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neurodevelopmental studies, as they could reduce the need for challenging

automated segmentation tools, FSL-FIRST (with three different boundary cor-
rection settings) and FreeSurfer, were compared against manual segmentation

Funding information of the hippocampus and subcortical nuclei, including the amygdala, thalamus,
National Alliance for Research on
Schizophrenia and Depression, Grant/

Abbreviations: AAM, active appearance model; ADHD, attention deficit hyperactivity disorder; DSC, Dice score coefficient; DTI, diffusion tensor
imaging; FOV, field of view; GP, globus pallidus; GRAPPA, generalised autocalibrating partially parallel acquisition; ICC, intraclass correlation
coefficient; MR, magnetic resonance; MRI, magnetic resonance image; PAT, parallel acquisition technique; PCC, Pearson correlation coefficient;
PTSD, post-traumatic stress disorder; SD, standard deviation; TE, time to echo; TI, inversion time; TR, repetition time; TSE, turbo spin echo.

Kristian Lidauer and Elmo P. Pulli shared contribution.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Eur J Neurosci. 2022;56:4619-4641. wileyonlinelibrary.com/journal/ejn | 4619


https://orcid.org/0000-0003-1389-2637
https://orcid.org/0000-0003-3871-8563
https://orcid.org/0000-0002-6482-9008
https://orcid.org/0000-0002-9522-7720
https://orcid.org/0000-0002-8515-5399
mailto:kjlida@utu.fi
https://doi.org/10.1111/ejn.15761
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/ejn

o | wiLey N

Award Number: 1956; Suomen
Aivosditio; Sigrid Jusélius Foundation;
Alfred Kordelin Foundation; Emil
Aaltonen Foundation; State Grants for
Clinical Research; Turku University
Foundation; Hospital District of
Southwest Finland; State Grants for
Clinical Research; Academy of Finland,
Grant/Award Number: 325292; State
Grants for Clinical Research (ERVA);
Brain and Behavior Research Foundation;
Hospital District of Southwest Finland;
University of Turku Graduate School;
Orion Research Foundation; Lastenlinnan
sditio; Finnish Cultural Foundation;
Turunmaan Duodecim-seura; Finnish
Brain Foundation; Juho Vainio
Foundation; Pdivikki and Sakari Sohlberg
Foundation

Edited by: John Foxe

LIDAUER ET AL.

putamen, globus pallidus, caudate and nucleus accumbens, using volumetric
and correlation analyses in 80 5-year-olds.

Both FSL-FIRST and FreeSurfer overestimated the volume on all structures
except the caudate, and the accuracy varied depending on the structure. Small
structures such as the amygdala and nucleus accumbens, which are visually
difficult to distinguish, produced significant overestimations and weaker corre-
lations with all automated methods. Larger and more readily distinguishable
structures such as the caudate and putamen produced notably lower overesti-
mations and stronger correlations. Overall, the segmentations performed by
FSL-FIRST’s default pipeline were the most accurate, whereas FreeSurfer’s
results were weaker across the structures.

In line with prior studies, the accuracy of automated segmentation tools was
imperfect with respect to manually defined structures. However, apart from
amygdala and nucleus accumbens, FSL-FIRST’s agreement could be consid-
ered satisfactory (Pearson correlation > 0.74, intraclass correlation coefficient
(ICC) > 0.68 and Dice score coefficient (DSC) > 0.87) with highest values for
the striatal
correlation > 0.77, ICC > 0.87 and DSC > 0.88, respectively). Overall, auto-
mated segmentation tools do not always provide satisfactory results, and care-

structures (putamen, globus pallidus, caudate) (Pearson

KEYWORDS

1 | INTRODUCTION

The hippocampus and subcortical structures (henceforth
collectively referred to as subcortical structures) of the
brain are responsible for numerous important functions.
The hippocampus and the amygdala, located in the
medial temporal lobe, form an important part of the lim-
bic system. The hippocampus has a significant role in the
memory forming process (Mcdonald & Mott, 2017;
Sawangjit et al., 2018) and has been linked to many psy-
chopathologies such as post-traumatic stress disorder
(PTSD) and Alzheimer’s disease (Fitzgerald et al., 2019;
Jaroudi et al., 2017). The amygdala has an important role
in emotional responses, especially fear (Krabbe
et al., 2018). It has also been associated with anxiety dis-
orders and depression (Ferri et al., 2018; Toazza
et al., 2016; Tye et al., 2011). The thalamus, also a part of
the limbic system, relays sensory and motor signals to the
cerebral cortex and regulates sleep, consciousness and
alertness, among other functions. Structural changes of
the thalamus have been associated with many neurologi-
cal diseases such as Alzheimer’s disease (Braak &
Braak, 1991) and schizophrenia (Parnaudeau
et al., 2018). Parts of the basal ganglia, including the

ful visual inspection of the automated segmentations is strongly advised.

brain, brain (growth and development), child, neuroimaging

putamen, the globus pallidus (GP), the caudate nucleus
and the nucleus accumbens, have an important role in
the extrapyramidal motor system and are associated with
many motor neurodegenerative pathologies such as Hun-
tington’s and Parkinson’s disease (Manes et al., 2018;
Singh-bains et al., 2016). In addition, they are involved in
motivational, emotional and cognitive functions
(Herrero & Barcia, 2002). The development of these sub-
cortical structures can be affected by early-life environ-
ments and experiences (Lee et al., 2019; Pulli et al., 2019).
Taken together, the subcortical areas are relevant to mul-
tiple brain functions and pathologies. Therefore, it is also
crucial to gather accurate information about them in
magnetic resonance imaging (MRI) studies conducted in
paediatric populations.

