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Tunable two-phonon higher-
order sideband amplification 
in a quadratically coupled 
optomechanical system
Shaopeng Liu1, Wen-Xing Yang1, Tao Shui1, Zhonghu Zhu1 & Ai-Xi Chen2,3

We propose an efficient scheme for the controllable amplification of two-phonon higher-order 
sidebands in a quadratically coupled optomechanical system. In this scheme, a strong control field and 
a weak probe pulse are injected into the cavity, and the membrane located at the middle position of the 
cavity is driven resonantly by a weak coherent mechanical pump. Beyond the conventional linearized 
approximation, we derive analytical expressions for the output transmission of probe pulse and the 
amplitude of second-order sideband by adding the nonlinear coefficients into the Heisenberg-Langevin 
formalism. Using experimentally achievable parameters, we identify the conditions under which the 
mechanical pump and the frequency detuning of control field allow us to modify the transmission of 
probe pulse and improve the amplitude of two-phonon higher-order sideband generation beyond 
what is achievable in absence of the mechanical pump. Furthermore, we also find that the higher-
order sideband generation depends sensitively on the phase of mechanical pump when the control 
field becomes strong. The present proposal offers a practical opportunity to design chip-scale optical 
communications and optical frequency combs.

Cavity optomechanics1, that combines the optical degree of freedom with the mechanical degree of freedom via a 
radiation-pressure force, has experienced considerable achievements in linear optomechanical coupling regime, 
such as optomechanically induced transparency (OMIT)2–4, sideband cooling of mechanical resonator5–7 and 
normal-mode splitting8,9. As an extension of the investigation for nonlinear effects in microcavity system10–12, a 
variety of nonlinear optical phenomena13–21 including optical frequency comb13, optomechanical chaos14,15 and 
higher-order sideband generation16–20 have been studied theoretically and experimentally in the linear optom-
echanical system. In particular, it is of interest to explore higher-order sidebands that is used for the parametric 
frequency-conversion and nonlinear quantum nature in cavity optomechanics.

Recently, a new type of dispersive optomechanical device featuring quadratic optomechanical coupling has 
been exploited in the high-finesse Fabry-Pérot cavity22–24, where a flexible dielectric membrane locates at a node or 
antinode of the intracavity standing wave. In comparison with the standard linear optomechanical coupling, there 
are two outstanding advantages in such a quadratic optomechanical system. Firstly, the optical cavity field is propor-
tional to the square of displacement or the phonon number of the membrane, so that this quadratic optomechanical 
coupling allows to implement a quantum non-demolition readout of the membrane’s energy eigenstate23. Secondly, 
the quadratic optomechanical coupling indicates two-phonon processes, which could provide a more accessible 
multiphonon sideband effect. In analogy with linear optomechanical symtem, this quadratic optomechanical cou-
pling has also been extended to numerous studies, such as the two-phonon OMIT25,26 and amplification24,27, cooling 
and squeezing of the mechanical oscillator28–32, and the preparation of quantum superposition states33–35. Taking 
these advantages of quadratic coupling into consideration, a promising route for the two-phonon higher-order side-
band generation seems to be established in this quadratically coupled optomechanical system.

In this paper, we demonstrate that a quadratically coupled optomechanical system is suggested to provide a 
controllable multiphonon sideband amplification. Although a few groups discussed the features of the output field 
in the quadratically coupled optomechanical system, they mainly concentrated on probe absorption spectrum or 
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linearized phonon cooling based on the conventional linearized approximation25–32. Different from these gen-
eral linear photon-phonon interaction, our scheme involving both nonlinear photon-phonon and multiphonon 
interactions is dependent upon the dynamical backaction of quadratic optomechanical coupling. Beyond the 
conventional linearized approximation, we derive analytical expressions for the output transmission of probe 
pulse and the amplitude of second-order sideband by adding nonlinear terms into the Heisenberg-Langevin 
equations. Furthermore, our results illustrate that the sideband amplification and phase-dependent effect in gen-
erated two-phonon higher-order sideband signals can be modulated by means of the amplitude and phase of the 
external mechanical pump.

