dataset collection and
preprocessing

Gene-expression annotation and clinical information were

obtained from The Cancer Genome Atlas (TCGA, https://
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cancergenome.nih.gov/) database. In total, 177 PDAC samples from

TCGA-PAAD project were used for comprehensive analysis. TCGA

RNA sequencing information (FPKM format) of gene expression

was obtained from the Genomic Data Commons (GDC, https://

portal.gdc.cancer.gov/) and transformed into transcripts per kilobase

million (TPM) value. The genomic mutation profiles including

simple nucleotide variation (SNV) and copy number variation

(CNV) of TCGA-PAAD cohort were curated from the Genomic

Data Commons (GDC, https://portal.gdc.cancer.gov/). The copy

number variation of 23 m6A regulators was plotted using the

“Rcircos” R package in human chromosomes. The analysis

process flow chart is presented in Supplementary Figure S1.

Identification of prognostic m6A-related
lncRNAs

The lncRNA information was identified using a constructed

mining method with reference to Xu et al. (2021a). Briefly, genes

were recognized as non-coding genes or protein-coding genes

according to their Refseq IDs or Ensembl IDs, and only the long

non-coding genes in NetAffx annotation files were retained.

According to existing research studies focusing on m6A

modification, a total of 23 acknowledged m6A methylation

modification regulators were gathered and analyzed to

uncover m6A methylation modification patterns (Zhao et al.,

2017; Chen et al., 2019; He et al., 2019; Zaccara et al., 2019). These

m6A regulators constitute 13 readers (ELAVL1, FMR1,

HNRNPA2B1, HNRNPC, IGFBP1, IGFBP2, IGFBP3,

LRPPRC, YTHDC1, YTHDC2, YTHDF1, YTHDF2, and

YTHDF3), 8 writers (CBLL1, KIAA1429, METTL14,

METTL3, RBM15, RBM15B, WTAP, and ZC3H13), and

2 erasers (ALKBH5 and FTO). The expression levels of

23 m6A regulators of the TCGA-PAAD project are detected

and listed in Supplementary Table S1. Pearson correlation was

analyzed to explore the correlation of m6A regulators with

lncRNAs. The lncRNAs with correlation coefficient |R| >
0.4 and p < 0.001 was considered as m6A-related lncRNAs.

Next, univariate cox regression analysis within R package

“survival” was performed to determine prognostic m6A-

related lncRNAs (p < 0.01).

Consensus clustering based on prognostic
m6A-related lncRNAs

Unsupervised clustering analysis was conducted to

determine distinct m6A-related lncRNAs patterns based on

the gene-expression data of prognostic m6A-related lncRNAs

for stratification of samples for further analysis. The number

of clusters was identified by the consensus clustering

algorithm based on their stability. R package

“ConsensusClusterPlus” was used to implement these

analyses, and repetitions of 1,000 times were performed for

guaranteeing the stability of clustering.

Gene set variation analysis

GSVA analysis [40] with the ‘GSVA’ R package was used to

explore the variation in biological processes between distinct

m6A-related lncRNAs patterns. The well-defined biological

signatures were derived from the gene sets of “c2.

cp.kegg.v7.4. symbols.gmt” and “h.all.v7.4. symbols.gmt”

(downloaded from the Molecular Signatures Database).

Characterization of tumor
microenvironment

The deconvolution approach CIBERSORT (http://cibersort.

stanford.edu/) was used to estimate the abundances of 22 distinct

leukocyte subsets with the gene expression profile. The

Estimation of Stromal and Immune Cells in Malignant

Tumors using Expression Data (ESTIMATE) algorithm

(Yoshihara et al., 2013), as a new algorithm based on the

unique properties of the transcriptional profiles, could

estimate the tumor cellularity and the tumor purity. The

immune score and stromal score were calculated to quantify

the relative enrichment of immune and stromal cells, which form

the basis for the ESTIMATE score to predict tumor purity.

Construction of an m6A-related lncRNA
prognostic signature

In total, 177 PDAC samples were randomly classified into the

training and testing group with the rate of 3:2 using the R project

“caret” package. Both training set and validation set needed to

comply with the following requirements: 1) cases were

stochastically classified as the training group and testing

group; 2) samples in the two groups had similar

clinicopathological traits. The testing cohort with 69 samples

was further used to validate results derived from the training

group. The LASSO regression was analyzed to eliminate the

highly correlated m6A-related lncRNAs with the “glmnet” R

package. The independent variable in the regression was the

normalized expression matrix of candidate prognostic m6A-

related lncRNAs, and the response variables were the overall

survival and survival status of samples. The risk scores of each

sample were calculated based on the expression level of each

m6A-related lncRNA and its corresponding regression

coefficients. The formula was established as follows: score =

esum (each gene’s expression × corresponding coefficient).