Accurate segmentation of paediatric MR images is
challenging, partly due to the variation in pre-processing
and segmentation protocols (Hashempour et al., 2019;
Schoemaker et al., 2016). Several segmentation protocols
have been developed for adult brains, but they cannot be
directly applied in segmenting child brain images
because children’s MR images have different contrast
and comparatively lower resolution than adults’ images
(Gousias et al., 2012; Moore et al., 2014; Morey
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et al., 2009). Manual segmentation is currently consid-
ered the gold standard in volumetric segmentation.
Although it is considered the most accurate method, it is
highly time consuming and requires expertise for ade-
quate results. Furthermore, a major downside is the sub-
jective approach in estimating the shapes and sizes of the
structures, which may cause reproducibility issues that
may be even more pronounced in larger samples.

Several software have been developed for automated
segmentation of the brain. In this study, we focused on
two mainstream analysis pipelines. One is FSL-FIRST
from the FMRIB Software Library (Patenaude
et al., 2011). FSL-FIRST is a segmentation tool that uses
the template based on manually segmented images to
construct the shape of the automated segmentation
models. It utilises the active appearance model (AAM)
combined with a Bayesian framework, which allows
probabilistic relationships between voxel intensity and
the shapes of different structures (Patenaude et al., 2011).
The other is FreeSurfer (https://surfer.nmr.mgh.harvard.
edu/), which is an open-source software suite for proces-
sing and analysing MR images. FreeSurfer uses a five-
stage volume-based stream for segmenting subcortical
structures. Final segmentation is based on a subject-
independent probabilistic atlas and subject specific
values. Both FSL-FIRST and FreeSurfer use a training
dataset for the basis of segmentation and utilise probabi-
listic computing to determine the final shape and volume
of each structure. Although both FSL-FIRST and Free-
Surfer were originally developed mainly for adult brain
image analyses, both software have also been used in
paediatric neuroimaging. There are multiple recent stud-
ies using both FSL-FIRST (Sandman et al., 2014; Wang
et al., 2022) and FreeSurfer (Barch, Harms, et al., 2019;
Barch, Tillman, et al., 2019; Grohs et al., 2021; Roediger
et al., 2021) as a tool for paediatric volumetric subcortical
brain segmentation. Majority of these studies did not use
manual segmentation as a control for segmentation
accuracy.

Consistent overestimation of subcortical volumes
regarding both FreeSurfer and FSL-FIRST (Cherbuin
et al., 2009; Doring et al., 2011) has been a common find-
ing in previous studies. This result has been documented
in paediatric populations on the hippocampus and amyg-
dala (Mulder et al., 2014; Schoemaker et al., 2016). The
study by Schoemaker et al. also found that the consis-
tency between manual segmentation and FreeSurfer was
better than between manual segmentation and FSL-
FIRST in children aged between 6 and 11 years
(Schoemaker et al., 2016). Although the reliability of
these segmentation methods has been assessed in multi-
ple studies in the medial temporal lobe structures, there
has been little research including the striatal structures.

The aim of this study was to compare the accuracy of
FSL-FIRST and FreeSurfer against the gold standard
manually corrected segmentation on subcortical struc-
tures, including the hippocampus, amygdala, thalamus,
putamen, GP, caudate and nucleus accumbens, in paedi-
atric populations. Therefore, we compared the volumes
of all the structures extracted from each segmentation
method. Furthermore, we analysed the shape of the seg-
mentation models to determine the areas where the auto-
mated  segmentation  tools  overestimated  or
underestimated the size of the structures and their bor-
ders. This was a feasibility study that critically assessed
the extent to which adult delineation software can be
used to segment child brain images that have nearly
adult-like contrast pattern in T1-weighted images and are
close in size to adult brain.

2 | MATERIAL AND METHODS

This study was conducted in accordance with the Decla-
ration of Helsinki, and it was approved by the Joint
Ethics Committee of the University of Turku and the
Hospital District of Southwest Finland (07.08.2018) §330,
ETMK: 31/180/2011.

2.1 | Subjects

MRI scans were acquired in children as part of the Finn-
Brain Birth Cohort Study (www.finnbrain.fi), which was
started in 2011. The main goal of the cohort is to study
the effects of genes and environment on the development
and mental health of children (Karlsson et al., 2018). Ini-
tial recruitment of FinnBrain Birth Cohort Study was
performed systematically in routine ultrasound examina-
tions during the 12th week of gestation. At 5 years of age,
203 subjects attended neuroimaging visits. For the pur-
poses of this study, we selected the first 80 participants
that were visually confirmed to have high enough quality
T1 image for manual segmentation of the subcortical
structures. For the 5-year neuroimaging visit, we primar-
ily recruited participants that had a prior visit to neuro-
psychological measurements at ~5 years of age (n = 76).
This sample also includes four other subjects: Three sub-
jects were included without a neuropsychological visit, as
they had an exposure to maternal prenatal synthetic glu-
cocorticoid treatment (recruited separately for a nested
case—control sub-study). The data additionally included
one subject that was enrolled for a pilot scan at the begin-
ning of the studies. The total sample size for this study
was 80. The exclusion criteria for this study were (1) born
before gestational week 35 (born before gestational week
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TABLE 1 Participant demographics and maternal medical history variables (N = 80)

Continuous variables Mean SD Min Max
Age at scan (years) 5.34 0.06 5.08 5.52
Gestational age at birth (weeks) 39.5 1.7 33.9 423
Birth weight (grams) 3437 557 1790 4980
Maternal age at term (years) 314 44 20.2 42.0
Maternal BMI before pregnancy 23.8 3.9 18.1 34.7
Categorical variables Number Per cent
Sex

Male 46 57.5

Female 34 42.5

Maternal education level

Upper secondary school or vocational school or lower 15 18.8
University of applied sciences 23 28.7
University 42 52.5

Maternal monthly income, estimated after taxes (euros)

