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1 Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia;

gregor.koporec@gmail.com
2 Faculty of Sport, University of Ljubljana, Gortanova 22, SI-1000 Ljubljana, Slovenia;

goran.vuckovic@fsp.uni-lj.si (G.V.); radoje.milic@fsp.uni-lj.si (R.M.)
* Correspondence: janez.pers@fe.uni-lj.si; Tel.: +386-1-4768-876

Received: 24 May 2018; Accepted: 23 July 2018; Published: 26 July 2018
����������
�������

Abstract: Measurement of energy expenditure is an important tool in sport science and medicine,
especially when trying to estimate the extent and intensity of physical activity. However, most
approaches still rely on sensors or markers, placed directly on the body. In this paper, we present
a novel approach using a fully contact-less, fully automatic method, that relies on computer vision
algorithms and widely available and inexpensive imaging sensors. We rely on the estimation of the
optical and scene flow to calculate Histograms of Oriented Optical Flow (HOOF) descriptors, which
we subsequently augment with the Histograms of Absolute Flow Amplitude (HAFA). Descriptors
are fed into regression model, which allows us to estimate energy consumption, and to a lesser
extent, the heart rate. Our method has been tested both in lab environment and in realistic conditions
of a sport match. Results confirm that these energy expenditures could be derived from purely
contact-less observations. The proposed method can be used with different modalities, including
near infrared imagery, which extends its future potential.

Keywords: physical activity; energy expenditure; heart rate; optical flow; scene flow; support vector
machine; RBF kernel; KCF tracker; Microsoft Kinect; time-of-flight sensor; squash

1. Introduction and Motivation

Physical Activity (body movement caused by muscles [1]) is both an important factor in human
health [2,3] and the essential component of almost all sports. Athletes need to invest significant effort
to achieve top results [1]. By measuring energy consumption, we can predict the energy requirements
for individual sports activities [4,5] and detect overload. The detection of overload is an important
tool for preventing muscle fatigue [6,7].

In order for the muscles to put the body in motion, their cells use energy, stored in the form of
molecular bonds of adenosine triphosphate (ATP) [8]. By decomposing the ATP molecule, the cells get
the necessary energy for contractions, and then again synthesize ATP by means of metabolism [8,9].
ATP decomposition and re-synthesis is a thermodynamically irreversible reaction.

Energy expenditure can be determined directly by measuring heat loss between the subject and
the calorimeter in a process, called direct calorimetry [10]. Theoretically, after the person performs
mechanical work, all of the energy in a isolated system is converted into heat, which is the basic
principle on which direct calorimetry is built. Direct calorimeters are extremely expensive and
impractical [10]. Energy expenditure can be also measured indirectly via the oxygen consumption
(VO2) [8]. Measuring devices for so-called indirect calorimetry are mostly mask-like devices
that must be fixed to the head of the individual [10]. Since they impair the movement, they
are not suitable for routine use or even the use outside of laboratory testing. To address this
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problem, many non-calorimetric methods have been developed. They work via observing kinematics
and other physiological parameters involved in the physical activity [10]. The methods in this
category include measurements of heart rate, electromyography, pedometers and accelerometers,
and non-contact methods.

The heart rate is inexpensive to measure and is often used as a proxy for energy consumption by
amateur athletes. However, it strongly depends on physiological parameters, such as gender, height,
weight, physical fitness [11] and stress levels [12]. The correct estimation of energy expenditure from
heart rate needs to take all these factors into the account, and therefore heart rate, although widely
used, is a poor proxy [11] for energy expenditure. Pedometers and accelerometers are the most used
tools for prediction of energy consumption from kinematics observations [10]. Pedometers detect
movement, associated with each step, but they are bad predictors of energy expenditure, since they
can not determine the length of the step. In theory, the measurement using accelerometers can be
fairly accurate, since the acceleration is proportional to the external forces [13]. They can be used
both for laboratory and field research [14]. However, as noted by Zhang et al. [15], their accuracy is
questionable in practice, which is consistent with later studies on fitness trackers [16]. An example of a
study using contact methods is found in [17], where the authors obtained energy consumption using
regression models.

Limitations of contact sensors are the main motivation behind the development of the non-contact
methods. They are mostly based on the analysis of video [4,5,18–20]. The role of computer vision in
these approaches is mainly spatiotemporal localization of activity, sometimes coupled with metabolic
models, however none of them use dense estimation of motion (e.g., the motion field).

Overview of Our Approach

The key requirement of our approach is the ability to measure energy expenditure in a
fully non-contact and non-intrusive manner. Non-contact methods have an obvious appeal in sport
science [21]—they do not restrict the movement of athletes in any way, and therefore do not influence
the results. This way, the method could be used at the matches of any competition level. Figure 1
shows the schematic overview of our approach.
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Figure 1. Schematic overview of our approach. Individual algorithms and methods are explained in
detail in Section 3.
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In a computer vision-based system, the motion field is the obvious solution for measuring the
intensity of physical activity, because it corresponds to kinematic movements. Motion field cannot be
directly measured, but we can get its approximation via the calculation of the optical flow, a vector field
that describes apparent motion of image pixels in the image coordinate system.

Finally, to estimate actual energy expenditure from optical flow, a robust descriptor of flow and
the trainable model of energy expenditure are needed.

The concept of optical flow can be extended to 3D space by substituting the optical flow with
the so-called scene flow [22]. The latter improves the measurement accuracy, because it provides the
flow vectors in the real-world coordinate system. Descriptors used to describe optical flow can also be
expanded for use with the scene flow.

In this paper, we present a comprehensive study on means to extract energy consumption from
2D or 3D image data, without assuming or detecting body pose. We examined multiple modalities of
input data (RGB, near infrared and time-of-flight), different camera poses, different video acquisition
technologies (IP cameras, Raspberry Pi embedded platform, and Microsoft Kinect for Windows V2)
and different combinations of processing pipeline elements (HOOF and HAFA descriptors, tracking,
filtering, and smoothing). Experiments have been performed both in the laboratory and in the
field—during squash matches.

The paper is structured as follows: In Section 3, we present the methods and algorithms that we
used to extract measurement energy consumption from image and 3D data via optical flow and scene
flow, respectively. Section 4 describes the experiments and provides experimental results, obtained in
laboratory environment and on the squash court. Results are discussed in Section 5, and the paper is
concluded in Section 6.

2. Related Work

Peker et al. [19] argued that the intensity of physical activity is a subjective measurement. When
observing motion in videos, each person will notice a different intensity. On this basis, the implementation
of a psycho-physical protocol was presented to compare measurements of the intensity of physical activity
with the help of a subjective reference. The physiology was completely excluded.

Silva et al. [18] evaluated an automatic video analysis system. By predicting types of physical
activity, they aimed to demonstrate that certain computer vision methods, such as off-line image
segmentation, player detection and player tracking using Kalman filter are also suitable for physical
activity estimation. Unlike [19], objective methods are used. Subject velocity is used to estimate
intensity of physical activity, but it yields only a rough estimate. The method has not been compared
to any of the established energy expenditure measurements methods, e.g., indirect calorimetry.

Osgnach et al. [5] showed that it is possible to evaluate energy demand of football using video
analysis. They employed a physical-physiological model, which can define energy consumption in
terms of velocity and acceleration. They found that energy consumption at different velocities is
similar, since it depends far more on acceleration and deceleration. Acyclic activities such as jumping,
kicking, etc. were not taken into the account, which is a limitation of their model—it cannot be used for
a range of other sports and activities. The work does not include any comparison to a reliable ground
truth for energy consumption.

