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Abstract 

Background:  Synapses can adapt to changes in the intracerebral microenvironment by regulation of presynaptic 
neurotransmitter release and postsynaptic neurotransmitter receptor expression following hypoxic ischemia (HI) 
injury. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) exerts a protective effect on neurons after HI 
and may be involved in maintaining the function of synaptic networks. In this study, we investigated the changes in 
the expression of NAAG, glutamic acid (Glu) and metabotropic glutamate receptors (mGluRs), as well as the dynamic 
regulation of neurotransmitters in the brain after HI, and assessed their effects on synaptic plasticity of the cerebral 
cortex.

Methods:  Thirty-six Yorkshire newborn pigs (3-day-old, males, 1.0–1.5 kg) were selected and randomly divided into 
normal saline (NS) group (n = 18) and glutamate carboxypeptidase II inhibition group (n = 18), both groups were 
divided into control group, 0–6 h, 6–12 h, 12–24 h, 24–48 h and 48–72 h groups (all n = 3) according to different 
post-HI time. The content of Glu and NAAG after HI injury were detected by 1H-MRS scanning, immunofluorescence 
staining of mGluRs, synaptophysin (syph) along with postsynaptic density protein-95 (PSD95) and transmission elec-
tron microscopy were performed. ANOVA, Tukey and LSD test were used to compare the differences in metabolite 
and protein expression levels among subgroups. Correlation analysis was performed using Pearson analysis with a 
significance level of α = 0.05.

Results:  We observed that the NAAG and mGluR3 expression levels in the brain increased and then decreased 
after HI and was significantly higher in the 12–24 h (P < 0.05, Tukey test). There was a significant positive correla-
tion between Glu content and the expression of mGluR1/mGluR5 after HI with r = 0.521 (P = 0.027) and r = 0.477 
(P = 0.045), respectively. NAAG content was significantly and positively correlated with the level of mGluR3 expres-
sion (r = 0.472, P = 0.048). When hydrolysis of NAAG was inhibited, the expression of synaptic protein PSD95 and syph 
decreased significantly.

Conclusions:  After 12–24 h of HI injury, there was a one-time elevation in NAAG levels, which was consistent with 
the corresponding mGluR3 receptor expression trend; the NAAG maintains cortical synaptic plasticity and neurotrans-
mitter homeostasis by inhibiting presynaptic glutamate vesicle release, regulating postsynaptic density proteins and 
postsynaptic receptor expression after pathway activation.
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Background
After hypoxic ischemic brain injury, nerve cells and neu-
ral networks undergo adaptive changes to maintain cere-
bral homeostasis, which are referred to as neuroplasticity. 
These changes include neural regeneration and changes 
in synaptic structure and function at the cellular level [1–
3]. Synaptic plasticity is an important mechanism for the 
formation and maintenance of functional neural circuits, 
which can be dynamically regulated in physiological and 
pathological states, further causing changes in brain 
function, behavior, and mental activity [4, 5].

Synaptic activity requires the involvement of a large 
amount of neuromodulatory substances, including neu-
rotransmitters and neuropeptides. Glutamic acid (Glu) 
is the most abundant cerebral excitatory neurotransmit-
ter [6]. Excitotoxic effect caused by Glu accumulation in 
the synaptic gap is one of the main causes of neuronal 
cell damage after hypoxic ischemia (HI), as increased 
Glu release promotes glutamate receptor overactivation 
and intracellular calcium overload hierarchical damage 
response [7]. N-acetylaspartylglutamate (NAAG) is a 
kind of peptide neurotransmitter, and its main physiolog-
ical function is to participate in amino acid metabolism 
in the nervous system as well as to regulate neurotrans-
mitter release and thus influence neuroplasticity [8, 9]. 
Several studies have indicated that NAAG can attenuate 
excitotoxicity caused by increased Glu transmission and 
hence exert neuroprotective effects [10–12], which is 
determined by the metabolic processes and signaling pat-
terns of NAAG in the brain. NAAG synthetase (NAAGS) 
catalyzes the biosynthesis of NAAG from N-acetyl-
aspartate (NAA) and Glu (NAAGS) [13, 14] through a 
mechanism that consumes Glu and helps to minimize the 
excitotoxic effects of Glu accumulation in pathological 
situations, hence reducing neuronal damage.