<1500 20 25.0
1501-2500 49 61.3
2501-3500 7 8.8
>3501 1 1.3
Missing 3 3.8

Maternal background
Finnish 79 98.8
Other 1 1.3

Alcohol use during pregnancy

Yes, continued to some degree after learning about pregnancy 8 10.0
Yes, stopped after learning about the pregnancy 16 28.0
No 51 63.8
Missing 5 6.3
Tobacco smoking during pregnancy
Yes, continued to some degree after learning about pregnancy 2 2.5
Yes, stopped after learning about the pregnancy 3 3.8
No 71 88.8
Missing 4 5.0

Illicit drug use during pregnancy

No 75 93.8
Missing 5 6.3
Maternal history of disease, yes (N = 77, 3 missing)
Allergies 32 41.6
Depression 11 14.3
Asthma 9 11.7
Eating disorder 9 11.7
Chronic urinary tract infection 8 10.4
Anxiety disorder 7 9.1

(Continues)
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TABLE 1 (Continued)

Categorical variables Number Per cent
Autoimmune disorder 5 6.5
Hypertension 3 3.9
Hypercholesterolaemia 2 2.6
Coeliac disease 2 2.6

Hypothyroidism 2 2.6
Emphysema 1 1.3
Chronic bacterial or viral infection 1 1.3
Psychosis 1 1.3
Drug dependency 1 1.3
Migraine 1 1.3
Other chronic disease 6 7.8

Maternal medication at gestational week 14, yes (N = 72, 8 missing)

Thyroxin 6 8.3
Corticosteroid 4 5.6
SSRI/SNRI 3 42
Hypertension medication 2 2.8
Other mood medication 2 2.8
Other medication affecting the CNS 1 1.4
Other medication 6 8.3
Maternal medication at gestational week 34, yes (N = 75, 5 missing)
Thyroxin 7 9.3
Blood pressure medication 5 6.7
SSRI/SNRI 4 5.3
Corticosteroid 4 5.3
Other mood medication 2 2.7
Other medication affecting the CNS 2 2.7
Other medication 14 18.7

Notes: Gestational age at birth was calculated using the difference between due date and actual date of birth. Maternal age at term was calculated as follows:
The age as days at due date divided by 365.25. On the question about alcohol usage, three subjects answered that they did not use alcohol during pregnancy,
but also answered that they stopped using alcohol when they learned about the pregnancy. These were classified as ‘yes, stopped when learning about
pregnancy’. The data for monthly income estimate, alcohol use, tobacco use, drug use and diagnostic information are from questionnaires at gestational Week
14. Maternal education level was asked in questionnaires at gestational Week 14 and at 5 years of age, and the most recent available data was used. In addition
to the diseases in the table, we asked for the following disorders, and none of the mothers suffered from them: myocardial infarction, cardiac dysfunction,
angina pectoris, stroke, Type 1 diabetes, Type 2 diabetes, epilepsy, intellectual disability, alcohol dependency disorder, musculoskeletal disorder, cancer and
attention deficit hyperactivity disorder. Sex, birth weight, and maternal BMI before pregnancy were retrieved from the National Institute for Health and

Welfare (www.thl.fi).

Abbreviations: BMI, body mass index; CNS, central nervous system; N, number of participants; SD, standard deviation; SNRI, selective noradrenalin reuptake

inhibitor; SSRI, selective serotonin reuptake inhibitor.

32 in the synthetic glucocorticoid treatment group);
(2) developmental anomaly or abnormalities in senses or
communication (e.g. congenital heart disease, blindness
and deafness); (3) known long-term medical diagnosis
(e.g. epilepsy, autism and attention deficit hyperactivity
disorder [ADHD]); (4) ongoing medical examinations or
clinical follow-up in a hospital (meaning there has been a
referral from primary care setting to experts); (5) child

use of continuous, daily medication (including per oral
medications, topical creams and inhalants. One exception
to this was desmopressin [®Minirin] medication, which
was allowed); (6) history of head trauma (defined as
concussion necessitating clinical follow-up in a health-
care setting or worse); and (7) metallic ear tubes
(to assure good-quality scans) and routine MRI
contraindications.
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In this study, we used a representative subsample of
80 T1-weighted brain images, which were all visually
inspected by a single expert rater (Kristian Lidauer). The
sample included 34 girls and 46 boys aged between 5 and
5.5 years (mean age 5.34 years, SD = 0.06). Participant
demographics and maternal medical history variables are
presented in detail in Table 1.

2.2 | Study visit

The subjects were recruited for the neuroimaging visits
via phone calls by a research staff member. On the first
call, the families were given general information about
the study, and the inclusion and exclusion criteria were
checked. The follow-up call was made to confirm the par-
ticipation, and we gave instructions to practice for the
MRI visit at home. A member of the research staff made
a home visit before the scan to deliver earplugs and head-
phones, to give more detailed information about the visit
and to answer any remaining questions. An added benefit
of the home visit was the chance to meet the participat-
ing child and that way start the familiarisation with the
research staff, which helped the preparations on the
scanning day. A written consent was acquired from both
parents before the MRI scan as well as verbal assent from
the child.

Multiple methods were applied to reduce anxiety and
make the visit feel as safe as possible (many of the
methods have been described in earlier studies) (Greene
et al., 2016). The visit was conducted in a child-friendly
manner with a flexible timetable in the preparation
before the scan, and we did our best to accommodate in
order to befit the child in cooperation with the family.
The participants were scanned awake. During the struc-
tural imaging, the subjects were allowed to watch a car-
toon or a movie of their choice. A parent and a research
staff member were present in the scanner room through-
out the scan. Everyone in the room had their hearing
protected with earplugs and headphones. The maximum
scan time was 60 min, and the subjects were allowed to
stop the scan at any time. For a more detailed description
of the study visits, see (Pulli et al., 2022) and (Copeland
et al., 2021).