In ref. [4], researchers developed a method of estimating energy consumption using metabolic
models of fundamental activities (walking, running, sitting, racket strikes and serving) for use in
analysis of a tennis matches. Metabolic models were obtained by measuring oxygen consumption
using K4B2 ergospirometer (Cosmed, Rome, Italy). Duration of individual fundamental activities was
determined by video analysis of the match. These data were then used to calculate energy expenditure.
By analyzing 16 games, the correlation coefficient was CORR = 0.93, proving that the method quite
accurately determines the energy consumption for each type of activity. Validation of models was
performed by employing indirect calorimetry. Nevertheless, the development of metabolic models is
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not trivial and requires considerable time and expertise. The developed models are limited to a specific
type of sport.

Nathan et al. [20] tried to estimate the energy consumption with Microsoft Xbox Kinect V1
sensor (Microsoft, Redmond, USA). The device was used to record motion of the skeleton. Energy
consumption was determined using Gaussian regression models. For the ground truth, the Cortex
Metamax 3B automated gas analysis system was used (indirect calorimety). The concordance
correlation coefficient for this approach was CCC = 0.879. RMS error was 8.384 kJ (2.004 kcal). Authors
found that, using their method, they can easily estimate energy consumption only for high-intensity
activities such as jumping. This limits the usefulness of such a method. The clear limitation of the
method is the requirement for skeleton model and fitting (joint tracking). Unlike previous mentioned
works based on physical and metabolic models [4,5], this method can be applied to various sports, and
is most similar to approach presented in this paper.

The advantage of our method in comparison to [20] is that it does not require skeleton modeling
and joint tracking. Joint tracking reliably works only on 3D data, but our method works either with 3D
or 2D data, simplifying the overall setup.

3. Algorithms and Methods

We assume that the energy consumption in human body due to body movement dominates all
other causes. Therefore, this component of energy consumption can be derived by observing the
kinematics [10] of human body, if all other causes of energy consumption are considered noise. To arrive
to the estimate of energy consumption, we used a processing pipeline with several components. The
source code for parts of the processing pipeline is available on GitHub as described in the section
“Supplementary Materials”.

3.1. Optical Flow

In theory, any mechanical movement can be described by the velocity field H . Motion field G
can be understood as a projection of H onto the image plane, as shown in Figure 2. In practice, we
cannot measure the motion field in a non-contact way, so we use approximations [23]. Optical flow O
is a good approximation of motion field at the points of a high contrast and constant illumination.

We decided to use Farnebäck algorithm [24] for dense optical flow calculation—optical flow is
estimated for each pixel in the image. If we know the position of person in image coordinates, and in
absence of occlusions, we can get an approximation of motion field for the whole body. We used the
Farnebäck algorithm implementation from the OpenCV 3.1.0 library with the following parameters:
pyramid scale pyr_scale = 0.5, number of pyramid layers levels = 3, averaging window size
winsize = 15, number of iterations on each pyramid layer iterations = 3, size of pixel neighbourhood
poly_n = 5 and standard deviation of the Gaussian poly_sigma = 1.2.

3.2. Scene Flow

Optical flow O represents the approximation of motion field G, which is the projection of velocity
field H to the image plane Ω [23]. Looking from a different perspective, optical flow is the projection
of motion field approximation M. By analogy, it can be called Scene Flow [25]. It is a better estimation
of mechanical motion than optical flow, but additional information is needed to extract it from the
image data. For this purpose, we used Time-of-flight (ToF) camera, built into the inexpensive Microsoft
Kinect for Windows V2 sensor [26] (Microsoft, Redmond, USA). This sensor yields registered RGB-D
(red, green, blue and depth) data. To obtain scene flow, we used the PD-Flow algorithm, which has
publicly available implementation [27].
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Figure 2. Projection of velocity field H onto image plane Ω results in optical flow O. In the camera
coordinate system, a particle p with velocity field vector v ∈ H has an image q with motion field vector
u ∈ G on an image plane Ω. In reality, we can only get an approximation to motion field vector u
which is optical flow vector w ∈ O.

3.3. Flow Descriptors

Raw optical flow and raw scene flow are still high-dimensional representations of scene motion.
They contain noise due to violation of assumptions about motion continuity and constant illumination,
and, additionally, due to inherent noise of imaging sensors [28]. It should also be noted that the number
of pixels representing the observed person varies over time as the distance between camera and the
person changes. Therefore, a compact and robust representation of flow that will reduce the influence
of noise is needed [29].

3.3.1. Histograms of Oriented Optical Flow

Chaudhry et al. [29] suggests the use of histograms of oriented optical flow (HOOF), which are
invariant to scale and direction of motion. Each optical flow vector assigned a bin, relative to its angle,
and weighted by its length.

Optical flow vector w = [wx wy]> has an amplitude (Equation (1)) and a direction (Equation (2))
which is defined on an interval (Equation (3)) [29].

‖w‖ =
√

w2
x + w2

y (1)

Θ = tan−1
(

wy

wx

)
(2)

− π

2
+ π

b− 1
NHOOF

≤ Θ < −π

2
+ π

b
NHOOF

(3)

b, 1 ≤ b ≤ NHOOF is histogram bin, where NHOOF is total number of histogram bins. Equation (3)
indicates that vectors w are mapped from interval

(
π
2 , 3π

2
)

to
[−π

2 , π
2
]
. The latter interval is then

divided to NHOOF bins. Each vector w that lies in the subinterval of b will contribute its length ‖w‖
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to bin [29]. The resulting histogram is normalized, so its sum is equal to 1. The example is shown
in Figure 3.
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Figure 3. Example: Calculating a six-bin HOOF histogram. Note the invariance in the direction along
the x axis—this is intentional.

This approach results in a histogram that is invariant to the direction of motion along the x
axis [29], as there is no reason leftward motion would result in different energy expenditure than
rightward motion. By normalizing the histogram, we get scale invariance [29] as well. Since each
contribution of a vector is proportional to its amplitude, noise vectors do not influence the histogram
shape [29]. Consequently, a histogram for the entire image can be determined. The only parameter
that needs to be defined is NHOOF. In our research, we determined the optimal value of NHOOF = 60.

3.3.2. Histograms of Absolute Flow Amplitudes

The HOOF descriptor models only the direction of motion, and therefore contains only part of
the information needed to estimate energy expenditure, the rest being contained in the intensity of
motion. The latter is best described by flow vector amplitude. The idea for modeling the amplitude
was adopted from [30], where the authors used histograms of optical flow (HOF) to describe motion.

Optical flow vector w has an amplitude defined in the interval [0, ∞), which can be quantized by
Equation (4). Amplitude values above the maximum are saturated and end up in the last bin. This
means that amplitude ‖w‖ is defined by bin b, 1 ≤ b ≤ NHAFA, where NHAFA is the total number
of histogram bins. When such histogram is normalized, it is called the histogram of absolute flow
amplitudes (HAFA). Histogram has only one parameter NHAFA, and we established that NHAFA = 60
is appropriate value for our task and results in no human motion-caused saturation. The mapping of
flow vectors to HAFA histogram is illustrated in Figure 4.

b− 1
NHAFA

≤ ‖w‖ < b
NHAFA

(4)
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Figure 4. Example: Calculating a three-bin HAFA histogram.