NAAG can also reduce excitotoxicity by affecting Glu 
binding to the metabolic glutamate receptor (mGluRs). 
mGluRs includes three subtypes, type I mGluR 
(mGluR1,5) with postsynaptic localization and known 
to regulate neuronal excitability, type II (mGluR2,3) and 
type III mGluR (mGluR4,6,7,8) with presynaptic locali-
zation and known to regulate Glu release [15]. NAAG is 
released from the postsynapse and competitively binds 
to type II metabotropic glutamate receptor 3 (mGluR3). 
Further, this complex acts as a retrograde neurotransmit-
ter and negatively regulates Glu signaling by lowering Glu 
release and excitotoxicity by inhibiting intra- and extra-
synaptic N-methyl-D-aspartic acid receptor (NMDAR) 
[9, 16–18]. However, NAAG acts for a short time and is 

quickly hydrolyzed into NAA and Glu by glutamate car-
boxypeptidase II (GCP-II) [14, 19]. The use of GCP-II 
inhibitors such as 2-phosphonomethyl pentanedioic acid 
(2-PMPA) can increase NAAG levels, thus promoting the 
neuroprotective effect of NAAG [20, 21]. In addition to 
attenuating neuronal damage caused by Glu over-release, 
activated NAAG-mGluR3 pathway may maintain Glu 
homeostasis and regulate postsynaptic responses and 
plasticity changes across polysynaptic connections in real 
time [15, 22]. Pinheiro et al. [23] demonstrated that acti-
vation of presynaptic mGluRs leads to synaptic inhibition 
and is involved in the long-term and short-term regula-
tion of synaptic plasticity.

Under action potential evocation, synaptic vesicles 
(SVs) translocate to the active zone, fuse with the presyn-
aptic plasma membrane, and subsequently release neu-
rotransmitters. Short-term presynaptic plasticity could 
be related to SVs’ ability to fuse and bind to the plasma 
membrane of the activated zone [24, 25]. Synaptophysin 
(syph) is a presynaptic terminal marker protein that is 
widely distributed in presynaptic membrane vesicles and 
can reflect the density, distribution area, and functional 
state of the synapse [26]. It is also involved in calcium 
binding processes, neurotransmitter release, and synaptic 
vesicle recycling. Syph is associated with synapse forma-
tion during CNS development, thus reflecting synaptic 
plasticity [27, 28]. Postsynaptic density (PSD) is a dense 
material located at the postsynaptic membrane, mainly 
composed of receptor, skeletal proteins etc., among 
which PSD95 is an important skeletal protein maintain-
ing postsynaptic receptor function and is involved in the 
maintenance of glutamate postsynaptic receptor stabili-
zation and acts as an important indicator of changes in 
postsynaptic components [29].

In the present study, we investigated the changes in 
the NAAG, Glu and Glu receptor expression after HI, 
analyzed the dynamic regulation process of neurotrans-
mitters in the brain after HI injury, and explored the rela-
tionship with syph and PSD95 expression. The effect of 
NAAG-mGluR3 pathway on synaptic plasticity was fur-
ther investigated.

Methods
Experimental animals and HI model
The experimental animals used in this study were 36 
newborn Yorkshire pigs 3  days old (body mass 1.0–
1.5 kg, males). They were randomly assigned into normal 
saline (NS) group (n = 18) and 2-PMPA group (n = 18), 
both groups were divided into control group, 0–6  h, 
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6–12 h, 12–24 h, 24–48 h and 48–72 h groups (all n = 3) 
according different post-HI time. The experimental pro-
cedures related to experimental animals were approved 
by the Institutional Committee for Animal Care and Use 
of our hospital. The establishment of HI model was per-
formed following protocols of previously published stud-
ies [30] and Additional file 1. At 30 min after completion 
of modeling, 2.5 mg/kg 2-PMPA [21] (S0189, Selleck) was 
intraperitoneally injected in the GCP-II inhibition group, 
and normal saline (NS) group animals were injected with 
equal volume of NS.