2.3 | MRI acquisition

Participants were scanned using a Siemens Magnetom
Skyra fit 3 T with a 20-element head/neck matrix coil.
We used generalised autocalibrating partially parallel
acquisition (GRAPPA) technique to accelerate image
acquisition [parallel acquisition technique (PAT) factor

of 2 was used]. For the purposes of the current
study, we acquired a high-resolution three-dimensional
(3D) T1-weighted magnetisation prepared rapid acquisi-
tion gradient-echo sequence (MPRAGE) in sagittal plane
with the following sequence parameters: TR = 1900 ms,
TE = 3.26 ms, TI = 900 ms, flip angle = 9°,
voxel size = 1.0 x 1.0 x 1.0 mm>, FOV = 256 mm. In
addition, the max. 60-min scanning protocol included a
T2 turbo spin echo (TSE), a 7-min resting state
functional MRI and a DTI sequence. The T1 scans were
planned as per recommendations of the FreeSurfer
developers (https://surfer.nmr.mgh.harvard.edu/fswiki/
FreeSurferWiki?action=AttachFile&do=get&target=Free
Surfer_Suggested_Morphometry_Protocols.pdf, at the
time of writing).

24 | Automated segmentation of the
subcortical nuclei using FSL-FIRST

The automated segmentation of the subcortical structures
was performed using FSL-FIRST 5.0.9 (Patenaude
et al., 2011), a freely available automated segmentation
tool provided by the FMRIB Software Library. FSL-FIRST
uses a training data-based approach combined with a
Bayesian probabilistic model to determine the most prob-
able shape of the structure given the intensities of the T1
image. FSL-FIRST makes use of the adult MNI152 tem-
plate space, but the segmentation model has been trained
structures using 336 manually labelled T1-weighted MR
images (age range 4.7-87 years) (Patenaude et al., 2011).
More detailed information about the technical process
can found in an article by Patenaude et al. (2011). In this
study, we segmented the T1 images using FSL-FIRST
with three different boundary correction settings. The
FSL Default method uses different options based on
empirical observations for each different structure. The
FESL Fast option uses an FSL-FAST-based tissue-type clas-
sification to determine the final shape of the model. For
the third boundary correction option, we chose FSL
None, which does not use any boundary correction set-
tings. After running the pipelines, a voxel count was per-
formed to estimate the volumes produced by each
different method.

2.5 | Automated segmentation of the
subcortical nuclei using FreeSurfer

The other automated segmentation software used in this
study was FreeSurfer 6.0 (https://surfer.nmr.mgh.
harvard.edu/), a freely available open software neuro-
image analysis suite. We used the recon-all pipeline with
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default settings consisting of several stages. In brief, the
process includes motion correcting and averaging (Reuter
et al., 2010) of multiple T1 images, which is proceeded by
removal of non-brain tissue using a watershed/surface
deformation procedure (Segonne et al., 2004), after which
the images are transferred into a Talairach space, where
the white matter and subcortical grey matter are seg-
mented by labelling each voxel based on the probabilities
from a manually edited training dataset and the intensi-
ties of the T1 image. FreeSurfer segmentation labels via
probabilistic information automatically estimated from
expert segmentations of 40 adult brain images (Fischl
et al., 2002) (https://surfer.nmr.mgh.harvard.edu/fswiki/
FreeSurferMethodsCitation). FreeSurfer morphometric
procedures have been demonstrated to show good test—
retest reliability across scanner manufactures and across
field strengths (Reuter et al., 2012). The technical details
of the FreeSurfer process are described more in-depth in
prior publications (Fischl et al., 2002, 2004; Segonne
et al., 2004). The volumes were extracted with ‘asegstat-
s2table’ command.

2.6 | Manual segmentation of the
subcortical nuclei

Manual segmentation was done by editing the models
produced by FSL None. We visually inspected the results
of all three FSL-FIRST pipelines and chose FSL None,
because it required the least amount of editing. The sub-
cortical structures were segmented by a single expert
rater (Kristian Lidauer) using the software FslView
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView). The rater
was experienced in manual segmentation of infant brain
MR images and templates (Acosta et al, 2020;
Hashempour et al., 2019) across a period of 2 years before
starting the current study (2018-2020).

The use of initial estimates from FSL-FIRST signifi-
cantly reduced the working time as compared with full
manual segmentation. It also made the work easier as the
main task for the investigators was correction of the bor-
ders. This process was guided by prior work for striatal
structures (Perlaki et al., 2017) and the thalamus (Owens-
Walton et al., 2019; Power et al., 2015) as well as our
prior work for amygdala and hippocampus segmentation,
which is provided in our recent open-access article
(Hashempour et al., 2019).

The manual edits were performed on ‘initial esti-
mates’ that saved time. The edits were documented on
40 randomly chosen subjects of the total 80 to highlight
important areas for quality control. The anatomical delin-
eations that we incorporated into locally adapted proce-
dures are in line with prior work (de Macedo Rodrigues

et al., 2015). Manual segmentations/edits were performed
in a slice-by-slice manner to carefully trace the correct
anatomical border and reviewed in axial, coronal and
sagittal planes for a 3D consistency of the segmentations.
Finally, all segmentations were checked for accuracy by
senior scientist (Jetro J. Tuulari). The accuracy check was
performed with fsleyes and entailed (1) selection of a ref-
erence segmentation with all structures accurately delin-
eated, (2) opening three segmentations at a time and
comparing them against the reference segmentation,
(3) checking bilateral structures from each one by brows-
ing the structure in all 3D planes and checking the bor-
ders with intermittent opening and closing the overlay to
check the consistency of the borders. This process took
about 15 min per three segmentation (~7 h in the final
round of quality control).

To assess any bias that might occur with FSL-FIRST-
based initial estimates, we re-segmented 20 randomly
chosen subjects using automated FreeSurfer segmenta-
tions as the base for manual delineation. We also re-
segmented 10 randomly chosen subjects using FSL-
FIRST None initial estimates to assess intra-rater
accuracy.

A voxel count was then concluded with fslmaths to
estimate the volumes of the manually segmented
structures.