Theoretical model and basic equations of higher-order sidebands
As schematically shown in Fig. 1, a quadratic optomehcanical (or named dispersive optomehcanical) set-up, 
where the thin dielectric membrane with angular frequency ωm, effective mass m and finite reflectivity R is located 
at an antinode of the intracavity field, consists two fixed high-finesse mirrors separated from each other by a dis-
tance L. When this quadratically coupled optomechanical system is driven by the input field 
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25,29 with the speed of light c in a vacuum and the wavelength of 

control field λc. Simultaneously, under the condition of two-phonon resonance, a coherent mechanical pump 
(with amplitude εd, center frequency ωd and phase φd) applied to the membrane is expected for creating a para-
metric amplification of mechanical mode27,36. Thus, this distinct membrane-in-the-middle configuration effi-
ciently avoids compromising either the optical or mechanical functionality22,23. Under the approximation of 
quadratic optomechanical coupling, we begin our analysis by writing system’s Hamiltonian of this dispersive 
optomechanical cavity,
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where x̂ and p̂ are the position and momentum operators of the membrane. â ˆ†a( ) represents annihilation (crea-
tion) operator of the cavity mode with an unperturbed resonance frequency ω0. The fundamental membrane 
vibrational mode b̂ ˆ†

b( ) comes from the quantization for the position and momentum operators of the membrane 
and is described via a relationship of ω ω= = +ˆ ˆ ˆ ˆ† †b b m x ip m( ) /(2 ) [ /( )]m m . φpc = φp − φc is the relative phase 
between control field and probe pulse. In addition, the amplitudes εc,p of control field and probe pulse can be 
normalized to a photon flux at the input of the cavity2, i.e., ε ω= P /c p c p c p, , ,  with control field and probe pulse 
powers Pc,p. The total loss rate is given by κ = κ0 + κL + κR with an intrinsic loss rate κ0 and an external loss rate of 
left (right) mirror κL = ηLκ (κR = ηRκ), where the coupling parameter ηL,R can be continuously adjusted by tuning 
the taper-resonator gap37,38.

In a rotating frame at the frequency of control field ωc, by substituting the expression of fundamental membrane  
vibrational mode into above original Hamiltonian, the interaction Hamiltonian can be obtained as

Figure 1.  Schematic diagram of a quadratically coupled optomechanical system. This optomechanical system is 
driven by a strong control field (with frequency ωc) and a relatively weak probe pulse (with frequency ωp), while 
the thin dielectric membrane located at an antinode of the cavity field is excited by a weak coherent mechanical 
pump (with frequency ωd). After the dynamical backaction of quadratic optomechanical coupling between the 
cavity field and the membrane, the higher-order sidebands are generated.
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here the corresponding frequency detunings are defined as Δc = ω0 − ωc and Δp = ωp − ωc. In our proposed quad-
ratically coupled optomechanical system, the control field detuning Δc should be close to 2ωm, which satisfies the 
condition of two-phonon resonance. Then, in order to fully describe the motion dynamics of this quadratically 
coupled optomechanical cavity, the cavity damping and the dissipation process should be considered. By employ-
ing some shorthand definitions for the Heisenberg operators, i.e., =ˆ ˆX x2, =ˆ ˆP p2 and = +ˆ ˆ ˆ ˆ ˆQ xp px, one readily 
gives the following Heisenberg-Langevin equations:
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where the decay rate κ of cavity mode and the damping Γm of mechanical mode are phenomenologically added 
in above equations. The input vacuum noise operator is âin with zero expectation value 〈 〉 =â t( ) 0in  and nonzero 
correlation function δ〈 ′ 〉 = − ′ˆ ˆ †a t a t t t( ) ( ) ( )in in , while the thermal bath F̂th of mechanical mode is affected by a 
Brownian stochastic force and governed by zero expectation value 〈 〉 =F̂ t( ) 0th  and correlation function 
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39. Owing to the existence 

of system’s thermal equilibrium at temperature T, the constant ω= − −n k T[exp( / ) 1]th m B
1 represents the mean 

thermal phonon number as a result of the coupling between the membrane and the thermal environment.
Except for the approximation of quadratic optomechanical coupling used in the system’s Hamiltonian, we still 

