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a b s t r a c t 

The methodological development in the mapping of the 

brain structural connectome from diffusion-weighted mag- 

netic resonance imaging (DW-MRI) has raised many hopes 

in the neuroscientific community. Indeed, the knowledge of 

the connections between different brain regions is funda- 

mental to study brain anatomy and function. The reliability 

of the structural connectome is therefore of paramount im- 

portance. In the search for accuracy, researchers have given 

particular attention to linking white matter tractography 

methods – used for estimating the connectome – with infor- 

mation about the microstructure of the nervous tissue. The 

creation and validation of methods in this context were ham- 

pered by a lack of practical numerical phantoms. To achieve 

this, we created a numerical phantom that mimics complex 

anatomical fibre pathway trajectories while also accounting 

for microstructural features such as axonal diameter distri- 

bution, myelin presence, and variable packing densities. The 
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substrate has a micrometric resolution and an unprecedented 

size of 1 cubic millimetre to mimic an image acquisition 

matrix of 40 × 40 × 40 voxels. DW-MRI images were ob- 

tained from Monte Carlo simulations of spin dynamics to en- 

able the validation of quantitative tractography. The phantom 

is composed of 12,196 synthetic tubular fibres with diame- 

ters ranging from 1.4 μm to 4.2 μm, interconnecting sixteen 

regions of interest. The simulated images capture the micro- 

scopic properties of the tissue (e.g. fibre diameter, water dif- 

fusing within and around fibres, free water compartment), 

while also having desirable macroscopic properties resem- 

bling the anatomy, such as the smoothness of the fibre trajec- 

tories. While previous phantoms were used to validate either 

tractography or microstructure, this phantom can enable a 

better assessment of the connectome estimation’s reliability 

on the one side, and its adherence to the actual microstruc- 

ture of the nervous tissue on the other. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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pecifications Table 

Subject Medical imaging 

Specific subject area Structural connectivity estimation from diffusion-weighted magnetic resonance 

imaging (DW-MRI) 

Type of data Image 

How data were acquired The in silico DW-MRI data was obtained using a Monte Carlo simulations of 

spin dynamics. The synthetic substrate was designed and optimized to mimic 

complex white matter axonal configurations. 

Data format raw 

Parameters for data collection The in silico DW-MRI was simulated for 360 measurements, using four 

b-values ( b = 10 0 0 , 1925, 3094, 13,191 s/mm 

2 ). Additionally, four 

non-diffusion-weighted images are included. The echo time was set to 

0.0535 s. The DW-MRI dataset was then corrupted with various levels of Rician 

noise. 

Description of data collection The mesh of the substrate of 1 cubic millimetre was divided into 64,0 0 0 

voxels prior to the Monte Carlo simulation. The Monte Carlo simulation was 

performed independently for each voxel, and summed to form the final 

images. One particle per micrometre cube was initiated for a total of 10 9 

Monte Carlo particles. 

Data source location Ecole polytechnique fédérale de Lausanne (EPFL) Lausanne Switzerland 

Data accessibility public repository: Repository name: Mendeley Data Data identification 

number: 10.17632/fgf86jdfg6.1 Direct URL to data: 

https://data.mendeley.com/datasets/fgf86jdfg6/1 

alue of the Data 

• A novel DW-MRI in silico dataset with both microstructure and macrostructure complexity,

obtained from Monte Carlo simulations of spins dynamics, to improve the estimation of the

quantitative structural connectivity. 

• The dataset can benefit researchers targeting method development for quantitative structural

connectivity estimation from diffusion-weighted MRI. 

• This novel numerical phantom, with a ground truth quantitative connectivity, was designed

for the testing and validation of the DW-MRI processing pipeline, from signal pre-processing,

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://data.mendeley.com/datasets/fgf86jdfg6/1


J. Rafael-Patino, G. Girard and R. Truffet et al. / Data in Brief 38 (2021) 107429 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithms for fibre orientation distributions estimation and tractography algorithms, to trac-

tography filtering and algorithms for the calculation of connectivity strength. 

• This phantom has increased complexity from previously available dataset, and may help im-

proving the reconstruction methods of the quantitative structural connectome. In particular,

in this large and complex substrate, the volume of the axon-like structure is preserved across

their trajectories, allowing for microstructure-informed tractography methods. 

1. Data Description 

The four-dimensional (4D) DW-MRI signal obtained from Monte Carlo simulation is avail-

able in the file ‘DiSCo_DWI.nii.gz’ in the standard Nifti format. The image is of dimension

40 × 40 × 40 × 364 , where the 4th dimension corresponds to the DW-MRI gradient parame-

ters ( b -values and b -vectors). The files ‘DiSCo_DWI_ RicianNoise-snr ∗.nii.gz’ are the same DW-

MRI images but corrupted with Rician noise at a signal to noise ratio (SNR) of 10, 20, 30, 40

and 50. The file ‘DiSCo_gradients.bvals’ lists the b -values (s/mm 

2 ) of the 364 DW-MRI sim-

ulated measurements. The files ‘DiSCo_gradients_ dipy.bvecs’, ‘DiSCo_gradients_fsl.bvecs’ and 

‘DiSCo_gradients_mrtrix.b’ list the corresponding gradient orientation formatted for input to the

DIPY [1] , FSL [2] and MRtrix3 [3] software library, respectively. 