2.7 | Statistical analysis

All statistical analyses and plotting of the results were
performed using R tools v.4.0 (https://www.r-project.org/)
and R-Studio 1.3 (https://rstudio.com/). For the plots
and following analyses, we used irr, ggplot2, gridExtra,
grid and gtable libraries.

The volumetric difference between automated seg-
mentation and manual segmentation was calculated as
the percentage using the following equation
(Schoemaker et al., 2016): %VD = [(Va — Vin)/Vm] X
100%, where V, is the automated volume and V, is the
manually segmented volume. A negative result indicates
that the automated method underestimated the volume,
whereas a positive value shows that the automated
method overestimated the volume.

Pearson correlations were calculated to measure the
strength of the association between manual segmentation
and the different automated techniques for each individ-
ual structure. A strong correlation would indicate good
consistency between methods. To estimate reproducibil-
ity between different techniques and estimation bias, we
computed intraclass correlation coefficients (ICC). We
used a two-way mixed effect model with absolute agree-
ment and average measures (ICC Type A, k) as specified
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L-accumbens
R-accumbens
L-cau + acc
R-cau + acc

Combined mean

% volume diff. (SD)

L-hippocampus
R-hippocampus
L-amygdala
R-amygdala
L-thalamus
R-thalamus
L-putamen
R-putamen
L-GP

R-GP
L-caudate
R-caudate
L-accumbens
R-accumbens
L-cau + acc
R-cau + acc

Combined mean

523.96 (100.67)
428.64 (86.09)
454285 (469.18)
4650.99 (480.17)

3204.58

610.65 (128.79)
534.33 (96.44)
4481.33 (497.87)
4550.63 (531.08)

3453.78

13.61 (9.31)
13.45 (10.27)
24.65 (21.68)
27.02 (22.55)
11.73 (5.75)
10.93 (4.85)
5.24 (2.06)
6.69 (2.45)
8.08 (3.89)
7.16 (4.38)
—3.50 (7.15)
—4.89 (6.49)
17.58 (18.59)
26.13 (15.34)
—1.17 (7.26)
—2.12(6.31)
11.71

610.65 (128.79)
534.33 (96.44)
4481.33 (497.87)
4550.63 (531.08)

3110.79

13.61 (9.31)
13.45 (10.27)
24.65 (21.68)
27.02 (22.55)
—8.49 (4.43)
—8.90 (4.06)
—4.13 (2.38)
—5.39 (2.80)

—16.28 (4.28)

—18.92 (4.58)
—3.50 (7.15)
—4.89 (6.49)
17.58 (18.59)
26.13 (15.34)
—1.17 (7.26)
—2.12(6.31)

371

804.31 (136.64)

675.84 (117.69)
5818.99 (641.97)
5734.93 (659.63)
3794.57

41.15 (10.62)
41.58 (12.75)
56.56 (23.88)
57.75 (27.28)
11.73 (5.75)
10.93 (4.85)
5.24 (2.06)
6.69 (2.45)
8.08 (3.89)
7.16 (4.38)
25.14 (11.12)
19.91 (9.84)
55.34 (20.97)
60.02 (22.24)
28.44 (10.89)
23.47 (9.47)
29.09
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TABLE 2 Comparison of mean (standard deviation) volumes and percentage of volume difference between techniques
FSL-FIRST
Manual Default Fast None FreeSurfer
Volume (SD)
L-hippocampus 3019.89 (444.14) 3412.41 (441.28) 3412.41 (441.28) 4244.95 (575.67) 4076.74 (384.19)
R-hippocampus 3150.08 (425.61) 3551.45 (415.35) 3551.45 (415.35) 4434.70 (531.64) 4189.92 (393.52)
L-amygdala 892.89 (169.80) 1096.85 (203.91) 1096.85 (203.91) 1377.63 (232.26) 1540.28 (214.03)
R-amygdala 845.36 (174.28) 1053.94 (194.49) 1053.94 (194.49) 1306.54 (228.94) 1734.00 (193.02)
L-thalamus 7354.33 (723.20) 8194.63 (665.97) 6713.21 (547.86) 8194.63 (665.97) 7751.61 (565.98)
R-thalamus 7274.78 (691.27) 8053.54 (653.88) 6612.65 (528.49) 8053.54 (653.88) 7714.82 (577.31)
L-putamen 4899.50 (508.16) 5152.74 (509.74) 4695.56 (482.28) 5152.74 (509.74) 5178.54 (570.61)
R-putamen 4924.40 (530.36) 5250.24 (541.97) 4656.94 (501.47) 5250.24 (541.97) 5283.99 (580.31)
L-GP 1644.91 (159.43) 1775.01 (152.92) 1377.19 (150.87) 1775.01 (152.92) 2064.27 (241.91)
R-GP 1664.09 (171.18) 1780.10 (165.80) 1348.86 (153.55) 1780.10 (165.80) 1938.86 (188.74)
L-caudate 4018.88 (428.88) 3870.68 (441.35) 3870.68 (441.35) 5014.68 (577.25) 3931.77 (426.83)
R-caudate 4222.35 (464.31) 4016.30 (511.14) 4016.30 (511.14) 5059.09 (643.09) 4052.67 (419.55)

568.37 (114.45)
635.72 (97.09)
4500.13 (484.39)
4688.39 (472.09)

3618.68

37.10 (20.12)
34.55 (16.01)
77.02 (34.11)
112.00 (40.58)
5.96 (8.72)
6.52 (8.08)
5.81 (6.76)
7.49 (6.98)
26.00 (14.00)
17.17 (12.02)
—1.99 (6.12)
—3.72 (7.00)
10.79 (24.05)
52.08 (27.03)
—0.80 (6.06)
1.03 (6.60)
27.63

Notes: The volumetric unit used is 1 voxel (= 1 mm?®). Description of mean volumes obtained from each method as well as mean percentage of volume
difference (% volume diff.) between manual segmentation, FreeSurfer and different FSL-FIRST pipelines.