1H‑MRS scanning
Philips Achieva 3.0  T MRI scanner (Philips Healthcare, 
The Netherlands) was used for scanning. Gradient coil 
was used for emission and 8-channel RF coil for receiv-
ing. 1H-MRS scan sequence and parameters were sin-
gle voxel PRESS sequence, TR = 2000  ms, TE = 37  ms; 
NSA = 64; VOI = 10 × 10 × 10 mm. Image were post-pro-
cessed by LCModel software package.

Immunofluorescence staining and image analysis
Brain tissues were fixed in formaldehyde for 72 h, dehy-
drated in gradient ethanol, made transparent in xylene, 
and embedded in paraffin wax before being cut into 4-μm 
pathological sections using an automatic microtome 
(HM340E, Thermo Scientific, MI, USA). Immunofluo-
rescence staining was performed for mGluR3, mGluR1, 
mGluR5, syph and PSD95. The staining procedure was 
as follows: following xylene dewaxing and gradient etha-
nol hydration of the sections, the antigen was recovered 
by citrate buffer (0.01  M, pH = 6.0) in microwave for 
7.5 min over high heat. Normal goat serum was used for 
blocking of non-specific antibody binding at room tem-
perature for 30  min. Primary antibodies, such as Anti-
Metabotropic Glutamate Receptor 1 antibody ab27199; 
Anti-Metabotropic Glutamate Receptor 5 antibody 
ab76316; Anti-Metabotropic Glutamate Receptor 3 anti-
body ab188750; Anti-Synaptophysin antibody ab52636, 
Anti-PSD95 antibody ab18258 were incubated at 4  °C 
overnight. The sections were further incubated with sec-
ondary antibodies (Alexa Fluor 488-labeled goat anti-
rabbit IgG 1:100, Immunoway, RS3211) for 4 h at room 
temperature. Finally, the sections were incubated with 
DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride, 
ab104139) for 5 min for nuclear staining.

Immunofluorescence images were acquired (× 200 
and × 400) by confocal laser scanning microscope 
(LSM880, Axio Examiner; ZEISS, Germany). After image 
acquisition, protein expression was determined using 
ImageJ software (Java 1.6.0; National Institutes of Health, 

USA), and the average optical density (OD) value was 
used to represent the intensity of protein staining.

Western blot analysis
For protein extraction, 100 mg of cerebral cortical tis-
sue were weighed in each group and homogenized and 
lysed using 1  ml RIPA and 10  μl PMSF. Further, after 
centrifugation the supernatant was collected for pro-
tein concentration determination followed by dena-
turation using 5X loading buffer at 100 ℃ for 5  min. 
SDS-PAGE electrophoresis was performed by loading 
30 μg of protein to each lane with electrophoresis con-
ditions at 140  V for 60  min. Further, the sample were 
transferred to a PVDF membrane and blocked with 
5% skim milk for 2 h. The membrane was further incu-
bated with primary antibodies such as GCPII (1:2000, 
ab133579), syph(1:1000, ab52636), PSD95 (1: 1000, 
ab18258), β-actin (1: 1000, ab8226), at 4 ℃ overnight 
and then incubated with horseradish peroxidase (HRP) 
conjugated rabbit and mouse  IgG secondary antibody 
(1: 10,000, proteintech, SA00001-1; SA00001-2) for 2 h 
at room temperature.

The membrane was further visualized using the GE 
Imaging System (Amersham Imager 680; GE, Japan), 
and quantitatively analysed using the ImageJ software 
(Java1.6.0; National Institutes of Health).