need to adopt three assumptions to study the multiphonon sideband effect, including the perturbation method2,16, 
the sideband-resolved limit (i.e., ω κm ) and the factorization assumption of 〈ab〉 = 〈a〉〈b〉. Thus all of the oper-
ators can be expressed as a perturbation form of   δ= +t t( ) ( )0 , where the operators are reduced to their 
expectation values, i.e., ≡ 〈 〉ˆa t a t( ) ( ) , ≡ 〈 〉ˆX t x t( ) ( )2 , ≡ 〈 〉ˆP t p t( ) ( )2  and ≡ 〈 + 〉ˆ ˆ ˆ ˆQ t x t p t p t x t( ) ( ) ( ) ( ) ( ) . Note that 
the expectation values of noise operators including 〈 〉â t( )in  and 〈 〉F̂ t( )th  have zero mean value. By taking these 
perturbation expressions into the Heisenberg-Langevin Eqs (3–8), we can obtain the steady-state solutions as
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Usually, the conventional linearized approximation in the quadratically coupled optomechanical system is 
used to deal with the steady-state solution or probe transmission by calculating the linearized 
Heisenberg-Langevin equations25–32. But a comprehensive treatment of the perturbation technique should 
include both linear terms 0  and nonlinear terms δa δX, δa δQ, δa* δa, δa* δa δX and δa* δa δQ, in which the linear 
terms support the steady-state theory while the nonlinear terms directly contribute to the generation of 
higher-order sidebands. A further analysis beyond the conventional linearized approximation is based on the 
transformations of these perturbation terms by setting the following ansatz:
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with the nth-order upper sideband −An  and lower sideband +An . The perturbation term δ in Eq. (14) represents 
δX, δP and δQ. Additionally, we assume ωd = Δp so that the mechanical pump field has an effective influence on 
the generation of higher-order sidebands. From the form, above ansatz indicates the generated output fields with 
a series of frequency components (i.e., ωc ± nΔp with the integer n being the order of sideband). For example, 
anti-Stokes field and Stokes field are the first upper sideband for ωd + Δp and the first lower sideband for ωc − Δp, 
respectively. The output field with a new frequency ωd + nΔp (ωc − nΔp) refers to the nth-order upper (lower) 
sideband. Since the multi-photon optical processes are theoretically weaker than the linear optical process, we 
neglect higher order terms in the calculation of the lower order sideband. That is also the reason that perturbation 
terms can be ignored in the steady-state solution. By inserting Eqs (13) and (14) into Eqs (3–8) and comparing the 
coefficients of the same order, one can obtain several new equation set:
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here the positive integers (i,j,k) satisfy i + j + k = n and i, j, k < n.
Then, we can have the analytical solutions for amplitudes of the first-order sidebands and the second-order 

sideband:
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For the amplitudes of the first-order upper and lower sidebands in Eqs (20) and (21), the first term is the 
contribution of the probe pulse, while the other term is relevant to the coherent mechanical pump with the 
two-phonon process. As expected, the first-order sidebands are proportional to both probe pulse and mechan-
ical pump amplitudes, whereas the second-order sidebands exhibit a complex frequency-conversion via the 
photon-phonon and phonon-phonon interactions.

Subsequently, we focus on the output-light fields that transmit through the left mirror of the cavity. Associating 
with the input-output relation of cavity, we have the output transmission spectrum as follows:
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with η κ α ε= −c c s c1  and η κ ε= −−c Ap c p1 . Sin
I  is the transformation form of Sin in a rotating frame of control 

field frequency ωc. The transmission of probe pulse is defined as ε= φ−t c e/p p p
i pc that can be used to study the 

first-order upper sideband and the two-phonon optomechanically induced transparency. And, the 
η η κ ε= −A /n c n p  refers to the amplitude of the nth-order upper sideband, in which the amplitude of probe pulse 
is treated as a basic scale to gauge the amplitude of the output sideband ηn. For example, ηn = 0.2 means that the 
amplitude value of nth-order sideband is equal to 0.2 times of probe pulse amplitude, rather than that 0.2 times of 
probe pulse amplitude are converted into the nth-order sideband. Besides, the amplitude ratio between mechani-
cal pump and probe pulse is defined as n0 = εd/εp. Due to the complexity of phase superposition in these high 
order nonlinear processes, for simplicity, we assume the relative phase of probe pulse is zero, i.e., φpc = 0.

In above mathematical derivation of higher-order sidebands, there are four assumptions used to simplify the 
numerical results. In order to verify their validity, we give a clear description for these assumptions, as follows:

	 1.	 The approximation of quadratic optomechanical coupling in membrane-in-the-middle optomechanical struc-
ture. For our proposed optomechanical system, wherever the membrane is, the complete Hamiltonian can 
be expressed as
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kq = ωq/c and τ = L/c), so that there is an odd number of half wavelengths in the whole cavity. In the simple 
case of R = 1 and x = 0, the resonant frequencies of the two subcavities are ω = π

q
q c

L
(with q = 2L/λq, 

λq = 2πc/ωq and the cavity-mode number q). If the membrane is located at an antinode of the frequency 
ω(x) of cavity field, the approximate cavity frequency can be expressed as the second order of x, i.e., 
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25,29. By substituting the approximate cavity frequency into Eq. (24), we can 

obtain the system’s Hamiltonian Eq. (1) of this dispersive optomechanical cavity. Under this approximation 
of quadratic optomechanical coupling, we discuss conveniently the two-photon sideband effect.