3.3.3. Extension of Histogram Descriptors for Scene Flow

HOOF and HAFA histograms can also be used for scene flow. The amplitude in Equation (1) can
be replaced by the amplitude in Equation (5) for scene flow vector µ =

[
µx µy µz

]>.

‖µ‖ =
√

µ2
x + µ2

y + µ2
z (5)

The direction Θ is determined by mapping µ to image plane Ω using Equation (6).

Θ = tan−1
(‖w‖
‖µ‖

)
(6)

The equations are based on transition from Cartesian coordinates (x, y, z) to the spherical
coordinates (r, φ, Θ). Figure 5 shows the spherical coordinates in the coordinate system of the camera.
For simplicity, the image plane passes through the camera center O. To uniquely determine the space
points, Θ lies in the interval

[
−π

2 , π
2
]

and φ on the interval [0, 2π).
It can be seen that we lose information about the depth direction in HOOF histogram, since the

azimuth angle φ is not taken into the account. However, this is acceptable, because the histogram must
be invariant to the direction from left to right. This direction is represented by azimuth angle φ.

3.4. Mathematical Models

HOOF and HAFA descriptors are relatively low-dimensional representation of the observed
motion. However, their relation to energy consumption is unknown. To solve this problem, we turn
to regression modeling. In our model, we predict instantaneous energy consumption for every frame
of the video sequence and only later apply Gaussian filtering to enforce temporal constraints on the
output data.
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Figure 5. Spherical coordinates in camera coordinate system help us to extend histogram descriptors
for use with the scene flow.

Machine learning with support vectors (SVM) is often used for regression models (SVR) [31].
Their popularity is based on the high performance without the need for prior knowledge [32]. In our
methods, we used ε-SVR and ν-SVR regression models with RBF kernel. RBF kernel is determined by
Equation (7). Regression methods and RBF kernel implementations from LIBSVM library were used
and are further described in [31].

KRBF(xi, xj) = e−γ
∥∥∥xi − xj

∥∥∥2

(7)

3.5. Validation and Hyperparameter Optimization

Optimal parameters for SVM learning are not known in advance. The best way to find them is
by optimization [33]. A parameter grid search approach is often used, where models with different
combination of parameters are evaluated by K-fold cross-validation. For details, refer to [33].

One of the problems that plagued the initial phases of research was the over-fitting of the SVM
model. Parameter ν for ν-SVR regression is described as the lower limit of the support vectors ratio
in [34], and therefore cannot be used to limit the over-fitting. To solve this problem, we developed
ν-RBF grid search. ν-RBF grid search is essentially the grid search described in [33] with additional
constraint and filtering.

To perform ν-RBF grid search, we used a five-fold cross-validation with ν-SVR regression and
RBF kernel. For every iteration i of the grid search, cross-validation predictions are first filtered using
Gaussian filter. The filter parameter σ is equal to the value used when filtering test results. Then, we
calculated mean squared error ei

MSE and support vector ratio nSV by Equation (8) where nSV is the
number of support vectors and nD the number of feature vectors.

nSV =
nSV
nD

(8)
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Best iteration i (where we get SVM parameters) is chosen by the constraint in Equation (9), where
νmax is parameter of proposed method. It represents the upper limit of support vector ratio.

nSV ≤ νmax (9)

3.6. Tracker

The position of subjects that are being observed is impossible to constrain outside of the carefully
arranged laboratory setup. Note that we use flow fields without any assumption about skeleton pose,
and, without any further constraints, the dominant component of the histograms would be noise.
Therefore, it is necessary to introduce a tracking algorithm, to localize the position of the observed
subject in the image coordinate system. Although our cameras are stationary, this is a step towards
countering ego-motion of the camera as well.

When using optical flow as source of measurement, KCF tracker [35], as implemented in
OpenCV 3.1.0 library, was used. For KCF tracker, we used default parameters, as specified in the
OpenCV library.

When using scene flow as the source of data, we used DS-KCF tracker [36], which uses both the
depth and the RGB information. Its core is based on the KCF tracker defined in [37]. The target model
is represented by a feature vectors consisting of histogram of oriented gradients (HOG) of color images
and a HOG of depth images.

The result of the tracking in both cases is the bounding box of the observed subject. The inside of
the bounding box is used to fill the histograms in the histogram descriptors; the rest of the flow in the
scene is discarded. The tracking algorithms are needed only in field tests, where the position of the
player is unknown. However, in that case, they are the fragile part of our approach. If they fail to track
the player, the data for that particular interval of time are missing, unless the tracking was supervised
and errors corrected. The failure detection of tracking algorithms relies on the following:

• Tracking algorithm signals that it did not detect a target.
• Tracking algorithm signals low confidence in the result (mainly due to occlusions).
• Bounding box area equals zero.
• All optical flow or scene flow vectors inside bounding box are zero.

However, our approach is modular enough that the tracking algorithms can be replaced easily.
With any advances in the field of visual tracking, the reliability of our method will improve.

3.7. Enforcing Temporal Continuity

We process the input data, either the optical flow or the scene flow, on frame by frame basis.
Technically, both flows are actually velocities and directions, calculated from the comparison of each
previous and current frame. Due to physical/mechanical constraints of human body, at current widely
used video acquisition speeds (25–30 frames per second), the actual velocities and directions in the
observed scene can change only for a very small amount between consecutive frame pairs.

However, due to various factors (mostly image noise), the estimations of flow and derived
physiological parameters are noisy. Therefore, it makes sense to enforce temporal continuity and thus
use multiple sequential measurements for better estimation of the predicted physiological parameter.
For this purpose, we used Gaussian filtering. The filter was implemented using Equation (10). For the
size of the kernel, we defined 3σ, where σ is standard deviation. Kernel was normalized to a sum of 1.

g(x) =
1√
2πσ

e−
x2

2σ2 (10)
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3.8. Extending the Algorithm to Multiple Kinect Sensors

Due to the narrow field of view of Kinect cameras, two Kinect sensors were needed to cover the
entire width of the squash court, where part of the experiments took place. The time-synchronized
sequences of frames were then combined with respect to the observed player before further processing,
as follows:

• We obtained intrinsic parameters of infra-red (IR) sensor from Kinect camera using libfreenect2
0.2 library [38].

• The exact extrinsic parameters of the cameras were estimated manually from the intersection
between fields of view of the two cameras. The intersection is shown as a red line in Figure 6.

• Using this method, we defined translational vector and rotational matrix from Euler angles.

Obtained RGB-D data from Kinect sensors was then used as follows. By tracking selected player
with DS-KCF tracker, we determined the center of the target in metric units for each frame using
projection matrix. If the center of the target did not contain any depth data, we selected closest point
with valid depth.

The first frame of the combined sequence is the frame where the player first appears. Subsequent
frames are then selected according to target center position, with the hysteresis shown as blue lines in
Figure 6. The used viewpoint is changed only if the player center crosses the hysteresis line on the
farther side of the court. The distance between both blue lines was set to 400 mm.

Figure 6. Determining the intersection of visible fields of view in left and right Kinect camera. First
frames of the first set in second phase of the field experiments are shown. The fourth player is
marked. The green color represents the selected camera. The intersection is a red line. Blue lines are
hysteresis thresholds for switching between cameras. They lie 200 mm to the left and to the right of the
intersection, shown in red.

3.9. Evaluation

For the evaluation of the above described methodology, we built (trained) and tested many
different models for heart rate and energy expenditure prediction. The training and testing data were
acquired both in the laboratory and during squash matches.

Since there are many factors that may influence of the algorithms described above, we designed a
batch of experiments that evaluates each factor separately, as demonstrated in the next section.