Finally, a risk model consisting of 11 prognostic m6A-related

lncRNAs was established, and the risk score is computed using
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the formula: Risk score = βlncRNA 1 ×expression level of

lncRNA 1 +βlncRNA 2×expression level of lncRNA 2 + · ····
+βlncRNA n × expression level of lncRNA n. Here, β was the

regression coefficient in the LASSO Cox regression analysis.

PDAC samples were assigned into low-/high-risk subgroups

after setting the median value of risk score as the cut-off point.

Validation of the m6A-related lncRNA
prognostic signature

First, K–M survival curves were analyzed using the R package

“survival”. Then, the receiver operating characteristic (ROC)

curves were used to assess the prognostic significance.

Subsequently, univariate and multivariate Cox regression were

analyzed for independent validity of the risk score.

Risk score with clinicopathological traits

To reveal the clinical value of risk score, correlation analysis

of risk score with age, gender, tumor grade, pathological staging,

and TNM categories was analyzed. R package “pheatmap” was

used to visualize the distribution of clinicopathological variables

in low-/high-risk groups.

Depiction of the prognostic nomogram

To estimate the synergistic effect of risk score, age, gender,

tumor grade, clinical stage, and TNM status in prognostic prediction

for the overall survival rate, ROC curves were plotted to calculate the

area under the curve (AUC) values (Blanche et al., 2013). To predict

overall survival time in a quantitative manner, a prognostic

nomogram including risk score and clinical variables was

established to predict the 1/2/3-OS rate. Next, the calibration

curve, which showed the prognostic value of the as-constructed

nomogram, was constructed.

Prediction of chemotherapeutic effect

To estimate the sensitivity of chemotherapy, the R package

pRRophetic was used to estimate the half-maximal inhibitory

FIGURE 1
Landscape of genetic alterations ofm6A regulators in PDAC. (A)GOenrichment analysis of the 23m6A regulators. The x-axis indicates the gene
ratio within each GO term. (B) Five of the 158 HCC patients experienced genetic alterations of 23 m6A regulators, with a frequency of 3.16%, mostly
including amplification, missense mutations, and deep deletions. The number on the right indicates the mutation frequency in each regulator. Each
column represents an individual patient. (C)CNVmutation frequency of 23m6A regulators was prevalent. The column represents the alteration
frequency. The deletion frequency is represented by the green dot; the amplification frequency is represented by the red dot. (D) Location of CNV
alteration of m6A regulators on chromosomes. (E) Broad co-expression correlation among the 23 m6A RNA modification regulators in PDAC. “X”
means P ≥ 0.05. (F) Difference in mRNA expression levels of 23 m6A regulators between normal and tumor samples. The asterisks represent the
statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001).
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concentration (IC50) of PDAC samples in different risk score

groups. By constructing the ridge regression model based on the

Genomics of Drug Sensitivity in Cancer (GDSC) (www.

cancerrxgene.org/) cell line expression spectrum and TCGA

gene expression profiles, the package pRRophetic could

estimate IC50 of chemotherapeutic drugs (Geeleher et al., 2014).

Experimental validation

HPNE (human pancreatic cell line) and three human

pancreatic cancer cell lines (CFPAC-1 cells, PANC-1 cells, and

SW1990 cells) were purchased from the Cell Bank of the Type

Culture Collection of the Chinese Academy of Sciences, Shanghai

Institute of Biochemistry and Cell Biology. The cell lines were all

cultured in Roswell Park Memorial Institute (RPMI-1640)

medium plus 10% fetal bovine serum (FBS; Invitrogen,

Carlsbad, CA, USA). All cell lines were grown without

antibiotics in a humidified atmosphere of 5% CO2 and 99%

relative humidity at 37°C. Three different cell lines were subjected

to a quantitative real-time polymerase chain reaction (qRT-

PCR). Quantitative real-time PCR was analyzed as described

previously (Xu et al., 2021b). All samples were analyzed in

triplicates. Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) levels were used as the endogenous control, and

relative expression of TRPC7-AS1 was calculated using the 2-

ΔΔCt method. The sequences of primers used for PCR were as

follows: TRPC7-AS1, 5′-GCCTCCTCCTTCCATAACG-3′
(forward) and 5′-CCCACAGCCTAGACCCATT-3′ (reverse);

and GAPDH, 5′-CAGGAGGCATTGCTGATGAT-3′
(forward) and 5′-GAAGGCTGGGGCTCATTT-3′ (reverse).