Transmission electron microscopy
Fresh cerebral cortical tissue was obtained, fixed in 
2.5% glutaraldehyde solution at 4 ℃ for 24 h, post fixed 
with 1% osmium solution for 2 h, gradient ethanol, ace-
tone dehydrated, epoxy embedded, and cut into 70 nm 
ultrathin tissue sections. The sections were stained by 
uranium acetate for 10 min and lead citrate for 5 min, 
washed in distilled water, and naturally dried. Sections 
were observed using a transmission electron micro-
scope (TEM, transmission electron microscopy) (JEM-
1400Flash, Japan).

Statistical analysis
The normality test for quantitative data was performed 
using the Shapiro–Wilk method. One-way ANOVA 
were used to compare the total differences. Post-hoc 
multiple tests were performed between multiple groups 
using the Tukey test, while paired comparison using 
LSD test, correlation analysis was performed using 
Pearson analysis, and P < 0.05 was considered a statisti-
cally significant difference. All statistical analyses were 
performed using SPSS (version 22.0; IBM, Armonk, 
New York) and GraphPad Prism (version 8.0.2; Graph-
Pad Software, San Diego, California) software.
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Results
Changes in cortical mGluR3, mGluR1, and mGluR5 
expression after HI injury
Initially, we assessed the changes occurring in mGluR 
levels during different time periods after HI. The 
mGluR3 expression at 12–24 h was significantly higher 
than in 0–6  h and 48–72  h post-HI group (P = 0.035; 
0.027, Tukey test) (Fig.  1A). The mGluR1 expression 
was significantly increased at 6–12  h than in the con-
trol group (P = 0.005, Tukey test), decreased at 12–24 h 
(P = 0.005, Tukey test), and increased again at 24–48 h 
(P = 0.021, Tukey test) (Fig.  1B). mGluR5 expression 
were significantly higher in the 6–12  h than in the 
0–6  h group (P = 0.006, Tukey test). Post-HI mGluR5 
increased at 24–48 h than 12–24 h and 48–72 h group 
(P = 0.018; P < 0.001, Tukey test) (Fig. 1C).

1H‑MRS analysis of NAAG and Glu alterations 
and correlation with metabotropic glutamate receptor 
changes after HI injury
1H-MRS was used to evaluate changes in NAAG and 
Glu in the brain at various time intervals following HI, 

as indicated in Fig. 2A. NAAG content in the brain at 
12–24 h after HI was statistically higher than the group 
at 24–48  h after HI (P = 0.039, Tukey test). The Glu 
content increased at 24–48 h after HI when compared 
with the control group (P = 0.037, Tukey test). Correla-
tion of NAAG, Glu and metabolic glutamate receptor 
changes after HI injury is shown in Fig. 2B–H. NAAG 
content was significantly and positively correlated with 
the level of mGluR3 expression (r = 0.472, P = 0.048) 
(Fig.  2B), especially at 12–72  h after HI (r = 0.696, 
P = 0.037) (Fig. 2F). We observed a significant positive 
correlation between Glu content and the expression 
of mGluR1/mGluR5 after HI with r = 0.521 (P = 0.027) 
and r = 0.477 (P = 0.045), respectively (Fig.  2C, D). 
The correlation heatmap showed that the Glu content 
were significantly positively correlated with the level 
of mGluR1/5 (r = 0.692, P = 0.013; r = 0.617, P = 0.032) 
at 0–12 h and 24–48 h (Fig. 2H). NAAG and Glu were 
negatively correlated at 0–12  h after HI (r = -0.838, 
P = 0.037) (Fig.  2E). Besides, mGluR3 and mGluR5 
were positively correlated at 6–48 h after HI (r = 0.736, 
P = 0.024) (Fig. 2G).