For comparison between the different models, we chose the following validation measures:
correlation coefficient (CORR), relative absolute error (RAE) and root relative square error (RRSE) [39].
We also added ratio between number of support vectors and number of training data (nSV). Higher
values of CORR are better, while lower values of RAE, RRSE and nSV are better.
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4. Experiments and Results

4.1. Data Acquisition

Experimental data were acquired with the participation of active squash players, which are shown
in Tables 1 and 2, along with their anthropometric and physiological data. In the remainder of the
paper, we refer to all of the test subjects with the abbreviation SUBJn, where n is the unique number
assigned to the subject. All subjects gave their informed consent regarding the use of the acquired
data (2D and 3D video, energy consumption data and heart rate), before they participated in the data
acquisition process. The study was conducted in accordance with the guidelines set by the Ethics
Committee of Faculty of Sports at University of Ljubljana.

Table 1. Anthropometric and physiological data for Subjects 0, 11 and 12.

Subject SUBJ0 SUBJ11 SUBJ12

sex m m m
age (years) 26 45 17
height (cm) 177 176 178
weight (kg) 79.1 68 66
VO2 max (mL min−1) 3705 / /
hrmax (bpm) 194 179 203
hrrest (bpm) / 45 50
experiments P1L P1C P1C

Table 2. Anthropometric and physiological data for Subjects 1, 2, 4, 7, 8, 9 and 10.

Subject SUBJ1 SUBJ2 SUBJ4 SUBJ7 SUBJ8 SUBJ9 SUBJ10

sex m m m m m m m
age (years) 20 14 15 15 19 15 16
height (cm) 174 151.7 186 174.4 185 175 181.5
weight (kg) 66.8 35.2 61.9 62.9 72.8 62 53.9
VO2 max (mL min−1) 3418 1908 3608 3486 3413 3513 2662
hrmax (bpm) 200 206 205 205 201 205 204
hrrest (bpm) / / / / / / /
experiments P2L, P2C P2L, P2C P2L P2L, P2C P2L, P2C P2L, P2C P2C

The experimental phase was carefully planned to examine many variables that may influence the
results, as follows:

• Predicted variable: Energy expenditure eem(t) and heart rate hr(t).
• Camera modality: RGB (visible) and near-infrared (invisible).
• Camera position: Lateral and posterior view of the subject.
• Low-level motion data: 2D cameras (and the derived optical flow) and 3D cameras (and the derived

scene flow).
• Descriptor type: HOOF (motion direction only) and HOOF–HAFA (motion direction

and amplitude).
• Generalization over time: Does it matter in which phase of the game the training data are acquired?
• Generalization over subjects: Do the trained models work on previously unseen subjects?

It is impossible to experimentally examine the whole parameter space exhaustively (e.g., each
possible combination of parameters). Therefore, the experiments have been optimized to provide
the valuable insight into the performance of the proposed methods while adhering to the constraints
on subject size and experiment duration. The overview of all experiments, along with experimental
equipment and parameters observed, is shown in Table 3.
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Table 3. Overview of the experiments performed. Experiment names have been constructed as P1/P2
for Phase1/Phase2, L for laboratory, and C for court.

Experiment P1L P1C P2L P2C

environment physiology laboratory squash court physiology laboratory squash court
equipment Cosmed K4B2 Polar Vintage NV Cosmed K4B2 Cosmed K4B2
parameter eem(t), hr(t) hr(t) eem(t) eem(t)
camera modality RGB, NIR RGB RGB, RGBD RGB, RGBD
camera position lateral, posterior posterior lateral, posterior posterior
camera type Axis 207W IP camera RaspiCam Microsoft Kinect V2 Microsoft Kinect V2
motion data optical flow optical flow optical, scene flow optical, scene flow
tracker / KCF KCF, DS-KCF KCF, DS-KCF
descriptor HOOF HOOF–HAFA HOOF–HAFA HOOF–HAFA
model ε-SVR + RBF ε-SVR + RBF ν-RBF ν-RBF
filter Kalman Gaussian Gaussian Gaussian

Accordingly, the experiments have been carried out in two different environments: in a exercise
physiology laboratory (laboratory tests), and at a squash court (field tests). We addressed energy
expenditure eem(t) as a central physiological parameter. Heart rate hr(t) was treated as a secondary
parameter, with the full understanding that it poorly reflects the actual energy expenditure. In all cases,
physiological parameters eem(t) and hr(t), were predicted from a single image of video sequence via
feature vector at the time X(t). No other temporal modeling was used, except for final smoothing of
predictions. This resulted in very simple, near-real-time model, which can be extended with more
complex temporal modeling, should the need arise.

The first part of the process is training of the SVM/SVR model, as shown in Figure 7. This way
we obtain parameters of the regression model, which are then used to predict energy expenditure from
the testing data, as shown in Figure 8.

Target area
on image I(x, y)

Optical/Scene
flow

Descriptors
x(t) Training

SVM/SVR parameters

Figure 7. General training scheme. The data that enter this process are training data.

Target area
on image I(x, y)

Optical/Scene
flow

Descriptors
x(t)

SVM/SVR parameters

Prediction (testing) Energy expenditure

Figure 8. General energy expenditure prediction scheme. The data that enter this process are
testing data.

The experiments are divided into the two main phases. In Phase 1 experiments, we analyzed
the observability of the selected physiological parameters. We denoted the parameters observable if
there is non-zero (positive) correlation between our estimation of a parameter and the corresponding
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ground truth value. In the Phase 2 experiments, we optimized the segments of processing pipeline for
estimating physiological parameters.

4.2. Phase 1 Laboratory Experiments (eem(t) and hr(t), Varying Camera Angle and Camera Modality,
One Subject)

The first set of experiments was performed in exercise physiology laboratory, with subject running
on a treadmill in the presence of the operator—a physician, who determined the intensity and duration
of workload. As part of Phase 1 test, we examined the possible use of of RGB and near-infrared (NIR)
cameras, to facilitate recording in poor light conditions.

4.3. Data Sampling

Heart rate and energy expenditure were measured for an athlete, denoted as SUBJ0. Energy
expenditure was measured using indirect calorimetry with Cosmed CPET Metabolic Cart. System
allows breath-by-breath measurement [40]. We used Hans Rudolph face mask with prescribed minimal
VD (dead space).

4.3.1. Video Acquisition

The treadmill with SUBJ0 was recorded from the two different angles: the side-view and
the back-view. Videos were synchronized at the initial frame at the moments the measurements
started, but certain amount of drift was inevitable due to the use of Axis 207W IP cameras (Axis
Communications, Lund, Sweden). An example of a back-view, side-view and NIR image is shown in
Figure 9.

(a) (b) (c)

Figure 9. Side-view back-view and NIR images of 150th frame from Phase 1 laboratory testing:
(a) side-view image; (b) back-view image; and (c) NIR image.

Videos were acquired in 480× 640 pixel resolution. The frame rate of RGB videos was 30 fps,
and the frame rate of near-IR videos was 25 fps. The slope of the treadmill ranged from 1.5% to 2%.