	 2.	 Sideband-resolved limit ω κm  in cavity optomechanics. It is well known that, in mechanical effects of 
light, κ−1 refers to the lifetime of cavity field. And the frequency difference between ωc and ωp in output 
spectrum lines of cavity field equals to ωm. These spectrum lines can be well distinguished only when 
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ω κm . Such a parameter limit is called sideband-resolved limit. Under this approximation of side-
band-resolved limit, the studies for various optomechanical phenomena including sideband cooling5–7 and 
higher-order sideband generation16–20 have a reality-based physical meaning.

	 3.	 The factorization assumption of 〈ab〉 = 〈a〉〈b〉. As we all know, all of the observable quantities are confined 
by uncertainty principle in the field of quantum mechanics. However, in our proposed optomechanical 
system, the order of magnitude of both input coherence light and the output fields can reach microwatt, 
so that these optical fields can be regarded as the statistical result of photons. In this case, the uncertainty 
principle of quantum theory is replaced by the classical limit, in which the Planck constant is treated as 
zero (i.e., ħ → 0) and the expectation values of physical quantities satisfies the factorization 〈ab〉 = 〈a〉〈b〉. 
Because the input and output optical fields in the form of coherent light interact with the quadratically cou-
pled optomechanical system, this factorization assumption is valid for the calculation of the expectation 
values of both cavity field and other quantities in Eqs (3)–(8).

	 4.	 The perturbation theory. In order to solve the Heisenberg-Langevin equations (3)–(8), the expectation 
values of the operators are required to have a perturbation form of   δ= +t t( ) ( )0 , in which the 
steady-state value 0 is far more than the perturbation value δ t( ). In our proposed quadratically coupled 
optomechanical model, the control field intensity is much stronger than the intensities of probe pulse and 
mechanical pump. In this optomechanical environment, the control field is used to excite the cavity field 
and support the steady-state value, while the probe pulse and mechanical pump participate in the 
generation of higher-order sidebands. It should be pointed out that the theoretical essence of this perturba-
tion method is the same as Van Vleck perturbation theory40,41. The difference of these two perturbation 
theory is the calculation process. In detail, Van Vleck perturbation theory is directly used to solve the 
Schrödinger equation due to the predictable wave functions or energy eigenvalues of the system, while the 
perturbation method in the present paper is used to solve the Heisenberg-Langevin equations by expand-
ing the perturbation terms in a form of Fourier series.

Before discussing the higher-order sideband generation with the multiphonon processes, the experimental 
feasibility of this quadratically coupled optomechanical model should be introduced. According to a realistic 
parameter set of recent experiment in cavity-optomecheanics system22, the membrane is movable with the angu-
lar frequency ωm = 2π × 0.1 MHz, the mass m = 100 pg, and the mechanical quality factor Q = ωm/Γm = π × 104. 
And the membrane’s reflectivity determined by the fraction of intracavity photons that transfer momentum to the 
membrane is chose to be R = 0.8. In addition, we assume the cavity length L = 67 mm, the total loss rate of cavity 
field κ = 0.2ωm and the wave length of control field λc = 2πc/ωc = 532 nm. In this scenario, the cavity mode detun-
ing is assumed to be Δc = 2ωm for building a two-phonon resonance case. Note that unlike the probe transmission 
spectrum transmitted through the right mirror of cavity in ref.27, our result will have an inverse transmission 
spectrum due to the output terminal transmitting through the left mirror of cavity.