The file ‘DiSCo_ROIs.nii.gz’ contains the 3D location of the 16 ROIs of the phantom. Voxels

of the ROIs have a corresponding value of 1 to 16, the rest of the voxels of the image have a

zero value. The file ‘DiSCo_Intra_Strand_Volume_Fraction.nii.gz’ maps the fraction of Monte Carlo

particles initiated inside the inner tubular mesh of the substrate over the total number of Monte

Carlo particles used to generate the signal. The file ‘DiSCo_mask.nii.g’ identifies all voxels with

one or more particles initiated inside the inner tubular mesh of the substrate. 

The files ‘DiSCo_Strands_Trajectories.trk’ and ‘DiSCo_Strands_Trajectories.tck’ contain the cen- 

terline trajectories of the 12,196 strands in the Trackvis [4] and MRtrix3 [3] formats, respec-

tively. The files ‘DiSCo_Strands_Diameters.txt’ and ‘DiSCo_Strands_ROIs_Pairs.txt’ list the corre- 

sponding inner diameters and the two ending ROIs labels of each strand, respectively. The file

‘DiSCo_Connectivity_Matrix_Strands_Count.txt’ contains the 16 × 16 array where each row and

column correspond to one of the 16 ROIs. The values of the array elements correspond to

the number of strands connecting each pair of ROIs. The file ‘DiSCo_Connectivity_Matrix_Cross-

Sectional_Area.txt’ contains the same array but with the weights corresponding to the sum of

the cross-sectional areas of the strands interconnecting the ROIs. 

Finally, the file ‘DiSCo_mesh.ply’ contains the mesh of the substrate used for the Monte Carlo

simulation of the DW-MRI signal in the PLY polygon format. 

2. Experimental Design, Materials and Methods 

In this work, we have designed a novel dataset of simulated Diffusion-Weighted MRI (DW-

MRI) images from a numerical phantom to foster the development of diffusion tractography and

connectivity methods. The DiSCo (Diffusion-Simulated Connectivity) phantom is composed of 

12,196 tubular fibres (strands), with gamma-distributed inner diameters ranging from 1.4 μm to

4.2 μm, connecting 16 distant Regions of Interest (ROIs). The strands form different white matter

configurations (e.g., kissing, branching) intersect at different crossing angles, split and group af-

ter leaving and ending in the ROIs. The simulation substrate has a micrometric resolution and an

unprecedented size of 1 cubic millimetre to mimic an image acquisition matrix of 40 × 40 × 40

voxels (64,0 0 0 voxels). 

After the Monte Carlo simulation of the DW-MRI signal, the resulting image header was set

to a voxel size of 1.0 mm isotropic (from 25 μm isotropic), for a final image size of 4 × 4 × 4 cm 

3 ,

compatible with conventional diffusion tractography methods. The simulated images capture the

microscopic properties of the tissue (e.g. fibre diameter, water diffusing within and around fi-

bres, free water compartment), while also having desirable macroscopic properties resembling
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Fig. 1. a) Spherical constraints located around each ROIs, used to force the strands trajectories to converge toward the 

centre of the phantom. b) Initial strands trajectories. c, d) Strands trajectories after 1 and 4 optimisation steps of the Nu- 

merical Fiber Generator, respectively. e) Subdivided strands following hexagonal packing. f) Strand trajectories after the 

optimisation process, with gamma-distributed diameters. The colours of the strands correspond to a pair of connected 

ROIs. 
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he anatomy, such as the smoothness of the fibre trajectories. The values of the 16 × 16 connec-

ivity matrix correspond to the cross-sectional area of the strands between pairs of ROIs. 

.1. Phantom design 

The initial connectivity matrix weights of the DiSCo phantom were randomly generated for

6 ROIs. By controlling for sparsity of the resulting matrix, we obtained 25 non-zero weights,

or a total of 120 possible connections among the ROIs. These weights were used to initiate a

roportional set of strands of 15 μm in diameter interconnecting the ROIs going toward the cen-

re of the sphere (789 strands, see Fig. 1 b). The 16 ROIs were generated on the surface of a

phere of 1 mm in diameter using the spherical Voronoi algorithm [5] . The strands trajectories

ere then optimised using the Numerical Fiber Generator [6] . To force strands convergence to-

ard the centre of the phantom, we added three layers of spherical constraints of 0.1 mm in

iameter along the edges of each ROIs (see Fig. 1 a). 