Statistical analyses

The statistical analyses in this study were generated by R-

4.0.3. For quantitative data, statistical significance for normally

distributed variables was estimated using Student’s t-tests, and

nonnormally distributed variables were analyzed using the

Wilcoxon rank-sum test. For comparisons of more than two

groups, Kruskal–Wallis tests and one-way analysis of variance

were used as nonparametric and parametric methods,

respectively. All comparisons were two-sided with an alpha

level of 0.05, and the Benjamini–Hochberg method was

applied to control the false discovery rate (FDR) for multiple

hypothesis testing.

Results

Genetic variation of m6A RNAmethylation
regulators

In this research, the potential roles of 23 m6A modification

regulators (“readers”: ELAVL1, FMR1, HNRNPA2B1,

HNRNPC, IGFBP1, IGFBP2, IGFBP3, LRPPRC, YTHDC1,

YTHDC2, YTHDF1, YTHDF2, and YTHDF3; “writers”:

CBLL1, KIAA1429, METTL14, METTL3, RBM15, RBM15B,

WTAP, and ZC3H13; and “erasers”: ALKBH5 and FTO) were

explored in PDAC. GO annotation analyses of 23 m6A regulators

were performed, and significant enrichment of biological

FIGURE 2
Co-expression network diagram of the 23 m6A modification
regulators and m6A-related lncRNAs.
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pathways was visualized (Figure 1A). Subsequently, the

landscape of mutation profiles of 23 m6A regulators in the

TCGA-PAAD samples was delineated, from which we could

discover that a total of 5 of 158 (3.16%) samples possessed

somatic mutations of m6A regulators (Figure 1B). We

exhibited that the top ten mutated genes in PDAC with

ranked percentages, including WTAP (1%), RBM15 (1%),

METTL3 (1%), METTL14 (1%), ZC3H13 (1%), YTHDC1

(1%), YTHDC2 (1%), FMR1 (1%), and ALKBH5 (1%). The

prevalence of CNV mutations of 23 m6A regulators was

further analyzed and presented that VIRMA, IGFBP2,

ALKBH5, and FMR1 experienced prevalent CNV

amplification, whereas YTHDF2, HNRNPC, METTL3,

RBM15B, and METTL14 possessed widespread CNV deletions

(Figure 1C). The chromosome locations of CNV mutations of

these 23 m6A regulators are presented in Figure 1D. To elucidate

mutual connection among 23 m6A regulators, Spearman

correlation was analyzed (Figure 1E). The results showed that

readers IGFBP1 and IGFBP2 presented a significant positive

relation with other m6A regulators, while other 21 m6A

regulators were positively correlated with each other.

However, it was discovered that there was a nonsignificant

difference in most m6A regulators’ expression levels between

tumor and normal tissues (Figure 1F). Notably, the expression

level of 13 m6A regulators could predict PDAC patients’ overall

prognosis (Supplementary Figure S2). These results supported

the significant distinctions and intrinsic interactions in the

transcriptomic and genomic information of m6A RNA

modification regulators in tumors of PDAC. Thus, the genetic

variations of m6A RNAmodification regulators might contribute

novel insight into tumorigenicity and progression of PDAC.

Identification of prognostic m6A-related
lncRNAs

Since lncRNAs were significantly associated with m6A RNA

modification in the progression of tumor, lncRNAs and 23 m6A

regulators coexpression network was assembled to visualize these

m6A-related lncRNAs (Figure 2). In total, 173 lncRNAs were

identified as m6A-related lncRNAs (p < 0.01 and | Pearson R| >
0.4) in this work (Supplementary Table S2). To further determine

m6A-related lncRNAs with prognostic value, a univariate Cox

regression analysis was performed. In total, 45 m6A-related

lncRNAs significantly associated with OS time were

determined, which was visualized in the forest plot

FIGURE 3
Prognostic value of m6A-related lncRNAs in PDAC. (A) Forest plot of prognostic m6A-related lncRNAs under univariable regression analysis. (B)
Heatmap of m6A-related lncRNA expression levels in normal and tumor samples. (C) Differentially expression analysis of m6A-related lncRNAs in
normal and tumor samples. *p < 0.05; **p < 0.01; ***p < 0.001.
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(Figure 3A, Supplementary Table S3). The heatmap plot showed

the expression distribution of these prognostic m6A-related

lncRNAs (Figure 3B). In addition, expression levels of these

prognostic m6A-related lncRNAs were significantly dysregulated

in PDAC tumor samples (Figure 3C). Notably, stratification

survival curves based on each m6A-related lncRNA indicated

that abnormal expression levels of most m6A-related lncRNAs

were significantly correlated with OS time (Supplementary

Figure S3). These results highlighted indispensable functions

of m6A-related lncRNAs in the development of PDAC.

Development of m6A-related lncRNA
clusters

The “ConsensusClusterPlus” R package was used to classify

patients with distinct m6A-related lncRNAs patterns based on

prognostic m6A-related lncRNAs (Supplementary Figures S4A–F).