Numerical Results and Discussions
In this section, we firstly focus on the properties of the second-order sideband based on the analytical expressions 
(20)–(22). In this situation, we analyze the influences of the system parameters, including the intensity and fre-
quency detuning of control field, as well as the amplitude and phase of the mechanical pump in Figs 2–5. There 
are two additional remarks for the parameter choice of probe pulse. 1. We assume that the amplitude of probe 

Figure 2.  The transmission intensity of probe pulse |tp|2 and the amplitude of second-order upper sideband η2 
versus the probe-pulsed detuning Δp for different control field intensities. (i) we use Pc = 0.1 μW in panels (a) 
and (d), (ii) we use Pc = 50 μW in panels (b) and (e), and (iii) we use Pc = 200 μW in panels (c) and (f). Other 
parameters are m = 100 pg, ωm = 2π × 0.1 MHz, Q = ωm/Γm = π × 104, L = 67 mm, T = 50 K, κ = 0.2ωm, Δc = 2ωm, 
ηL = ηR = 0.499, εp = 0.05εc, and n0 = 0.001.
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pulse is proportional to that of control field based on the relationship of εp = 0.05εc. 2. The numerical results of 
higher-order sidebands are normalized by the definition of η η κ ε= −A /n c n p , which is dimensionless. Whatever 
the intensity of probe pulse is how to change, the higher-order sideband signal can be regarded as amplification 
when the normalized amplitudes ηn have an enhancement. Next, according to Eq. (23), we turn to illustrate the 
normalized amplitudes of output higher-order sidebands by the numerical simulations of |Sout/εp| in frequency 
domain (see Fig. 6 that includes seven orders of sidebands). It should be noted that the analytical expressions of 
first- and second-order sideband amplitudes are shown in Eqs (20)–(22), while the nth-order sideband amplitudes 

−An  and +An  (n > 2) can be obtained from the derivation of low-order sidebands. However, the nth-order sideband 
amplitudes −An  and +An  (n > 2) do not exhibit in this paper due to their complex form of analytical expressions. 
Finally, we also give some discussion about the influence of the membrane reflectivity on second-order sideband 
in Fig. 7.

Within above practical parameter set, first of all we analyze the optical properties of the probe-pulsed trans-
mission and the second-order upper sideband for an optomechanical circumstance with a very small amplitude 
ratio between mechanical pump and probe pulse, i.e., n0 = 0.001. Therefore, Fig. 2 shows the transmission inten-
sity |tp|2 of probe pulse and the amplitude η2 of second-order upper sideband versus the probe-pulsed detuning 
Δp for three different control field intensities: (i) Pc = 0.1 μW, (ii) Pc = 50 μW and (iii) Pc = 200 μW. When the 
control field is relatively weak, i.e., Pc = 0.1 μW, one can find that, from Fig. 2(a), the probe transmission spectrum 
experiences an opacity dip near the two-phonon resonance condition Δp ≈ 2ωm, where the probe pulse is almost 
completely absorbed (this probe resonance absorption is called non-OMIT in the following discussion). If the 
intensity of control field increases from 0.1μW to 50μW in Fig. 2(b), there is a standard two-phonon OMIT 
described by an obvious transparency window between two symmetric opacity dips, which results from the quan-
tum destructive interference25–27. As the intensity of control field continues to increase and reaches 200 μW, an 
asymmetric lineshape of two-phonon OMIT, that is characterized by a smooth dip within broad frequency ranges 
and a sharp dip within extremely narrow frequency ranges42–44, appears in the probe transmission spectrum; see 
Fig. 2(c). Direct comparison these three probe transmission spectra exhibits that the opacity dip in Fig. 2(a), the 
transparency window in Fig. 2(b) and the asymmetric dip in Fig. 2(c) are respectively located at different 

Figure 3.  Contour maps of the transmission intensity of probe pulse |tp|2 (including (a–c) and the logarithm 
of amplitude η2 of second-order upper sideband (including (d–f) as a function of the probe-pulsed detuning 
Δp and the control field detuning Δc with different control field intensities. (i) we use Pc = 0.1 μW in panels (a) 
and (d), (ii) we use Pc = 50 μW in panels (b) and (e), and (iii) we use Pc = 200 μW in panels (c) and (f). Other 
parameters are the same as in Fig. 2.

Figure 4.  The logarithm of the amplitude η2 of second-order upper sideband as a function of the probe-pulsed 
detuning Δp and the amplitude ratio n0 with different control fields. (a) Pc = 0.1 μW, (b) Pc = 50 μW, and (c) 
Pc = 200 μW. Other parameters are the same as in Fig. 2.
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detunings of effective cavity resonance frequency, i.e., ωΔ ≈ Δ ≈ 2p c m , ωΔ ≈ Δ ≈ .2 065p c m  and 
ωΔ ≈ Δ ≈ .2 278p c m. On the other hand, associating |tp|2 in Fig. 2(a–c) with η2 in Fig. 2(d–f), it can be seen that 

the amplitudes of second-order upper sidebands coincide inversely with the line shapes of probe transmission 
spectra. Such a high-consistency between |tp|2 and η2 comes from the nonlinear parametric frequency-conversion 
where the probe pulse is actually depleted to support the higher-order sideband generation. More interestingly, 
an enhanced second-order sideband can be achieved in the position of that asymmetric dip; see Fig. 2(f). In other 
words, the asymmetric two-phonon OMIT caused by the quadratic optomechanical coupling assisted by a strong 
control field and a weak probe pulse opens a high-efficiency channel for the second-order sideband generation.