The cost function had energy terms controlling for strands curvature and strands length.

oreover, the cost function increases when strands overlap with other strands or with spher-

cal constraints. Multiple optimisation iterations were performed to slowly increase the cost of

verlapping strands (see Fig. 1 c,d). Each strand was then subdivided into strands of 7.5 μm in di-

meter following hexagonal packing (5523 strands, see Fig. 1 e). Strands were then optimized to

educe overlaps, length and curvature. Finally, each strand was subdivided into cylinders which

iameters following a gamma distribution �(κ, θ ) , with shape, κ = 0 . 5 , and scale θ = 0 . 007

minimum diameter of 2 μm and maximum diameter of 6 μm). Cylinders were iteratively sam-

led and placed within each strand cross-sectional surface until a density of 0.7 was reached

12,196 strands, see Fig. 1 f). Sampled cylinders not fitting within the surface were discarded. The
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Fig. 2. Mesh of the 12,196 strands used as input to the MC/DC diffusion simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical Fiber Generator optimisation procedure was performed for an additional iteration to

further reduce overlapping strands and use the space left by the sampling procedure. 

The final set of strands (trajectories and diameters) were used to generate a mesh of the sub-

strate with the Blender software (see Fig. 2 ). For each strand, a tubular mesh was generated to

represent the outer surface of the axon-like structure. An additional inner tubular mesh repre-

senting the inner surface of the axon-like structure was generated following the same trajectory,

but with a diameter of 0.7 times the outer diameter. The mesh was used as input to the open-

source Monte Carlo Diffusion and Collision Simulator (MC/DC) proposed by Rafael-Patino et al.

[7] . 

2.2. Diffusion-weighted MRI signal generation using Monte Carlo simulations of spins dynamics 

All the signals were computed using the sum of the accumulated phase shift approximation

implemented in the MC/DC simulator [7] . The simulator was specifically adapted to handle sub-

strates with millions of triangles by using a tree-based spatial partitioning of the substrates in

conjunction with predefined diffusion conditions; for example, by adjusting the collision maxi-

mum distance to the particle’s theoretical maximum displacement. Additionally, particles initi-

ated within closed meshes, such as intra-axonal space, can further prune the collision trees by

discarding any triangles outside the defined closed domain. We adjusted the parameters of those

procedures to improve performance under the simulation conditions and substrate size previ-

ously specified, allowing us to compute the whole volume simulation in a reasonable amount of

time. 

To obtain an accurate parameter estimate of the ensemble average, simulations must contain

as many particles as possible to effectively lower the simulation noise. To ensure a high and

uniform density in all the 64,0 0 0 computed voxels, we used a highly dense regular particle

placement with a total of 10 9 particles to achieve a density of one particle per cubic micrometre.

The total diffusion time was set to 53 . 5 × 10 −3 s matching the maximum protocol’s echo time.

The time between each step δt was set to 5 . 35 × 10 −7 s. 

The simulated signal was computed separately by labelling all particles inside the inner-mesh

as “intra-axonal,” those inside the outer-mesh but outside the inner mesh as “myelin,” and those

outside the outer-mesh as “extra-axonal.” The unrestricted diffusion coefficient of the Monte

Carlo particles was set to 0 . 6 × 10 −3 mm 

2 /s. Particles initiated in the “extra-axonal” and “intra-

axonal” compartments were used for the DW-MRI signal generation. The simulation parameters

for both compartments were the same. 
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Although the substrate was optimized to minimize strand overlaps, some overlaps remained.

o account for the effect of overlapping strands in the simulated DW-MRI signal, the “intra-

xonal” signal was generated solely using the mesh of the strand into which the particle was

nitiated. If a particle is initiated at a point where two strands overlap and thus within more

han one strand, one of the strands was randomly chosen to simulate the “intra-axonal” diffusion

rocess. 

The DW-MRI protocol includes 360 diffusion-weighted images and 4 non-diffusion-weighted

mages ( b = 0 ). The measurements are distributed on 4 b-shells ( b = 10 0 0, 1925, 3094,

3,191 s/mm 

2 ). Those correspond to the 3 b-shells of the ActiveAx protocol [8] with an additional

hell at b = 10 0 0 s/mm 

2 . The echo time was set to 0.0535 s. Each shell is sampled using 90 uni-

ormly distributed gradient directions on the sphere. The resulting DW-MRI signal was corrupted

sing various levels of Rician noise using the Diffusion Imaging in Python (DIPY) library [1] . For

ach voxel of the image, the 1-dimensional diffusion signal S was corrupted following 

S = 

√ 

(S + N 1 ) 2 + N 

2 
2 
, (1)

here N 1 and N 2 are 1-dimensional vectors with value sampled from a zero-mean Gaussian dis-

ribution. The standard deviation was set to the non-diffusion-weighted ( b = 0 ) signal intensity

ivided by the target SNR. 
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