Abbreviations: Cau + acc, combined volume of the caudate and nucleus accumbens; Combined mean, mean of all structures combined; GP, globus pallidus; L,
left; R, right; SD, standard deviation.
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by McGraw and Wong (1996), which is a model not
defined in the commonly used Shrout and Fleiss (1979)
convention. A high value would confirm a good repro-
ducibility between two raters. There are no fixed guide-
lines on how to interpreter ICC values, but in previous
studies, a coefficient of 0.70 has been considered as the
minimum for establishing an adequate reliability
between two raters (Terwee et al., 2007).

To determine the spatial overlap of the structures, we
conducted Dice score coefficient (DSC) analysis between
manual and automated segmentation methods. The value
of DSC ranges from 0, indicating no spatial overlap
between structures, to 1, indicating complete overlap
(Zou et al., 2004).

The same correlations and DSC were also calculated
for comparison between manual segmentation based on
either FSL None or FreeSurfer automated segmentation
and between intra-rater segmentations.

To assess the adequacy of sample size, we performed
a split-half analysis, where we divided the whole sample
(n=280) into two randomly selected subsamples
(n = 40). Then, we compared the volumetric differences
and correlations of these subsamples to each other.

3 | RESULTS
3.1 | Volumetric differences between
FSL-FIRST pipelines

FSL None produced the highest volumes for the hippo-
campus, amygdala, caudate and nucleus accumbens and
produced the same result as the FSL Default pipeline in
the other three structures: the putamen, GP and the thal-
amus. The other pipelines, FSL Default and FSL Fast,
had considerably lower volumes for the hippocampus
and amygdala and yielded the exact same result for both
structures. FSL Default and FSL Fast performed very sim-
ilarly throughout and showed the exact same volumes
also for the caudate and the nucleus accumbens.” The vol-
umes for each pipeline and structure are presented in
Table 2. The identical results in some of the structures
are caused by utilising the same boundary correction
options.

The volume difference between FSL-FIRST and man-
ual segmentation was highest with the FSL None pipe-
line. The highest volumetric differences were in the
amygdala and nucleus accumbens. FSL Fast underesti-
mated volumes for the putamen, GP, thalamus and cau-
date, whereas FSL Default underestimated the caudate
volume. FSL None overestimated the volume for every
structure. The percentage differences for each structure
and each pipeline are presented in Table 2.

3.2 | FSL-FIRST volumetric correlation
analysis

Pearson correlation coefficients between FSL-FIRST and
manual segmentation were generally good. Small struc-
tures such as the amygdala and nucleus accumbens pro-
duced slightly lower wvalues than the rest of the
structures. Differences between FSL-FIRST’s pipelines
were minor. Values for Pearson correlation coefficient for
all structures are presented in Table 3. A scatter plot illus-
tration for all structures and methods is provided in
Figures 1-8.

ICC (A, k) between FSL-FIRST and manual segmen-
tation were notably lower for FSL-None compared with
the other pipelines for the hippocampus, amygdala, cau-
date and nucleus accumbens. For the rest of the struc-
tures, the differences between pipelines were generally
minor. Intraclass correlation values for each structure
and pipeline are presented in Table 3.

3.3 | FreeSurfer volumetric analysis
FreeSurfer produced higher volumes than any of the
FSL-FIRST pipelines in the amygdala, putamen and
GP. Compared with manual segmentation, FreeSurfer
had higher volumes in all structures except for the cau-
date. Mean volumes and percentage differences for all
other structures are presented in Table 2.

3.4 | FreeSurfer volumetric correlation
analysis

Pearson correlation coefficients between FreeSurfer and
manual segmentation were lower than any of the FSL-
FIRST pipelines in all structures except the caudate,
where the values were similar. Results were also simi-
lar regarding the ICC, where FreeSurfer produced
overall lower values compared with FSL-FIRST except
for the caudate, where its values were similar com-
pared with FSL Default and FSL Fast pipelines. Pear-
son and ICC values for all structures are presented in
Table 3.

3.5 | DSC analysis

DSC values between manual segmentation and auto-
mated methods were good across the board. FSL-FIRST
provided overall slightly higher scores than FreeSurfer
for all structures. All automated techniques produced
lower results for the amygdala and nucleus accumbens.
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TABLE 3 Comparison of correlation analysis between manual DSC values for all structures and methods are presented