Next, in order to build a tunable sideband amplification, we will study the dependence of higher-order side-
bands on the system parameters of optomechanical cavity including the frequency detuning of control field, the 
amplitude and phase of the mechanical pump and the membrane reflectivity. Note that we focus on the properties 
of higher-order sidebands based on the above mentioned three optomechanical circumstances (i.e., non-OMIT in 
Fig. 2(a), standard two-phonon OMIT in Fig. 2(b) and asymmetric lineshape of two-phonon OMIT in Fig. 2(c)), 
which symbolize three optomechanical phenomena.

Now we start to evaluate the dependence of second-order sideband on the frequency detuning of control 
field. Physically, the detuning management of nonlinear response plays a supplementary role in the modulation 
of optical nonlinearity45. It means that the frequency detuning between cavity field and control field can modify 
the optical nonlinearity strength of optomechanical system and affect the amplitude of second-order sideband 
output. Therefore, we plot the transmission intensity of probe pulse |tp|2 (see Fig. 3(a–c)) and the amplitude of 
second-order upper sideband η2 (see Fig. 3(d–f)) varying with the probe-pulsed detuning Δp and the control 
field detuning Δc for three different control field intensities that are same with Fig. 2. For the three cases of η2 
in Fig. 3(d–f), one can find that η2 depends sensitively on Δc. In detail, the local maximum of η2 occurs at the 
position of Δc = 1.9ωm when Pc = 0.1 μW in Fig. 3(d). With Pc increasing to 50 μW in Fig. 3(e) or 200 μW in 
Fig. 3(f), the local maximums of η2 have a giant enhancement at the off-resonance position of the control field, 
i.e., Δc ≠ 2ωm. Comparing |tp|2 in Fig. 3(a–c) with η2 in Fig. 3(d–f), it shows that, for a fixed control field detuning 

Figure 6.  The output higher-order sideband spectra (in logarithmic scale). Other parameters are are the same 
as in Fig. 2(f).

Figure 5.  The logarithm of the amplitude η2 of second-order upper sideband as a function of the probe-pulsed 
detuning Δp and the relative phase φd with different control field intensities. (a) Pc = 0.1 μW, (b) Pc = 50 μW, 
and (c) Pc = 200 μW. Other parameters are the same as in Fig. 2 except for n0 = 0.03.
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Δc, the maximums of η2 are always located in the extremely narrow frequency ranges where their correspond-
ing transmission intensities |tp|2 exhibit an asymmetric dip, just as illustrated in Fig. 2. This present result also 
confirms that the frequency detuning of control field allows us to modify the transmission of probe pulse and 
improve the amplitude of second-order sideband generation beyond what is achievable in the quadratically cou-
pled optomechanical system based on the conventional linearized approximation.

Based on the analytical expression of the amplitude of second-order sideband in Eq. (22), it is readily found 
that both the amplitude and phase of coherent mechanical pump play an important role in the generation of mul-
tiphonon sideband effect in this quadratically coupled optomechanical system. Then, we proceed to numerically 
study the multiphonon sideband effect and focus on the sideband amplification and phase-sensitive dependence 
by adjusting the amplitude and phase of coherent mechanical pump. Because of the high-consistency between 
|tp|2 and η2, now we turn to only investigate the second-order sideband in the following discuss.