Fig. 1  mGluR3, mGluR1, mGluR5 expression changes after HI injury (× 400). A Trends of mGluR3 immunostaining in the brain and mean optical 
density in after-HI groups at 6–12 h, 12–24 h, 24–48 h and 48–72 h, with respective controls. Green fluorescence represents mGluR3. B Trends of 
mGluR1 immunostaining and mean optical density in after HI groups at 6–12 h, 12–24 h, 24–48 h and 48–72 h. Green fluorescence represents 
mGluR1. C Trends of mGluR5 staining and mean optical density at 6–12 h, 12–24 h, 24–48 h and 48–72 h groups after HI, with respective controls. 
The green fluorescence represents mGluR5. **P < 0.01, *P < 0.05, data expressed as mean ± standard deviation
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Changes in cortical syph and PSD95 expression after HI 
injury
Next, we studied the changes in cortical syph and 
PSD95 expression after HI injury. As compared to 
the control group, syph was significantly increased 
6–12  h after HI (P = 0.016, Tukey’s test) and lasted 
until 24–48  h, then significantly decreased at 48–72  h 
(P = 0.004, Tukey’s test) (Fig. 3A–F). PSD95 expression 
was significantly increased at 12–24 h after HI than at 
0–6 h (P = 0.029, Tukey’s test) (Fig. 4A–F).

Changes in synaptic protein expression after the use 
of 2‑PMPA
Synaptic protein changes after application of the 
2-PMPA are shown in Fig.  5A–D. The GCP-II expres-
sion levels were significantly reduced in the control 
group, 6–12  h, 12–24  h of 2-PMPA group when com-
pared with the corresponding NS group (P < 0.05, LSD 
test). At 12–24  h after HI, syph expression was sig-
nificantly lower than in the 6–12  h, 24–48  h (P < 0.01, 
Tukey test) and NS group (P < 0.001, LSD test). Com-
pared with the corresponding NS group, PSD95 expres-
sion levels were significantly reduced in the 6–12  h, 
12–24  h, and 24–48  h of 2-PMPA group (P < 0.05, 
LSD test).

Synaptical structural changes after HI damage 
and application of 2‑PMPA
The changes in synaptic structure in different time 
groups after HI injury and GCP-II inhibitor application 
are shown in Fig.  6A–F. The number of SVs increased 
at 12–24 h (Fig. 6B) and 24–48 h (Fig. 6C) when com-
pared with control group (Fig.  6A) after HI. Post-HI 
the number of SVs decreased at 12–24 h (Fig. 6E) and 
24–48 h (Fig. 6F) after the application of GCP-II inhibi-
tors, as compared to the control group (Fig.  6D) and 
corresponding NS groups (Fig. 6B, C).

Discussion
Synapses adapt to changes in the brain microenviron-
ment by modifying their structure and strength following 
HI damage through a process known as "synaptic plastic-
ity," which includes two mechanisms: homeostatic plas-
ticity and Hebbian plasticity [31–33]. Hebbian plasticity 
is a kind of positive feedback mechanism that involves 
both long-term potentiation (LTP) and long-term depres-
sion (LTD) of synapses [34, 35]. Increased neuroplasticity 
in the developing brain is generally accepted to be ben-
eficial for neurodevelopment, but excessive enhancement 
of excitatory circuits in pathological states like HI leads 
to adverse outcomes such as spontaneous seizures [36], 

Fig. 2  Changes in NAAG and Glu and scatter plots with mGluRs after HI. A Changes in NAAG and Glu after HI injury. B Scatter plot of the correlation 
between NAAG and mGluR3 expression after HI. C Scatter plot of the correlation between Glu and mGluR1 expression after HI. D Scatter plot of 
the correlation between Glu and mGluR5 expression after HI. E Scatter plot of the correlation between Glu and NAAG at 0–12 h after HI. F Scatter 
plot of the correlation between NAAG and mGluR3 expression at 12–72 h after HI. G Scatter plot of the correlation between mGluR3 and mGluR5 
expression at 6–48 h after HI. H Heatmap of NAAG/Glu/mGluR at 0–12 h and 24–48 h after HI (*P < 0.05, data expressed as mean ± standard 
deviation)
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suggesting that this positive feedback regulation may also 
be accompanied by damage. Homeostatic synaptic plas-
ticity is a negative feedback mechanism in which neurons 
adjust synaptic strength by regulating presynaptic neu-
rotransmitter release and the expression of presynaptic 
and postsynaptic receptors to maintain neurotransmit-
ter homeostasis as well as  counteract excessive excita-
tion or inhibition [35, 37]. In this study, to investigate the 
regulation of synaptic plasticity after HI injury, we used 
1H-MRS imaging to observe the dynamic changes of neu-
rotransmitters NAAG and Glu after HI injury and ana-
lyzed the changes of metabotropic glutamate receptors 
and synaptic protein expression.