Thus, two different m6A-related lncRNAs patterns were finally

determined using unsupervised clustering, including Cluster 1

(166 samples) and Cluster 2 (11 samples). The m6A-related

lncRNAs expression distribution together with distinct m6A-

related lncRNAs clusters and clinical traits are shown in

Figure 4A. Kaplan–Meier survival analysis of two distinct m6A-

related lncRNAs clusters indicated Cluster 2 experienced a

prominent advantage in overall survival time compared with

Cluster 1 (Figure 4B). To further elucidate the biological behaviors

among two different m6A-related lncRNAs clusters, GSVA analysis

was performed (Figures 4C andD and Supplementary Table S4). The

results of GSVA presented that Cluster 1 was highly enriched in

carcinogenic activation, including the Notch, TGF-β, IL2/STAT5,
and IL6/JAK/STAT3 signaling pathways and

epithelial–mesenchymal transformation.

TEM characterization of m6A-related
lncRNA clusters

First, 32 of 47 immunotherapy-related targets (CTLA-4)

were discovered to be significantly dysregulated between

different risk groups (Figure 5A). Then, the TME

characterized with the CIBERSORT algorithm was analyzed to

compare the subpopulations of infiltrating immune cell

abundances among two m6A-related lncRNAs Clusters

(Figure 5B, Supplementary Table S5). Inactive immune cell

subpopulations, such as resting dendritic cells and naive

FIGURE 4
Clustering of prognostic m6A-related lncRNA expression profiling. (A) Unsupervised clustering of prognostic m6A-related lncRNAs to classify
patients into different genomic subtypes, termed asm6ACluster 1 andCluster 2, respectively. Them6A clusters, age, gender, grade, tumor stage, and
TNM status were used as patient annotations. (B) Survival curves of m6A clusters were estimated by the Kaplan–Meier plotter. (p < 0.001, log-rank
test). GSVA enrichment analysis showed the activation states of biological pathways in distinct m6A clusters. The heatmap was used to visualize
these biological processes; yellow represents activated pathways, and purple represents inhibited pathways. (A) KEGG; (B) Hallmarker.
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CD4 T cells, were markedly elevated in them6A-related lncRNAs

Cluster 1. Additionally, an analysis of immune infiltration with

ESTIMATE was also further performed (Figure 5C,

Supplementary Table S6). The results showed that Cluster

1 experienced a higher ESTIMATE score, immune score and

stromal score relative to Cluster 2.

Identification of the m6A-related lncRNA
prognostic signature

Samples from TCGA-PAAD project were randomly assigned

into training and testing subgroups. First, LASSO Cox regression

analysis on 45 m6A-related lncRNAs correlated with prognosis

was performed to construct risk model (Figure 5D). Finally, 11-

lncRNAs (TRPC7-AS1, LRRC8C-DT, MEG9, AC087501.4,

AC078923.1, AC245140.1, AC005332.4, PAN3-AS1,

AP000802.1, ZNF236-DT, and ZNF710-AS1) prognostic risk

model was established with the optimal value of λ (Figure 5E)

to predict prognosis. The risk score was computed: risk score =

(0.1155 p AC078923.1 expression)–(0.0092 p TRPC7-AS1

expression)–(0.1705 p LRRC8C-DT expression)–(0.0323 p

MEG9 expression)–(0.0575 p AC087501.4 expression)–(0.0832

p AC245140.1 expression)–(0.0049 p AC005332.4 expression)-

(0.0660 p PAN3-AS1 expression)–(0.1979 p

AP000802.1 expression)–(0.1527 p ZNF236-DT

expression)–(0.0038 p ZNF710-AS1 expression). Then, PDAC

samples of training group were partitioned into high-risk (n = 54)

and low-risk subgroup (n = 54) based on the median value, and

patients in testing group were assigned into low-risk (n = 37) and

high-risk subgroup (n = 32) according to median value of

training group.

Prognostic value of the m6A-related
lncRNA signature

The distributions of lncRNAs expression values with

corresponding risk groups are presented in Figure 6A. The

allocations of risk score and dot pot of survival status highlighted

FIGURE 5
TIME contexture of m6A clusters in PDAC. (A) Differentially expression analysis of immune checkpoint blockade genes in m6A clusters. The
fraction of tumor-infiltrating lymphocyte cells inm6A clusters. Within each group, the scattered dots represent TIME cell expression values. The thick
line represents themedian value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). Thewhiskers encompassed
1.5 times the interquartile range. The statistical difference of three gene clusters was compared through the Kruskal–Wallis H test. *p < 0.05;
**p < 0.01; ***p < 0.001. (B) CIBERSORT algorithm; (C) ESTIMATE approach. Identification of the candidate stemness-related genes with prognostic
value. (D) LASSO coefficient profiles of the expression of 45 candidate m6A-related lncRNAs. (E) Selection of the penalty parameter (λ) in the LASSO
model via 10-fold cross-validation. The dotted vertical lines are plotted at the optimal values following the minimum criteria (left) and “one standard
error” criteria (right).
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that high-risk samples experienced significant shorter OS time

(Figures 6B and C). Subsequently, the K–M survival curve

indicated that patients with low risk exhibited a significantly

better prognosis (p < 0.001; Figure 6D). The prognostic

predictive value of risk score for OS was further validated by

ROC curves, of which the area under the curve (AUC) was

0.658 at 1 year, 0.718 at 2 years, and 0.791 at 3 years (Figure 6E).