In Fig. 4, we plot the amplitude η2 of second-order upper sideband as a function of the probe-pulsed detun-
ing Δp and the amplitude ratio n0 for three different optomechanical circumstances, i.e., non-OMIT, standard 
two-phonon OMIT and asymmetric lineshape of two-phonon OMIT, which have been introduced in Fig. 2. 
Firstly, by making a qualitative analysis for Fig. 4, it is clear that, with the amplitude ratio n0 increasing, η2 in 
Fig. 4(a) always keeps a emission peak at the two-phonon resonance frequency Δp ≈ 2ωm. Whereas an opacity 
dip of η2 in both Fig. 4(b) and (c) dramatically evolves into the only strong emission peak as the amplitude ratio 
n0 increases. Similar to the microwave field applied to the three-level atomic46,47, the use of additional mechanical 
pump has been explored the parametric amplification and phase-sensitive dependent48,49. Secondly, through a 
quantitative analysis for the three cases with different control field intensities in Fig. 4(a–c), one can see that the 
amplitudes of second-order sideband can be significantly enhanced, even approach to the probe pulse intensity 
in Fig. 4(c), by increasing either the intensity of control field or mechanical pump. And, whatever n0 is how to 
vary, the maximums of η2 for these three cases are located at the same effective cavity resonance frequency, i.e., 
Δp ≈ 2ωm in Fig. 4(a), Δp ≈ 2.065ωm in Fig. 4(b) and Δp ≈ 2.278ωm in Fig. 4(c). This phenomenon can be also 
explained by the perturbation theory. Under the condition of the fixed cavity mode ω0, the effective cavity res-
onance frequency ω0 + GX0 is proportional to the square value of displacement of the membrane X0, while X0 
displayed in Eq. (10) only depends on the intensity of control field. Correspondingly, the position of maximum η2 
is determined by the intensity of control field rather than the other perturbation terms including the probe pulse 
and the mechanical pump. It’s worth noting that such a mechanical pump could be tuned by using microwave 
electrical driven50 and other time-varying weak forces. As a result, we would provide a novel method to amplify 
the second-order sideband generation in a convenient way.

For give a better insight on the phase-dependent effect for the generated second-order upper sideband, in 
Fig. 5, we plot the amplitude η2 of second-order sideband versus the probe-pulsed detuning Δp and the rela-
tive phase φd of mechanical pump with three different control field intensities. Because the relative phase φd 
is attached in the mechanical pump, we choose a relatively large power of mechanical pump, i.e., n0 = 0.03, to 
improve the phase sensitivity. When we adopt a weak control field Pc = 0.1 μW to ensure non-OMIT effect in 
Fig. 5(a), the phase-dependent effect of η2 begins to occur at the two-phonon resonance frequency Δp ≈ 2ωm. 
If the control field becomes strong, the phase-dependent effect has a significant influence on the second-order 
sideband spectra, in which the phase-dependent effect exhibits an odd symmetry with respect to (2.065ωm,0) 
in Fig. 5(b) and an asymmetric phase-dependent effect emerges in Fig. 5(c). Moreover, the maximum η2 is 
still located at the respective cavity resonance frequency, which agrees with the results of Fig. 4. Physically, the 
phase-sensitive dependence of the nonlinear frequency-conversion, involving photon-phonon and multiphonon 
processes, relies on the degree of phase mismatching accumulated by parametric up-convert or down-convert 
paths that lead to the destructive or constructive quantum interference.

Up to now, we have demonstrated that the control and amplification for generated second-order sideband can 
be achieved in this quadratically coupled optomechanical system assisted by a strong control field, a weak probe 
pulse and an external mechanical pump. Then, a natural question is whether or not these fascinating features 
apply to the total higher-order sidebands? To making an intuitional picture that contains a full output transmis-
sion spectrum, we plot the two-phonon higher-order sideband spectra with different parameters as shown in 
Fig. 6. Here, these fixed probe-pulsed detunings are chose in the position of a series of maximum second-order 
sideband amplitudes, which can be obtained in Figs 3 and 4. In the absence of the coherent mechanical pump, 
i.e., n0 = 0, the red spectrum line shows that the amplitude of higher-order sidebands decreases rapidly as the 

Figure 7.  The logarithm of the amplitude η2 of second-order upper sideband as a function of the reflectivity of 
membrane R and the probe-pulsed detuning Δp with different control fields. (a) Pc = 0.1 μW, (b) Pc = 50 μW, 
and (c) Pc = 200 μW. Other parameters are the same as in Fig. 2.
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order number increases. When a strong mechanical pump is applied to the optomechanical system, i.e., n0 = 0.03, 
it can be seen clearly that the amplitudes of both blue spectrum line and black spectrum line decrease slowly 
with the increase of the order number, leading to a broad platform of multiphonon sidebands. Due to the detun-
ing management of nonlinearity acquired by Δc, a more robust higher-order sideband spectrum occurs when 
Δc = 2.5ωm; see the black spectrum line in Fig. 6. In comparison with three spectrum lines of Fig. 6, it implies 
that the two-phonon higher-order sideband spectrum can be simultaneously controlled and amplified by mod-
ulating both the mechanical driving field and the control field detuning. From application point of view, such 
an enhanced higher-order sideband proposal provides a practical opportunity to implement chip-scale optical 
communications and optical frequency combs.