4.3.2. Measurement Protocol

Two series of recordings were made, with 20 min pause between them. Physiological parameters
were sampled every 5 s. In the first series we made eight recordings, where every recording lasted for
2 min. The treadmill speed was increased by 1 km h−1 for every new recording. The first recording
was acquired at a speed of 6 km h−1 and the last at a speed of 13 km h−1. In the second series, three
recordings were made. Treadmill speeds were 7 km h−1, 10 km h−1 and 13 km h−1. The first set of
recordings was used to acquire learning samples, and the second one to acquire testing samples.
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4.3.3. Processing

Due to the difference in sampling rate of videos and physiological measurements, we used linear
interpolation on physiological measurements to exactly align both data series. We then calculated the
optical flow for the chosen area from the sequence of individual frames. An example of the obtained
optical flow is shown in Figure 10b.
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Figure 10. (a) Original image; (b) optical flow; and (c) HOOF histogram for 150th frame from Phase 1
laboratory testing. Color coding legend on the lower left in (b) is based on [41]. Maximal amplitude of
optical flow is 17 ppf (pixels per frame).

HOOF descriptors were calculated from the optical flow. An example of HOOF descriptor can be
seen in Figure 10c.

The models have been trained using ε-SVR regression and RBF kernel. SVM parameters were
optimized using grid search approach. We needed to determine regression penalty parameter C > 0,
loss function parameter ε > 0, and kernel coefficient γ.

We have built 8 regression models, divided into the two categories: “hr” models, which predict
heart rate and “eem” models, which provide the energy expenditure in kcal min−1. Categories are
further divided according to the camera’s viewpoint: “sv” models for side-view camera and “bv”
models for back-view camera.
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Models were also evaluated with cross testing. This testing was done only by the type of input
data (side-view or back-view). “sv” models that were made with learning samples from side-view
camera were first tested with testing samples from side-view camera and then with back-view camera.
Hereafter, tests with input data from side-view camera are marked with “sv” in brackets and tests with
input data from back-view camera are marked with “bv” in brackets.

We also generated additional models, that we label as “mixed”. They were trained on the data
both from side view and the back view. Recordings from both cameras were concatenated and cropped.
This allows for evaluation of influence of the camera angle.

Results from all models were filtered using Kalman filter. For clearer understanding, we denote
the procedure for testing all laboratory models in Phase 1 as P1OFL. It can be seen in Figure 11.

Target area xp

on image I(x, y)

Optical flow
w

HOOF descriptor
x(t)

ε-SVR
RBF kernel Kalman filter

Result

Figure 11. P1OFL prediction scheme. It was used for Phase 1 lab testing.

4.4. Phase 1 Laboratory Results (eem(t) and hr(t), Varying Camera Angle and Camera Modality, One Subject)

4.4.1. Observability

Observability results can be seen in Table 4 and Figure 12. Validation measures are average values
of “sv” and “bv” models with no cross testing. Pearson correlations were averaged using Fisher z
transform. Both energy expenditure and heart rate have strong positive correlation, which indicates
that they are both observable. “hr” models are more fitted on ground truth test data, but they also
have higher nSV ratio. If we look at RAE and RRSE measures, “eem” models clearly outperform “hr”
models. Therefore, we can confirm that heart rate is not good physiological parameter to measure
physical activity.
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Figure 12. The best results for prediction of energy expenditure and heart rate. Figures show
output of models eem-sv(sv) and hr-sv(sv) and the actual value of energy expenditure and heart
rate: (a) prediction of energy expenditure; and (b) prediction of heart rate.
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Table 4. Validation measures for observability test. These are average values of sv and bv models.
Pearson correlations were averaged using Fisher z transform. Best results shown in bold.

Model CORR RAE RRSE nSV

eem 0.86 0.46 0.53 0.54
hr 0.89 0.78 0.78 0.76

4.4.2. Modality

Results for different viewpoint modalities with cross testing are shown in Table 5. Here, images
were cropped before processing. With cropping, we manually selected target region so that it covered
subject through the entire duration of the video. With this approach, we simulated ideal tracking
system for better comparison with field tests.

Table 5. Validation measures for viewpoint modality tests. Best results are shown in bold.

Model CORR RAE RRSE nSV

eem-bv(bv) 0.83 0.48 0.58 0.60
eem-bv(sv) −0.83 1.37 1.54 0.60
eem-sv(bv) −0.48 1.22 1.28 0.59
eem-sv(sv) 0.86 0.46 0.52 0.59
eem-mixed(bv) 0.84 0.57 0.63 0.62
eem-mixed(sv) 0.85 0.46 0.54 0.62

hr-bv(bv) 0.87 0.75 0.75 0.87
hr-bv(sv) −0.86 2.13 2.15 0.87
hr-sv(bv) 0.33 1.08 1.22 0.85
hr-sv(sv) 0.90 0.71 0.72 0.85
hr-mixed(bv) 0.88 0.60 0.62 0.74
hr-mixed(sv) 0.89 0.67 0.68 0.74

When comparing “bv(bv)” and “sv(sv)” models, the latter are better. Worse results for back-view
camera could indicate that we get less descriptive features from it. Considering cross testing (test
with data from different viewpoint), we can see that all models produce poor results. CORR is very
low or negative and RAE, RRSE are very high. The main difference in “mixed” models can be seen,
when comparing cross tests. We can see that results, when testing models with data from different
viewing angle as they were trained, are significantly better. This results indicate that better models can
be obtained if we train with recordings from different viewing angles.

Results for different image type modalities are shown in Table 6. Here, images were cropped
before processing. “nir” models are compared only with “bv” models, because we recorded NIR
videos with only back-view viewpoint. Results for infrared sequences are better, especially for heart
rate models.

Table 6. Validation measures for image type (BGR or NIR) modality tests. Best results shown in bold.

Model CORR RAE RRSE nSV

eem-bv(bv) 0.83 0.48 0.58 0.60
eem-nir(nir) 0.86 0.47 0.53 0.58

hr-bv(bv) 0.87 0.75 0.75 0.87
hr-nir(nir) 0.90 0.67 0.69 0.73
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4.5. Phase 1 Field Experiments (Squash Court, hr(t) only, Extended Descriptor)

The model squash match, consisting of only one game, was filmed in 1920× 1080 resolution with
RaspberryPi and RaspiCam as a recording device (Raspberry Pi Foundation, Cambridge, UK). The
heart rate was measured for both players, using wearable sensors (Polar Vintage NV, Finland). First
player, denoted SUBJ11, was used for training the regression model, and the second player, denoted
SUBJ12, was used to test the model.

4.5.1. HOOF Descriptor Extension

Poor initial performance with plain HOOF descriptors in a squash game prompted an
extension of HOOF descriptor with HAFA histogram to obtain an extended HOOF–HAFA descriptor.
The descriptor example is visible in Figure 13c.

(a) (b)

0 20 40 60 80 100 120
Bins

0.00

0.02

0.04

0.06

0.08

0.10

0.12

N
or

m
al

iz
ed

am
p

lit
u

d
e

HOOF-HAFA descriptor

(c)

Figure 13. (a) Image with tracking; (b) optical flow; (c) HOOF–HAFA histogram. Green bounding box
in sub-figure (a) is the detection, obtained by KCF tracker. Color coding legend on the lower left in
sub-figure (b) is based on [41]. Maximum amplitude of optical flow image is 31 ppf.

4.5.2. Processing

Measured heart rate was linearly interpolated to obtain heart rate values at the precise timing
of each frame. Next, it was filtered with a Gaussian filter with σ = 16 to prevent training on overly
noisy data. It was then individualized to each player by calculating energy expenditure based on basic
equation from [42]. Predicted results from model were then converted back to heart rate of the other
player using the same equation. This allowed us to train the model on one player, and test it on another.