Univariate and multivariate Cox regression were analyzed among

the available variables to demonstrate the independent prognostic

indicator of risk score. In single-factor regression analysis, the risk

score was discovered to be significantly correlated with OS (HR =

37.346, 95% CI = 8.988–155.184, p < 0.001, Figure 6F). After

correction for other confounding factors, the risk score still was

an independent predictor for OS in the multivariate Cox regression

analysis (HR = 24.672, 95% CI = 5.294–114.974, p < 0.001,

Figure 6G).

Validation of the m6A-related lncRNA
signature

Then, these findingswere further validated in the testing group to

confirm the prognostic significance of the risk model. The

distribution of lncRNAs expression values, overall survival time,

and risk score in the testing group are presented in

Figures 7A–C, Figure 6C. Moreover, Kaplan–Meier curves

revealed that samples in the low-risk group presented significantly

longer OS time in the testing group (Figure 7D; p = 0.005). The AUC

values of ROC curves reached up to 0.65 in the testing group

(Figure 7E), indicating the outstanding predictive performance of

the riskmodel. Consistent with the findings derived from the training

group, the risk model was an independent predictive factor in both

univariable and multivariable COX regression analysis of the testing

group (Figures 7F and G).

FIGURE 6
Confirmation of the prognostic value of the risk signature in the training group. (A) Heatmap presents the expression pattern of 11 hub m6A-
related lncRNAs in each patient, where the colors yellow to blue represent alterations from high expression to low expression, respectively. (B)
Distribution of the m6A-related lncRNA signature risk score. (C) Survival status and interval of PDAC patients. (D) Kaplan–Meier curve analysis
presenting a difference in overall survival between the high-risk and low-risk groups. (E) Areas under curves (AUCs) of the risk scores for
predicting 1-, 2-, and 3-year overall survival time. (F) Univariate Cox regression results of overall survival. The length of the horizontal line represents
the 95% confidence interval for each group. The vertical dotted line represents the hazard ratio (HR) of all patients. (G) Multivariate Cox regression
results of overall survival. The length of the horizontal line represents the 95% confidence interval for each group. The vertical dotted line represents
the hazard ratio (HR) of all patients.
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Clinical significance of the m6A-related
lncRNA signature

First, the distribution of m6A-related lncRNAs expression with

clinical variables in different risk groups was investigated and

visualized (Figure 8A). For T1-2 samples and T3-4 samples, the

risk score exhibited a higher trend in T3-4 samples (Figure 8B). It

was discovered that patients from Cluster 1 also exhibited a

significant increase in the risk score (Figure 8C). These findings

highlighted that m6A-related lncRNAs risk score was significantly

correlated with clinicopathological features.

Establishment of the prognostic
nomogram

To demonstrate the best prognostic predictive factor of risk

score, gender, age, tumor grade, clinical staging, and TNM status

were used as the candidate prognostic predictors. These predictive

variables were adopted into the ROC analysis for 1-, 2-, and 3-year

OS time, and the risk score was discovered to reach the highest

AUC values (Supplementary Figures S5A–C). Subsequently, a

prognostic nomogram, including clinical traits and risk score, was

established to predict the overall survival rate in a quantitative

manner (Figure 8D). In addition, calibrate curves were analyzed

to demonstrate the great sensitivity and specialty of the as-

constructed nomogram (Figure 8E).

Enrichment of signaling pathways in
low-/high-risk groups

To further reveal the biological roles of distinct risk groups in

tumorigenicity and progression, gene set variation analysis

(GSVA) was performed (Figures 9A and B). Samples from the

low-risk group showed heightened activities of the ERBB,MAPK,

KARS, IL6/JAK/STAT3, and Wnt-β-catenin signaling pathways.

Most genes with high expression levels in the high-risk group

were enriched in the mTORC1, P53, and Notch signaling

pathways.