and automated segmentation techniques (FSL-FIRST, FreeSurfer) in Table 4.
FSL-FIRST
Default  Fast None FreeSurfer 36 | [Intra-rater data analysis
PCC
L-hippocampus  0.83 0.83  0.86 0.47 Volumetric differences between intra-rater segmentations
R-hippocampus ~ 0.74 074 075 0.54 were minor across the board. The largest differences were
L-amygdala 0.61 061 067 0.34 observed in the hlppocampus, amygdala and nucleus
accumbens. Correlations were strong across the board.
R-amygdala 0.66 0.66  0.67 0.47 .
Volumes and volume differences for all structures are
L-thalamus 0.86 0.87 086 0.60 presented in Table 5. Correlations and DSC values for all
R-thalamus 0.89 088 089 061 structures are presented in Table 6.
L-putamen 0.98 0.97 0.98 0.82
R-putamen 0.98 0.96 0.98 0.84
L-GP 0.94 089 094 049 3.7 | Manual segmentations based on
RGP 092 087 092 052 FSL-FIRST none and FreeSurfer
L-caudat 0.78 0.78  0.69 0.84 .
caudate The manual segmentation results based on FSL-FIRST
R-caudate 0.87 087 080 080 None and FreeSurfer were generally in good agreement.
L-accumbens 0.69 069 077 044 The largest volumetric differences were seen in amygdala
R-accumbens 0.81 081 076 0.56 (FreeSurfer 25.6% larger on the left, 40.7% larger on the
L-cau + acc 0.77 077 0.70 0.83 right). All other differences were under 15%. Generally
Recau + acc 0.85 085 078 0.81 manual segmentation based on FreeSurfer produced
. slightly lower volumes. Mean volumes for both methods
Combined mean  0.83 0.82 0.82 0.60 X L. .
are presented in Table 7. Similarly, Pearson correlation
e (& 19) coefficients, ICC (A, k) and DSC values were generally
L-hippocampus  0.75 075 034 020 good, the lowest values being in bilateral amygdala and
R-hippocampus  0.68 0.68  0.28 0.23 nucleus accumbens. The details are presented in Table 8.
L-amygdala 0.55 0.55 0.29 0.09
R-amygdala 0.58 0.58  0.31 0.07 is of edi
L-thalamus 0.66 0.72  0.66 0.66 38 | Analy81§ of edits that were .
performed during manual segmentation
R-thalamus 0.69 0.70  0.69 0.66
L i ueE Les WPy @ The edits were documented on 40 randomly chosen sub-
R-putamen 0.90 092 0.90 0.82 jects of the total 80 to describe the workflow and also to
L-GP 0.82 0.53  0.82 0.26 highlight important areas for quality control. The hippo-
R-GP 0.85 046 0.5 0.39 campus and amygdala consistently required the most
Lecaudate 0.85 085 037 0.90 edlts: The ?11ppocampus had‘ two. typical er‘rors that
required major manual corrections in most subjects: The
R-caudate 0.89 0.89  0.53 0.85 . . . .
lateral anterior superior border was overestimated in
L-accumbens 0.69 0.69  0.33 0.58 35 and 36 subjects in the left and right hippocampus,
R-accumbens 0.65 065 031 027 respectively, and the inferior posterior area was too large
L-cau + acc 0.87 0.87 031 0.91 in 30 and 32 subjects in the left and right hippocampus,
R-cau + acc 0.91 091 043 0.90 respectively. The amygdala needed major edits on all sub-
e L —— 071 054 0.49 jects. The lateral superior border was overestimated in all

subjects, and the anterior side was underestimated in
33 and 35 subjects for the left and right amygdala, respec-

Notes: Pearson correlation coefficients (PCC) and intraclass correlation
coefficients (ICC) (A, k) computed between manual and automatic

segmentation volumes. P-values for PCC were on all structures p < 0.001. tiveIY' The lateral inferior edge was too large in 21 on the
Abbreviations: Cau + acc, combined volume of the caudate and nucleus left side and 18 on the I'ight side. The thalami were over-
accumbens; Combined mean, mean of all structures combined; GP, globus all slightly too big and needed minor edits throughout

llidus; L, left; R, right. . .
patiidus; &, fe re the structure, most notably on the medial posterior
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FIGURE 1 Scatter plots of automated segmentation methods against manual segmentation for the hippocampus. DSC, dice score
coefficient
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FIGURE 2 Scatter plots of automated segmentation methods against manual segmentation for the amygdala. DSC, dice score
coefficient
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FIGURE 3 Scatter plots of automated segmentation methods against manual segmentation for the thalamus. DSC, dice score

coefficient
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Scatter plots of automated segmentation methods against manual segmentation for the putamen. DSC, dice score coefficient
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FIGURE 5 Scatter plots of automated segmentation methods against manual segmentation for the GP. DSC = dice score coefficient.
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FIGURE 6 Scatter plots of automated segmentation methods against manual segmentation for the caudate. DSC, dice score coefficient

inferior edge, which was overestimated in 21 subjects for
the left and in 19 for the right thalamus. The caudate
received most edits on the lateral posterior inferior area,

where the FSL None pipeline overestimated the border in
30 subjects for the left and in 26 for the right caudate.
Notably, the superior medial area of the right caudate
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FIGURE 7 Scatter plots of automated segmentation methods against manual segmentation for the nucleus accumbens. DSC, dice score
coefficient
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FIGURE 8 Scatter plots of automated segmentation methods against manual segmentation for the combined segmentations of caudate

and nucleus accumbens. DSC, dice score coefficient

was too large in 17 subjects, whereas on the left it was
only overestimated in three subjects. All common edits
are listed in Table 9. The putamen, GP and nucleus
accumbens were more accurately segmented by FSL-
FIRST than by FreeSurfer and only received minor and
sporadic edits.

3.9 | Split-half analysis

The volumetric differences in the split-half analysis were
small between the halves. The volumetric differences
between the halves ranged from 0 percentage points to
5 percentage points, with most structures the difference
was between 1 and 2 percentage points. The correlation
value differences between halves were generally slightly
larger than the volumetric differences. Most of the

structures yielded similar correlations for both halves;
FreeSurfer produced slightly larger differences in correla-
tions compared with FSL-FIRST’s pipelines. Detailed
results of the split-half analysis are presented in the Sup-
porting Information.

4 | DISCUSSION

In this study, we compared two automated segmentation
tools, FSL-FIRST and FreeSurfer, against manual seg-
mentation on subcortical areas in a paediatric population.
We included in the comparisons, FSL-FIRST’s three dif-
ferent pipelines—FSL Default, FSL Fast and FSL None—
each of which uses different boundary correction settings
to determine the exact anatomical borders of structures.
Our goal was to compare the accuracy of these automated
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TABLE 4 Comparison of mean dice score coefficient values between manual and automated segmentation techniques
FSL-FIRST
Default Fast None FreeSurfer
DSC (SD)