To obtain player bounding boxes, tracking with KCF algorithm was employed, however the
tracker was re-set once every 3 s by human operator to guarantee reasonable tracking results. We
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had to scale our frames to 25% of the original size, to speed up the tracking. Tracking results were
remapped to the original resolution, and the example of tracking result is shown in Figure 13a.

After calculating the optical flow (Figure 13b), we used the HOOF–HAFA descriptors, where all
features were scaled to the range [−1, 1]. ε-SVR and RBF kernel were used for learning. Kalman filter
was not used for squash experiments. Consistently with training, Gaussian kernel was used to filter
the model output. Kernel parameter was σ = 16. We denote the procedure for testing all Phase 1 field
models as P1OFC. The scheme can be seen in Figure 14.

Image
I(x, y)

KCF tracker Optical flow
w

HOOF–HAFA
descriptors

x(t)

ε-SVR
RBF kernel

Gaussian
filter

Result

Figure 14. P1OFC prediction scheme, used for Phase 1 field testing.

4.6. Normalization of HAFA Descriptors

In practice, it turns out that the original HAFA histogram used in HOOF–HAFA descriptor does
not work well when the tracking is used. The target area changes its size over time, which affects the
values of the HAFA histogram columns. We compensated this by introducing amplitude factor fA.

The amplitude factor is in fact the ratio between the size of the player’s bounding box on the field
tests and the target bounding box size, which, in our case, was the size of the bounding box on the
treadmill. It is calculated as the ratio of the bounding box diagonals according to Equation (11), where
wl and hl are width and length of the bounding box on treadmill, and ws and hs are width and length
in field tests.

fA =

√
w2

l + h2
l√

w2
s + h2

s
(11)

4.7. Phase 1 Field Results (Squash Court, hr(t) only, Extended Descriptor)

Field results on predicting heart rate in a squash game using different descriptors are presented
in Table 7. Results show significant overfitting in one case (almost all feature vectors became support
vectors) and the model with no support vectors in the other. We conclude that procedure used for
laboratory testing cannot be used for field testing. Response of the overfitted model can be seen in
Figure 15 and clearly confirms that such model is useless.

Table 7. Validation measures for field testing. HOOF and HOOF–HAFA descriptors are used. Models
are overfitted.

Model CORR RAE RRSE nSV

hr-bv-hoof(bv) 0.00 1.45 1.46 0.00
hr-bv-hoofhafa(bv) 0.34 0.97 0.98 0.98
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Figure 15. Response of model hr-bv-hoofhafa(bv) for squash game.

4.8. Phase 2 Laboratory Experiments (eem(t) only, 2D and 3D Data, Multiple Subjects, Generalization Test)

Seven different subjects were observed in Phase 2: SUBJ1, SUBJ2, SUBJ7, SUBJ8, and SUBJ9
(all participated in laboratory and field experiments of Phase 2). Furthermore, SUBJ4 participated only
in laboratory experiments, as he was not present for the field testing. To replace him, we used SUBJ10.
Between the laboratory and the field experiments of Phase 2, 43 days passed for SUBJ1 and SUBJ2,
42 days for SUBJ4 and 1 day for the others.

4.8.1. Data sampling

Nowatzky stress test was carried out using a system for direct ergospirometry Cosmed K4B2
(Cosmed, Rome, Italy) on a treadmill (h/p/cosmos Sports & Medical, Nussdorf - Traunstein, Germany).
This way, we obtained data energy expenditure for six different subjects (SUBJ1, SUBJ2, SUBJ4, SUBJ7,
SUBJ8 and SUBJ9). Sampling frequency for energy expenditure was 0.2 Hz.

4.8.2. Video and depth data acquisition

The treadmill was recorded from the two different angles: the back-view and the side-view.
Cameras were time-synchronized via the NTP protocol. When using multiple Kinect sensors, their
sampling frequencies are not strictly equal. Therefore, we also obtained time stamps for each frame for
the reliable synchronization. An example of a back-view and a side-view frame is shown in Figure 16.

Videos were acquired with two Microsoft Kinect for Windows V2 sensors (Microsoft, Redmond,
USA) and libfreenect2 0.2 library [38]. Cameras were positioned about 2 m away from the treadmill
and raised by about 1.5 m from the ground. Color (RGB) and depth images were obtained at 512×
424 resolution. Image and depth sampling rate was approximately 30 fps.
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(a) Side-view RGB (b) Side-view depth

(c) Back-view RGB (d) Back-view depth

Figure 16. Side-view and back-view images from Kinect camera in the laboratory. RGB images were
registered to corresponding depth images. Black pixels do not have corresponding depth. Green
bounding boxes are target detections, provided by the KCF tracker. Treadmill speed: 16 km h−1.

4.8.3. Measurement Protocol

We started the test with one minute rest on the treadmill. It was followed by a 3 min warm-up
running at a speed of 5 km h−1 at the treadmill inclination of 0 %. We continued with 3 min run at a
speed of 6 km h−1. After 3 min, the inclination of the carpet was raised by 2% and was not changed
afterwards. After the last minute of the third level (speed 6 km h−1, inclination 2%), the treadmill
speed was increased by 1 km h−1 every 2 min. The test was carried out without interruption until the
occurrence of objective or subjective reasons.

4.8.4. Processing

Linear interpolation was used to interpolate physiological parameters. Processing was done
in two different ways. The first approach, named P2OF, is based on optical flow and it is shown
in Figure 17.
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Image
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ν-RBF Gaussian
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Figure 17. P2OF prediction scheme. It is used in for Phase 2 testing with optical flow.

Bounding boxes in P2OF were obtained using the KCF tracker. The tracker was re-set once
every 1 min by human operator to guarantee reasonable tracking results. Afterwards, optical flow
for each frame was calculated. An example of the obtained optical flow is shown in Figure 18.
Flow calculation was followed by the generation of a HOOF–HAFA descriptors with parameters
NHOOF = 60 and NHAFA = 60. HAFA part of descriptors was normalized with amplitude factors fA,
which are summarized in Table 8.
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Figure 18. Side-view (“sv”) and back-view (“bv”) optical flows with corresponding HOOF–HAFA
histograms. Optical flows correspond to 24th frame in Figure 16. Color coding legends on the lower
left corners are based on [41]. Maximal amplitude for “sv” is 28 ppf and for “bv” is 5 ppf.
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Table 8. Amplitude factors fA for each subject and camera viewpoint.

Viewpoint Subject fA Viewpoint Subject fA

back-view

1 208.557

side-view

1 236.985
2 179.011 2 163.957
4 225.568 4 196.461
7 195.133 7 205.760
8 209.991 8 190.253
9 182.003 9 178.16

The processing for scene flow is slightly different, and we denote it P2SF. Its schematic
representation is shown in Figure 19.

Image
I(x, y)

DS-KCF
tracker

Scene flow
µ

HOOF–HAFA
descriptors

x(t)
ν-RBF Gaussian

filter

Results

Figure 19. P2SF prediction scheme. It is used for Phase 2 testing using the scene flow.

Bounding boxes in P2SF were obtained using DS-KCF tracker. The tracker was re-set once every
1 min by human operator to guarantee reasonable tracking results. Afterwards, scene flow for each
frame was calculated. An example of the obtained scene flow is shown in Figure 20c. HOOF–HAFA
descriptors were obtained as described for P2OF approach except, there was no HAFA normalization.