FIGURE 7
Validation of the prognostic value of the risk signature in the testing group. (A)Heatmap presents the expression pattern of 11 hubm6A-related
lncRNAs in each patient, where the colors yellow to blue represented alterations from high expression to low expression, respectively. (B)
Distribution of the m6A-related lncRNA signature risk score. (C) Survival status and interval of PDAC patients. (D) Kaplan–Meier curve analysis
presenting a difference in overall survival between the high-risk and low-risk groups. (E) Areas under curves (AUCs) of the risk scores for
predicting 1-, 2-, and 3-year overall survival time. (F) Univariate Cox regression results of overall survival. The length of the horizontal line represents
the 95% confidence interval for each group. The vertical dotted line represents the hazard ratio (HR) of all patients. (G) Multivariate Cox regression
results of overall survival. The length of the horizontal line represents the 95% confidence interval for each group. The vertical dotted line represents
the hazard ratio (HR) of all patients.
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Correlation of the risk signature with TME
features

Since m6A-related lncRNAs risk score and infiltration

immune cells shared intrinsic interaction, the potential

contribution of the risk score in the characterization of TME

was further investigated. These results revealed that the risk score

was negatively and significantly associated with subpopulations

of CD8+ T cells, activated CD4 memory T cells, and plasma cells,

while it was positively associated with the abundance of M0 and

M2 macrophages (Figure 9C). Moreover, the results of

ESTIMATE analysis exhibited that stromal score, immune

score, and ESTIMATE score experienced a significantly higher

trend in the low-risk group (Figure 9D).

Prediction of immunotherapeutic
outcomes

Since the immunotherapeutic information was not available

in TCGA-PAAD project, the correlation of risk score response to

immunotherapy was not able to explore. For that, a total of

immune checkpoint blockade-related genes (PDCD1 and

CTLA4) were detected in different risk groups, and it was

discovered that most ICB-related genes experienced a negative

correlation with risk score (Figure 10A), suggesting that risk

score was correlated with the response to immunotherapies,

further predicting prognosis accordingly.

Prediction of response to chemotherapy

Based on the pRRophetic algorithm, the IC50 of four

chemotherapeutic drugs (bleomycin, rapamycin, sunitinib, and

vinblastine) were estimated in PDAC patients. Bleomycin,

rapamycin, sunitinib, and vinblastine exhibited higher IC50 in

patients with high-risk scores (all p < 0.05; Figures 10B–E). These

results supported the suggestion of patients with higher risk

scores were sensitive to chemotherapeutic drugs.

The potential role of TRPC7-AS1 in
prognosis and pathway enrichment

TRPC7-AS1 was the hub lncRNA with the most significant

dysregulated expression level among these prognostic m6A-

FIGURE 8
Correlation analysis of the risk score with clinical factors, m6A clusters. (A) Heatmap of m6A-related lncRNAs together with clinical factors and
m6A clusters. Blue represents downregulated expression, and red represents upregulated expression. (B) Difference in the risk score between T1-2
and T3-4 subgroups. (C) Difference in the risk score between m6A Cluster 1 and m6A Cluster 2. (D) Nomogram was assembled by clinical traits and
risk signatures for predicting the survival of PDAC patients. (E) Nomogram calibration curves for 1-, 2-, and 3-year overall survival time.
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related lncRNAs. For that, the biological function of TRPC7-AS1

in PDAC was further investigated in subsequent analyses. The

expression levels of TRPC7-AS1 were between tumor samples

and normal tissues according to TCGA and GTEx datasets. For

tumor tissues and normal specimens, the TRPC7-AS1 expression

value exhibited a higher trend in tumor tissues (Figure 11A).

With the help of qRT-PCR, the expression levels of TRPC7-AS1

in human pancreatic cell lines and four distinct pancreatic cancer

cell lines were detected. Consistently, normal pancreatic cells

presented significantly lower TRPC7-AS1 values than PDAC

cells (Figure 11B). To estimate the prognostic performance of

TRPC7-AS1, survival analysis was performed between TRPC7-

AS1 low- and high-expressed samples. It was discovered that a

higher expression level of TRPC7-AS1 significantly suggested a

higher DFS rate (p = 0.00053, Figure 11C). The expression level

analysis among major clinical stages showed that TRPC7-AS1

expressed significantly different among distinct

clinicopathological stages (Figure 11D, F = 16.9 and p =

1.16e-09). In multivariate regression analysis, TRPC7-AS1 was

discovered to be significantly correlated with OS (HR = 0.82, 95%

CI = 0.70–0.97, p = 0.018, Figure 11E). According to the median

expression of TRPC7-AS1, all samples were divided into a high

expression group and a low expression group. Then, GSEA was

performed to identify the functional enrichment of high and low

TRPC7-AS1 gene expression. KEGG enrichment term exhibited

that high expression of TRPC7-AS1 was mainly associated with

drug metabolism cytochrome P450 and metabolism of

heterologous substances by cytochrome P450 (Figure 11F).