Neuronal activity in the mammalian cerebral cortex 
depends both on neurotransmitter transmission at the 
synapse and on the regulation of neuropeptides. In addi-
tion, neuropeptides are essential for the maintenance 
of synaptic network function [34, 38]. NAAG is able to 
specifically bind mGluR3 receptors on presynaptic mem-
branes and astrocytes after synthesis in neurons. mGluR3 

belongs to a group of G protein-coupled receptors that 
are coupled to inhibitory Gi / Go proteins. Activated 
mGluR3 inhibits adenylate cyclase activity, reduces cyclic 
adenosine monophosphate (cAMP) and cyclic guano-
sine monophosphate (cGMP) formation, and is able to 
inhibit voltage-sensitive Ca2+ channels [39–42]. Herein, 
we found that NAAG was negatively correlated with Glu 
at 0–12 h after HI, which indicating NAAG transformed 
with Glu. When NAAG levels increased 12–24  h after 
HI, so did mGluR3 expression, and NAAG was positively 
correlated with mGluR3, implying that NAAG binding to 
mGluR3 increased and downstream molecular pathways 
were activated during this period. The main function of 
voltage-sensitive Ca2+ channels is to control Ca2+ entry 
into the cell to influence the vesicular neurotransmit-
ter release and to bind to and regulate Ca2+-dependent 
neurotransmitter release from the cytoplasmic domain of 
the transmembrane polypeptide of syph [43, 44]. There-
fore, this study further confirmed the effect of NAAG 
on syph and SVs. At 12–24  h after HI, NAAG content 

Fig. 3  Changes in synaptophysin expression after HI injury (× 200, × 400). A–F. Syph staining of the brain sections and mean integrated optical 
density changes in 6–12 h, 12–24 h, 24–48 h and 48–72 h groups after HI, with respective controls. Green fluorescence represents syph. (**P < 0.01, 
*P < 0.05, data are expressed as mean ± standard deviation)
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increased with less modifications to syph expression 
levels, while syph expression was significantly reduced 
and TEM revealed a significant decrease in the number 
of SVs in the GCP-II inhibitory group. This lower modi-
fication to syph expression is perhaps due to the low 
NAAG content in the brain under physiological condi-
tions and its changes are not enough to cause altera-
tion in syph expression levels. While inhibiting GCP-II, 
NAAG hydrolysis is decreased, which can play a stronger 
function of presynaptic inhibition, inhibiting the voltage-
sensitive Ca2+ channel and causing a reduction of Ca2+ 
influx, reduction of Glu vesicle release, and affecting 
Ca2+ binding to syph, thus reducing syph expression and 
number of SVs.

Signaling of NAAG-mGluR3 after HI affects synaptic 
plasticity by regulating the expression of postsynaptic 
proteins. PSD95 is one of the important skeletal proteins 
located at the postsynaptic membrane, affecting neu-
rotransmitter delivery and ion homeostasis by directly 
acting on the NMDAR and promoting its stabilization 