Models for both P2OF and P2SF approaches were trained using ν-RBF, where we used σ = 5 and
νmax = 0.5. We trained two regression models for each subject: sv models for side-view camera and bv
models for back-view camera. They all predict energy expenditure in kcal min−1.
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Figure 20. Cont.
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(c) bv scene flow
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Figure 20. Side-view (“sv”) and back-view (“bv”) projections of scene flow onto image plane with
corresponding HOOF–HAFA histograms. Scene flows correspond to the frame that is shown in
Figure 16. Color coding legends on the lower left corners are based on [41]. Maximum amplitude of
projected image of the scene flow: (a) 6 ppf; and (c) 15 ppf.

The models were tested using three different protocols, for the following reasons:

Protocol 1: Every third sample of the physiological parameter is used for testing data. Others are
used for model training. Results of all six subjects are averaged. This way we tried to train the model
to be invariant to the fatigue in observed subjects, which increases with time.

Protocol 2: First 70 % of samples are used for training and the remaining ones for testing. Results
of all six subjects are averaged.

Protocol 3: We use Protocol 1, where we train models on first four subjects and test on other two.
This way, we examined the possibility of generalization of the trained models to the subjects that were
not part of the model training.

4.9. Phase 2 Laboratory Results (eem(t) only, 2D and 3D Data, Multiple Subjects, Generalization Test)

4.9.1. Dependence on Fatigue Accumulation

In Table 9 are presented validation results for Protocol 1 as average of all subjects. Pearson
correlations were averaged using Fisher z transform. All models have strong correlation with ground
truth. Errors are small. We can see that scene flow models give as generally better results.

To check for the influence of subject fatigue, we tested the same data using Protocol 2. In Table 10,
we present validation results for Protocol 2 as average of all subjects. Average validation measures for
Protocol 1 of Phase 2 laboratory results. Pearson correlations were averaged using Fisher z transform.
All models have poor correlation and high errors, which indicates that player fatigue alters the relation
between observed motion and the actual energy expenditure. This temporal component must be taken
into account when training the models—training data have to include whole duration of the match.
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Table 9. Average validation measures for Protocol 1 of Phase 2 laboratory results. Pearson correlations
were averaged using Fisher z transform. Best results shown in bold.

Model CORR RAE RRSE nSV

eem-bv-of(bv) 0.97 0.35 0.38 0.33
eem-sv-of(sv) 0.98 0.20 0.23 0.27

eem-bv-sf(bv) 0.97 0.26 0.30 0.33
eem-sv-sf(sv) 0.99 0.12 0.15 0.26

Table 10. Average validation measures for Protocol 2 of Phase 2 laboratory results. Pearson correlations
were averaged using Fisher z transform. Best results shown in bold.

Model CORR RAE RRSE nSV

eem-bv-of(bv) -0.51 4.71 4.24 0.30
eem-sv-of(sv) −0.69 4.26 3.93 0.22

eem-bv-sf(bv) −0.51 4.89 4.59 0.35
eem-sv-sf(sv) -0.29 4.23 3.93 0.26

4.9.2. Model Generalization

Using Protocol 3, we checked whether the models allow for sufficient generalization to predict
energy expenditure on the subjects that were not part of the training. Results are shown in Table 11.
Surprisingly, we get highest correlations for optical flow models, and not for scene flow, as expected,
but error measures indicate that optical flow models are not very good. Nevertheless, the prediction
results on the two subjects, SUBJ8 and SUBJ9, which were not part of the classifier training are good,
which indicates that model generalizes well.

Table 11. Validation measures for Protocol 3 of Phase 2 laboratory results. Best results shown in bold.

Model CORR RAE RRSE nSV

eem-bv-of-subj8(bv) 0.95 0.50 0.52 0.30
eem-bv-of-subj9(bv) 0.95 0.55 0.57 0.30

eem-sv-of-subj8(sv) 0.96 0.34 0.39 0.18
eem-sv-of-subj9(sv) 0.93 0.59 0.69 0.18

eem-bv-sf-subj8(bv) 0.79 0.58 0.63 0.33
eem-bv-sf-subj9(bv) 0.68 1.00 1.12 0.33

eem-sv-sf-subj8(sv) 0.14 1.16 1.29 0.22
eem-sv-sf-subj9(sv) 0.78 0.74 0.82 0.22

Best results for optical and scene flow are presented in Figure 21. Predictions are noisy, therefore
wider Gaussian kernel could be used. Predictions are worse for higher energy expenditure.

4.10. Phase 2 Field Experiments (Squash Court, eem(t) only, 2D and 3D Data, Multiple Subjects,
Generalization Test)

Six players (SUBJ1, SUBJ2, SUBJ7, SUBJ8, SUBJ9, and SUBJ10) played three squash matches, each
containing only two games. Matches lasted 16 min, 14 min and 11 min. P2OF and P2SF processing was
used, but the tracker was reset once every 3 s by the human operator. Examples of obtained tracker
results, flow field and histogram descriptors are shown in Figure 22.
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Figure 21. Response of SUBJ8 models for Protocol 3 of Phase 2 laboratory results: (a) best results
using optical flow.; and (b) best results using scene flow. Red curve represents measured data, green
curve prediction.

The physiological parameters were obtained using system for direct ergospirometry “breath by
breath” Cosmed K4B2. We measured energy consumption for six different subjects with the following
codes: SUBJ1, SUBJ2, SUBJ7, SUBJ8, SUBJ9 and SUBJ10.

Court was shot with two Microsoft Xbox Kinect V2 cameras using libfreenect2 0.2 library [38].
Cameras were located approximately 2 m from each other. Each camera covered half of the court.
The distance from the ground was approximately 3 m, and the distance to the T-position of the squash
court was approximately 4 m. Θ (rotation around the x axis) was approximately 30◦. Color (RGB) and
depth (D) images were obtained at 512× 424 resolution. Sampling speed was 30 fps. Cameras were
synchronized using the NTP protocol. In this setup, the depth accuracy of Xbox Kinect V2 camera
around the T-position is in the range of 4 mm [26].

Every game started with a 5 min warm-up. It was followed by playing two sets up to 10 points,
with 2 point difference taking into account. Resting time between sets was 2 min.
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Figure 22. Cont.
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Figure 22. Tracking results, flow field and HOOF–HAFA histogram for P2OF approach are shown in
(a–c), respectively. Panels (d–f) represent results for P2SF. Color coding legend on the lower left in (b,e)
are based on [41]. Maximal amplitude of optical flow image is 10 ppf. Maximal amplitude of scene
flow is 13.7 m s−1.

4.11. Phase 2 Field Results (Squash Court, eem(t) only, 2D and 3D Data, Multiple Subjects, Generalization Test)

4.11.1. Dependence on Fatigue Accumulation

In Table 12 are presented validation results for Protocol 1 as average of all subjects. Pearson
correlations were averaged using Fisher z transform. We get best results for scene flow. Correlation is
good, but error measures are a bit high.

Table 12. Average validation measures for Protocol 1 of Phase 2 field results. Pearson correlations were
averaged using Fisher z transform. Best results shown in bold.

Model CORR RAE RRSE nSV

eem-bv-of(bv) 0.54 0.94 0.91 0.48
eem-bv-sf(bv) 0.76 0.66 0.65 0.41

In Table 13 are presented validation results for Protocol 2 as average of all subjects. Pearson
correlations were averaged using Fisher z transform. All models have expected poor negative
correlation and high errors, but they are not so different from results in Table 12.

Table 13. Average validation measures for Protocol 2 of Phase 2 field results. Pearson correlations were
averaged using Fisher z transform. Best results shown in bold.