Gene sets, including epithelial–mesenchymal transformation,

glycolysis, and hypoxia were enriched in patients with low

TRPC7-AS1 expression (Figure 11G).

Discussion

An increasing number of studies have highlighted that m6A

modification and lncRNAs served as a nonnegligible regulator in

antitumor effects, inflammation, and innate immunity (Fang and

Fullwood, 2016; Chen et al., 2019; Shulman and Stern-Ginossar,

2020; Wu et al., 2020; Xu et al., 2021a). As plenty of research

studies concentrated on single lncRNA or several m6A

regulators, the comprehensive analysis mediated by integrated

FIGURE 9
Enrichment pathways of GSVA. (A) Heatmap showing the correlation of representative pathway terms of Hallmark with the risk score. (B)
Heatmap showing the correlation of representative pathway terms of KEGGwith the risk score. (C)Correlation analysis of the risk score with immune
infiltration. *p < 0.05; **p < 0.01; ***p < 0.001. (C) CIBERSORT algorithm; (D) ESTIMATE approach.
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m6A RNA modification regulators and lncRNAs has not been

elucidated in PDAC. Determination of the biological function of

m6A-related lncRNA patterns in subtypes identification, prognostic

prediction, TME characterization, enrichment assignment, and

therapeutic estimation directs a crucial approach for our

understanding of the antitumor molecular mechanism for further

optimizing precision therapeutic interventions.

In this work, m6A-related lncRNAs were determined using

univariate Cox regression, followed by Pearson correlation.

Then, two different m6A-related lncRNAs patterns associated

with distinct overall survival were identified, which were

characterized by diverse anticancer immunity and signaling

pathways. Notably, Notch, TGF-β, IL2/STAT5, and IL6/JAK/

STAT3 signaling pathways and epithelial–mesenchymal

transformation were activated in Cluster 1. These results

showed that the underlying molecular mechanism is diverse

well between different clusters.

Subsequently, LASSO algorithm analysis was used to

construct the risk model, and the final 11 significant m6A-

related lncRNAs were assigned to the prognostic risk model.

Its prognostic value was validated by the Kaplan–Meier survival

analysis, the time-dependent ROC analysis, and the univariate/

multivariate Cox regression model. Further validation was

performed in the testing group. Then, the correlation of risk

score with clinical features was explored, and a novel prognostic

clinical-risk nomogram was constructed and confirmed to

quantify the overall survival rate in individual samples.

Since m6A-related lncRNAs were associated with TME

features, the potential role of risk score was further

investigated to reveal the TME diversity. The results of

immune infiltrating highlighted that risk score experienced a

negative correlation with an abundance of activated immune cells

(CD8+ T cells, activated CD4 memory T cells), while it was

positively associated with immunosuppressive cells

(M2 macrophages). Interestingly, the low-risk group was

characterized by a higher stromal score and immune score.

Taken together, the low-risk group was characterized by the

presence of infiltrating immune cells and stromal elements,

which could be considered an immune-excluded phenotype.

Although high infiltration of immune cells presented in the

immune-excluded phenotype, these immune cells, the

penetration of which into the parenchyma of the tumor was

impeded by the abundant stromal element, were unable to

function as recognition and elimination of cancer cells. On

FIGURE 10
Prediction of immunotherapeutic response. (A) Correlation of expression level of immune checkpoint blockade genes with the risk score.
Estimation of the risk score in chemotherapeutic effect. (B) Sensitivity analysis of bleomycin in patients with high- and low-risk scores. (C) Sensitivity
analysis of rapamycin in patients with high- and low-risk scores. (D) Sensitivity analysis of sunitinib in patients with high- and low-risk scores. (E)
Sensitivity analysis of vinblastine in patients with high- and low-risk scores.
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the contrary, the high-risk group was characterized by the

absence of infiltrating immune cells and weakened immune

activity, which was regarded as an immune-desert phenotype.

Based on the TME characteristics in each risk group, it supported

the robustness of risk scoring of immune phenotypes with

distinct m6A-related lncRNA patterns.

In the absence of an appropriate immunotherapy-based

PDAC dataset, immunotherapeutic hub targets were

integrated to confirm the predictive validity of the risk score.

Our findings indicated that the risk score was negatively

correlated with ICB-related gene expression levels (CD274). It

suggested that patients with a lower risk score, corresponding to

the immune-excluded phenotype, might be more suitable for ICB

immunotherapy mainly because of more influenced by immune

checkpoint blockade. These results supported that the m6A-

related lncRNAs scoring scheme could contribute to the

identification of immune phenotypes and optimization of

immunotherapeutic practice.

It is worth mentioning that GSVA results indicated that

ERBB, MAPK, KARS, Wnt-β-catenin, and IL6/JAK/

STAT3 signaling pathways were significantly activated in

samples with low-risk, whereas high-risk group were

associated with the mTORC1, P53, and Notch signaling

pathways. In addition, the risk scoring scheme revealed that

sensitivity to chemotherapy drugs was associated with risk scores.