Last but not least, we also consider the influence of the membrane reflectivity on the second-order sideband. 
From the expression of quadratic coupling constant = | =ω π
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25,29, we find that G increases 

with the membrane reflectivity R increasing. Correspondingly, the amplitude of second-order upper sideband η2 
varying with the membrane reflectivity R and the probe-pulsed detuning Δp is shown in Fig. 7. There are two 
common characteristics for the three cases of different control field intensities in Fig. 7(a–c) and (i) With R 
increasing, the amplitude of η2 is expected to be enhanced due to the increase of the quadratic optomechanical 
coupling and the strengthen photon-phonon interaction between the optical and mechanical modes. (ii) It can be 
seen that, with R increasing, the spectrum width of the emission peak or the opacity dip becomes more and more 
broad. In comparison with the low membrane reflectivity applied in this quadratically coupled optomechanical 
system, the use of the high membrane reflectivity can not produce a new feature for the sideband effects, but make 
the original sidebands more obvious. That is, the second-order sideband effect can’t be confined by the change of 
the membrane reflectivity, which is favorable from viewpoint of the experiments.

Experimental realization of our proposed scheme
Before making a conclusion, we give a concise description about the experimental feasibility of our proposed 
scheme. Although the sufficient optomechanical coupling of mechanical devices reaching the quantum regime 
has been a outstanding technical challenge, the strong and tunable dispersive optomechanical coupling was 
reported in high-finesse Fabry-Pérot cavity with good mechanical properties (high Q; small m, spring constant 
k)22–24. In these works, the quadratic optomechanical coupling is increased several orders of magnitude beyond 
previous devices, while the linear optomechanical coupling vanishes. According to the experimental achieve-
ments of ref.22,24 a SiN membrane (1 mm × 1 mm × 50 nm) on a silicon chip is mounted to the waist of the cavity 
field. In detail, when the membrane is placed at an antinode of cavity field, the cavity finesse is set as FAN = 6940, 
while the finesse FN = 15200 corresponds to the membrane position at a node. By maintaining such a high finesse, 
the mechanical device is not heated by absorption of light. This dispersive optomechanical device with the high 
finesse has an experimental repeatability even when the membrane is precisely placed at a node or antinode of the 
cavity field22. More importantly, one advantage in the quadratically coupled optomechanical system is the more 
accessible quantum behaviors, such as the cooling of the membrane from the staring temperature of 294 K22, the 
delay and store of classical light pulses26. It should be emphasized that the two-phonon higher-order sideband 
scheme must be realized at the low temperature environment, because the present numerical results involve the 
factorization assumption 〈ab〉 = 〈a〉〈b〉 that indicates the boundary between quantum and classical physics. We 
believe that our proposed quadratically coupled optomechanical system can be also realized by the existing exper-
imental techniques of optomechanical cavity with micro-structured materials.

Conclusion
In conclusion, we have performed a theoretical analysis for the controllable amplification of two-phonon 
higher-order sidebands in the quadratically coupled optomechanical system, where the optical cavity mode 
couples quadratically rather than linearly to the position of a membrane. Beyond the conventional linearized 
approximation, the nonlinear terms are added into the Heisenberg-Langevin formalism. Thus, we derive analyt-
ical expressions for the output transmission of probe pulse and the amplitude of second-order sideband based 
on the perturbation technique. With the help of quadratic coupling between the optical and mechanical modes, 
we show that the mechanical pump and the frequency detuning of control field allow us to modify the output 
transmission of probe pulse and amplify the two-phonon higher-order sidebands. Comparing with the previous 
schemes in linear coupled optomechanical system16,48, the maximum amplitude of second-order sideband, for a 
suitable designed quadratically coupled optomechanical system, can approach to the probe pulse amplitude. We 
also reveal that the higher-order sideband generation depends sensitively on the phase of the mechanical pump 
when the control field becomes strong. Furthermore, the present results illustrate the potential to utilize quadratic 
optomechanical coupling for optimizing the two-phonon higher-order sidebands, as well as a guidance in the 
design of chip-scale optical communications and optical frequency combs.
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