Model CORR RAE RRSE nSV

eem-bv-of(bv) −0.05 1.41 1.34 0.41
eem-bv-sf(bv) 0.00 1.77 1.66 0.41

4.11.2. Model Generalization

With Protocol 3, we wanted to check if generalized model can be used for prediction of energy
expenditure on different subjects. Results are shown in Table 14. Here, we obtained the best results
for scene flow, as suggested. Error measures are very high. However, as seen in Figure 23b, we get
fairly good predictions. Optical flow models are also not bad, as validation results suggest. Figure 23a
shows that our model predicts average value of energy expenditure.
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Table 14. Validation measures for Protocol 3 of Phase 2 field results. Best results shown in bold.

Model CORR RAE RRSE nSV

eem-bv-of-subj8(bv) 0.02 1.27 1.17 0.29
eem-bv-of-subj9(bv) 0.02 1.29 1.13 0.29

eem-bv-sf-subj8(bv) 0.41 1.02 0.99 0.41
eem-bv-sf-subj9(bv) 0.72 0.89 0.83 0.41
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Figure 23. Response of SUBJ9 models for Protocol 3 of Phase 2 field results: (a) best results using
optical flow; and (b) best results using scene flow. Red curve represents measured data, green curve
prediction.

It can be concluded that generalized model using scene flow is fairly good. As we can see in
Figure 24, there is small error between our model and ground truth when total energy expenditure
Wtot is taken into account.
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Figure 24. Total energy expenditure Wtot for Protocol 3 of Phase 2 field results.
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5. Discussion

Experimental results have shown that the method works, under the following conditions:

• The physiological parameters we aimed to estimate are observable with our method, although the
quality of estimation depends on the setup.

• In lab conditions, where there is no large-scale motion of subjects (only small movement of
the center of mass), either HOOF or HOOF–HAFA descriptors may be used to estimate energy
expenditure.

• Outside laboratory, the method has been validated only for analysis of squash matches. Due
to differences in motion structure, sport-specific validation is needed for each individual sport,
possibly combining the approach with large-scale motion analysis [21].

• Factors such as court size may limit the usability of currently used technology with best results
(TOF camera, providing 3D data). Squash court size is on the upper limit of the size that we were
able to cover that way.

• If sufficient illumination is not available, near-infrared (NIR) cameras with invisible NIR
illumination may be used to acquire 2D data.

• For a model to be able to use visual data from different viewpoints, it has to be trained on data
from multiple viewpoints.

• In field conditions, where subjects move across the court, tracking of the subjects (possibly
amended by human intervention) is needed.

• In field conditions, the scale (apparent size) of the subject changes during the observation. Despite
trying to account for these changes, 2D data (yielding optical flow) do not provide enough
information to the proposed method. In this case, the scene flow, which is calculated from the 3D
data, is needed, requiring either time-of-flight or stereo camera.

• Models that are to be used in field conditions have to be trained on data that span the
whole duration of the match to account for changing relationship between motion and energy
expenditure.

• On the other hand, properly trained models can generalize across subjects. To guarantee the
performance, models used should be trained on anthropometrically similar subjects.

• Unsurprisingly, except in well controlled lab environment, the heart rate is extremely difficult to
estimate from the motion data.

The proposed method compares to others as follows. For [5,18,19] we cannot compare results,
because in this works subjective measure is used with no accurate ground truth using indirect
calorimetry. Comparing [4] with our final generalized models in Phase 2 using scene flow, in [4]
Pearson’s correlation coefficient is CORR = 0.93 ours is CORR = 0.995. In field testing we get
CORR = 0.999. Comparing [20] where concordance correlation coefficient is CCC = 0.879 and
RMS error is RMSE = 2.004 kcal we get CCC = 0.989 and RMSE = 9.870 kcal for best laboratory
model using scene flow and CCC = 0.983 and RMSE = 4.234 kcal for best field model using scene
flow in Phase 2 experiments. CCC is much higher but errors are worse. This could be corrected
with higher number of support vectors. In similar approach using contact sensors [17] authors have
stated results for their MCE approach (RMSE = 1.192 MET) and for BodyMedia, a state-of-the-art
commercial EE-estimation contact device (RMSE = 2.458 MET). Results are for running activities.
Ours is RMSE = 3.262 MET for best laboratory results and RMSE = 2.222 MET for best field result.
Finally, we can perform only rough comparison with the fitness trackers. In [16], it has been estimated
that the mean absolute percentage error for energy expenditure on a treadmill varied from 25.4% to
61.8% for the Fitbit Surge, from 0.4% to 26.6% for the TomTom Cardio and from 1.8% to 9.4% for the
Microsoft Band. Observing Figure 24 we can estimate that our mean absolute percentage error for total
energy expenditure on a squash court is 15% for measurements, based on optical flow, and 9% for
those based on scene flow.
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6. Conclusions

In this study, we explored novel contact-less methods for physiological parameters estimation
from motion. To determine physiological parameters, we used optical and scene flow algorithms
combined with HOOF and HAFA descriptors for robustness. SVM regression with developed ν-RBF
grid search optimization was used to predict energy expenditure and heart rate of the observed subject.
Tracking, Kalman and Gaussian filter were used to remove background noise and movement of objects
that are not of interest. The results are comparable to other published methods, but the advantage of
our method is that it is non-contact and non-intrusive, and therefore could be used at any competitive
level, similarly to [21].

The proposed approach estimates the energy expenditure from the small-scale motion and is
natural counterpart to observation of player motion on the large scale (which is essentially the motion
of the center of mass) [21]. In [21], small scale motion is explicitly removed by sufficient smoothing,
but, in the case of the proposed method, we use tracking to focus on the subject as related to its own
coordinate system. We plan to combine both approaches for sports that include extensive motion in XY
plane (e.g., soccer, basketball, and handball), to get as good an estimate of player energy expenditure
as possible via completely non-contact and non-intrusive means, which is our final aim.

Nevertheless, methodology used in this paper would benefit from future work. Except for the
smoothing, we do not incorporate any temporal dynamics into our model. Additionally, Kinect sensor
outputs noisy depth images and there may be ways to improve (filter/smooth) them before applying
our method. Combining images from multiple Kinect sensors required in our case is labor intensive.
A more automatic approach for calibration of multiple Kinect sensors should be used. Better tracking
algorithms for both 2D in 3D data will probably be developed in the near future and implemented in
our procedure for accuracy gain.

Finally, it should be noted that our framework relies on several techniques and algorithms that
were not developed by us (e.g., tracking, depth estimation, and optical and scene flow estimation), and
the research in these areas is still ongoing. With advances in these algorithms, our method will become
more robust, and, possibly, more accurate.

Supplementary Materials: The source code for feature extraction and tracking is available in the GitHub
repositories: https://github.com/8greg8/flow-features and https://github.com/8greg8/tracker.
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Abbreviations

The following abbreviations are used in this manuscript:

3D Three dimensional
ATP Adenosine triphosphate
HOOF Histogram of oriented optical flow
HAFA Histogram of absolute flow amplitudes
SVM Support vector machine
SVR support vector regression
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RBF Radial basis function
KCF Kernelized correlation filter
DS-KCF Depth scaling kernelized correlation filter
NTP Network time protocol
RGB Red green blue
D Depth
IR Infrared
NIR Near-infrared
CORR Pearson correlation coefficient
CCC Concordance correlation coefficient
RMSE Root mean squared error
RRSE Root relative squared error
RAE Relative absolute error
MET Metabolic equivalent of task
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