For that, PDAC patients might be more suitable for distinct

combination administration with molecule-targeting and

chemotherapeutic agents according to risk stratification.

Among these m6A-related lncRNAs in the risk model, the

biological functions of TRPC7-AS1 have not been revealed yet in

PDAC. In addition, TRPC7-AS1 expression was discovered to

independently affect the prognosis of patients with PDAC.

Transient receptor potential (TRP) ion channel is a

transmembrane protein, especially TRPC7-AS1, which plays key

roles in pain, mechanical injury, osmotic pressure perception, and

temperature perception by changing intracellular calcium

concentration or cell membrane potential (Moran, 2018). Recently,

several research studies focusing on the biological roles of TRPC7-AS1

have been published. Zhu, S et al. reported that TRPC7-AS1 could be

a potential therapeutic target or diagnostic marker for HCC (Zhu

et al., 2021). Qi T et al. demonstrated that LncRNA TRPC7-AS1

relieves miR-4769–5p-induced inhibition on HPN via acting as a

ceRNA, thus, regulating NPC viability, senescence, and ECM

synthesis (Wang et al., 2020). In this work, prognostic

FIGURE 11
Clinical significance of TRPC7-AS1 in PDAC. TRPC7-AS1 are upregulated in PDAC samples based on TCGA and GTEx datasets (A) and cell lines
(B), and higher TRPC7-AS1 expression level was significantly correlated with improved prognosis (C). (D) Expression of TRPC7-AS1 had a significant
difference between major pathological stages. (E)Multivariate Cox regression results of overall survival. The length of the horizontal line represents
the 95% confidence interval for each group. The vertical dotted line represents the hazard ratio (HR) of all patients. (F) Enriched gene sets in
KEGG collection by the high TRPC7-AS1 expression sample. (G) Enriched gene sets in Hallmarker collection by the low TRPC7-AS1 expression
sample.
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performance and effects on clinical outcome and mechanism of

TRPC7-AS1 were elucidated. It was discovered that TRPC7-AS1 is

significantly overexpressed in PDAC cells and could play as a poor

prognostic predictor in PDAC. Notably, TRPC7-AS1 was

demonstrated to be an independent prognostic factor in PDAC. In

addition, TRPC7-AS1 experienced a significant negative correlation

with epithelial–mesenchymal transformation, glycolysis, and hypoxia

in PDAC. However, the underlying biomolecular mechanism of

TRPC7-AS1 in PDAC remains obscure, requiring further validation.

In this work, diverse m6A-related lncRNA patterns among

177 PDAC samples based on 45 prognostic m6A-related

lncRNAs were comprehensively identified. In addition,

subtype clustering based on m6A-related lncRNAs was

constructed to quantify the m6A-related lncRNA patterns.

Finally, the m6A-related lncRNA scoring scheme was

established to reveal prognostic prediction, underlying

signaling pathways, TEM features, and chemotherapeutic

prediction. Finally, the potential role of TRPC7-AS1 was

explored in PDAC. Collectively, the comprehensive evaluation

of m6A-related lncRNA patterns in PDAC will provide novel

insights into molecular mechanisms and therapeutic strategies.
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Glossary

CD274: also known as PD-L1

CI: confidence interval

CNV: copy number variation

CTLA-4: cytotoxic T-lymphocyte antigen 4

DEL: deletion

DFS: disease-free survival

FDR: false discovery rate

FPKM: fragments per kilobase of exon model per million

mapped fragments

GDC: Genomic Data Commons

GDSC: Genomics of Drug Sensitivity in Cancer

GSVA: gene set variation analysis

HR: hazard ratio

IC50: half-maximal inhibitory concentration

ICB: immune checkpoint blockade

IDO1: indoleamine 2,3-dioxygenase 1

KEGG: Kyoto Encyclopedia of Genes and Genomes

K–M: Kaplan–Meier

K–W: Kruskal–Wallis

lncRNA: long noncoding RNA

MDS: multidimensional scaling

m6A: methylation of N6 adenosine

OS: overall survival

PCA: principal component analysis

PDAC: pancreatic ductal adenocarcinoma

PDCD1: also known as PD-1

PDCD1LG2: also known as PD-L2

ROC: receiver operating characteristic

SNV: simple nucleotide variation

TCGA: The Cancer Genome Atlas

TICs: tumor-infiltrating immune cells

TILs: tumor-infiltrating lymphocytes

TIM-3: T-cell immunoglobulin domain and mucin domain-

containing molecule-3

TME: tumor microenvironment

TNM: tumor node metastasis

TPM: transcripts per kilobase million
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