and polymerization [29]. NMDAR is coupled to Ca2+ 
channels, and under pathological conditions such as HI, 
receptor overactivation promotes Ca2+ influx, which will 
lead to intracellular Ca2+ overload and cause postsyn-
aptic cellular damage [45, 46]. This study identified that 
the expression levels of PSD95 were significantly lower 
after applying GCP-II inhibitors than in the NS group. 
Using TEM, we observed a disruption and reduced thick-
ness in PSD (Fig. 6E, F), indicating that under the active 
state of NAAG-mGluR3 pathway, the decrease of glu-
tamate release from SVs will lead to reduced glutamate 
binding to postsynaptic membrane and reduced PSD95 
expression. This further inhibited NMDAR activation 
and lightened the excitotoxicity caused by Glu. In addi-
tion, this study also found that the coated vesicle struc-
ture appeared at 24-48 h after HI in the 2-PMPA group. 
Previous studies showed that this structure is one of the 
characteristics of synaptic membrane remodeling, associ-
ated with synaptic induction of LTP and PSD interrup-
tion [47], but the mechanism behind NAAG’s activity on 

Fig. 4  Changes in PSD95 expression after HI injury (× 200, × 400). A–E PSD95 staining of the brain sections and mean integrated optical density 
changes in 6–12 h, 12–24 h, 24–48 h and 48–72 h groups after HI, with respective controls. Green fluorescence represents PSD95. F The PSD95 
fluorescence intensity increased and then decreased after HI, increased at 6–12 h, lasted until 24–48 h and significantly decreased at 48–72 h. 
(**P < 0.01, *P < 0.05, data are expressed as mean ± standard deviation)
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this structure and the impact on long-term synaptic plas-
ticity need to be further verified.

Post-HI NAAG-mGluR3 signaling may also further 
influence synaptic plasticity by regulating the expression 
of postsynaptic glutamate receptors. The mGluRs are 
involved in mediating electrical synaptic plasticity and 
neural circuit formation during brain development [48], 
mGluR5 also mediates synaptic excitotoxic signaling [49]. 
In the present study, mGluR3 was significantly negatively 
correlated with mGluR5 at 6–48  h after HI, indicating 
that mGluR3 was mutually regulated with mGluR5. Dur-
ing this period, we found that at 12–24 h after HI, NAAG 
content and mGluR3 expression were significantly 
increased and Glu was slightly decreased. Further, among 
the type I metabotropic glutamate receptors, mGluR5 
expression were relatively decreased. These results indi-
cated that mGluR5 activation was relatively reduced 
during this period, causing potentially diminished excit-
ability of postsynaptic neurons. In contrast, 24–48 h after 
HI, NAAG content decreased while Glu content and 

expression of mGluR1 and mGluR5 increased, Glu was 
positively correlated with mGluR1/5. Further, TEM dis-
played mitochondrial swelling and mitochondrial crest 
cleavage (Fig.  6C), indicating that increased Glu release 
further causes enhanced postsynaptic excitatory signal-
ing and causes cell damage. However, we also found that 
the reduction of mGluR5 at 12–24  h after HI was rela-
tive and not lower than the control group. The reason for 
this phenomenon may due to the low NAAG content and 
limited neuroprotective effect, and the influence of ani-
mal physiological changes [50, 51]. In view of this prob-
lem, we will further investigate the impact of NAAG on 
synaptic electrophysiology in the follow-up study.

Conclusion
After 12–24 h of HI injury, we observed a one-time ele-
vation in NAAG levels, which was consistent with the 
corresponding mGluR3 receptor expression trend. The 
NAAG maintains cortical synaptic plasticity and neu-
rotransmitter homeostasis by inhibiting presynaptic 

Fig. 5  Changes in synaptic protein expression after the use of GCP-II inhibitor. A Changes in GCP-II, PSD95, syph and β-actin expression after the 
use of GCP-II inhibitor. B–D Bar graph of the expression changes of GCP-II, PSD95, and syph. (**P < 0.01, *P < 0.05, Turkey test; ##P < 0.01, #P < 0.05, LSD 
test; data are expressed as mean ± standard deviation)
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glutamate vesicle release, regulating postsynaptic density 
proteins and postsynaptic receptor expression after path-
way activation.
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