L-hippocampus 0.87 (0.03) 0.87 (0.03) 0.83 (0.04) 0.76 (0.05)
R-hippocampus 0.88 (0.03) 0.88 (0.03) 0.83 (0.04) 0.78 (0.04)
L-amygdala 0.73 (0.05) 0.73 (0.05) 0.72 (0.05) 0.62 (0.07)
R-amygdala 0.73 (0.06) 0.73 (0.06) 0.71 (0.06) 0.60 (0.07)
L-thalamus 0.95 (0.02) 0.91 (0.01) 0.95 (0.02) 0.88 (0.02)
R-thalamus 0.95 (0.02) 0.91 (0.01) 0.95 (0.02) 0.89 (0.02)
L-putamen 0.98 (0.01) 0.95 (0.01) 0.98 (0.01) 0.86 (0.02)
R-putamen 0.98 (0.01) 0.95 (0.01) 0.98 (0.01) 0.85 (0.03)
L-GP 0.98 (0.01) 0.88 (0.03) 0.98 (0.01) 0.80 (0.05)
R-GP 0.97 (0.02) 0.87 (0.03) 0.97 (0.02) 0.79 (0.06)
L-caudate 0.88 (0.04) 0.88 (0.04) 0.86 (0.05) 0.87 (0.03)
R-caudate 0.90 (0.03) 0.89 (0.03) 0.90 (0.04) 0.87 (0.02)
L-accumbens 0.84 (0.05) 0.84 (0.05) 0.84 (0.05) 0.62 (0.07)
R-accumbens 0.84 (0.03) 0.84 (0.03) 0.83 (0.04) 0.65 (0.06)
L-cau + acc 0.89 (0.03) 0.89 (0.03) 0.90 (0.04) 0.87 (0.02)
R-cau + acc 0.84 (0.03) 0.84 (0.03) 0.83 (0.04) 0.65 (0.06)
Combined mean 0.89 0.87 0.88 0.77

Note: Comparison of Dice score coefficient (DSC) mean values between manual and automated segmentation techniques.
Abbreviations: Cau + acc, score calculated with the combined area of the caudate and the nucleus accumbens; Combined mean, mean score of all structures;

GP, globus pallidus; L, left; R, right; SD, standard deviation.

segmentation methods with manual segmentation, which
is currently considered the gold standard (Hashempour
et al., 2019; Morey et al., 2009) and has been validated as
such in previous articles in paediatric as well as adult
populations (Makowski et al, 2018; Schoemaker
et al., 2016). In our results, FSL Default and FSL Fast
pipelines performed overall more accurately than FSL
None or FreeSurfer. We observed that automated
methods tend to overestimate volumes in most struc-
tures, as was expected based on previous studies (Grimm
et al., 2015; Hashempour et al., 2019; Nugent et al., 2013;
Pipitone et al., 2014). The overestimation was overall
most prominent with FreeSurfer and FSL None, although
there were some notable exceptions in specific structures,
such as the caudate, where FreeSurfer slightly underesti-
mated volumes. Excluding the FSL None pipeline, FSL-
FIRST produced generally better agreement across the
structures than FreeSurfer.

41 | Hippocampus and amygdala

Both hippocampus and amygdala were overestimated by
all automated segmentation methods in our study. Most

accurate were FSL Default and FSL Fast pipelines with a
moderate overestimation. FSL None and FreeSurfer over-
estimated both structures greatly. With all methods, the
overestimation was more prominent in the amygdala
than the hippocampus, which has also been documented
in previous articles in adults as well as paediatric popula-
tions (Akudjedu et al., 2018; Doring et al., 2011; Pipitone
et al., 2014; Schoemaker et al., 2016).

FSL Default and FSL Fast had overall better correla-
tions with manual segmentation than FSL None or Free-
Surfer. For the hippocampus, all of FSL-FIRST’s
pipelines exceeded the threshold coefficient of r > 0.70,
which has previously been suggested as the minimum for
defining  reliability =~ between measures (Terwee
et al., 2007). The Pearson correlation coefficients for the
amygdala were lower, ranging from r = 0.61 to r = 0.67
with FSL-FIRST’s pipelines. FreeSurfer’s correlations
were significantly weaker than FSL-FIRST’s for both hip-
pocampus and amygdala, with amygdala having the low-
est values. FSL Default and FSL Fast produced identical
intraclass correlation (A, k) values, whereas FSL None
and FreeSurfer showed very low to no correlation, indi-
cating a large estimation bias. Automated segmentation
of the hippocampus tends to have better consistency and
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TABLE 5 Comparison of mean (standard deviation) volumes and percentage of volume difference in intra-rater segmentations

1st segmentation Re-segmentation Paired samples t-test (p-value)

Volume (SD)

L-hippocampus 2890.1 (379.19) 2798.1 (306.03) 1.79 (0.10)
R-hippocampus 3106.2 (400.16) 2911.4 (218.02) 2.18 (0.06)
L-amygdala 868.8 (195.77) 851.9 (110.08) 0.42 (0.69)
R-amygdala 846.1 (205.69) 861.3 (132.26) —0.49 (0.63)
L-thalamus 7545.5 (886.07) 7569.2 (737.32) —0.12 (0.90)
R-thalamus 7532.2 (878.53) 7629.0 (698.94) —0.56 (0.59)
L-putamen 5241.7 (533.12) 5198.0 (519.37) 0.98 (0.35)
R-putamen 5131.8 (660.93) 5119.1 (622.32) 0.30 (0.77)
L-GP 1726.2 (167.95) 1725.6 (177.97) 0.05 (0.96)
R-GP 1709.9 (173.41) 1713.97 (179.18) —0.01 (0.92)
L-caudate 3951.6 (439.06) 4030.8 (438.48) 1.49 (0.17)
R-caudate 4146.2 (483.86) 4268.3 (508.84) —2.01 (0.07)
L-accumbens 522.4 (100,92) 553.7 (70,17) —1.49 (0.17)
R-accumbens 446.8 (108,12) 472.1 (107,57) —2.01 (0.07)
L-cau + acc 4474.0 (486.24) 4584.5 (477.37) —1.61(0.14)
R-cau + acc 4593.0 (526.08) 4740.4 (552.61) —2.10 (0.06)
Combined mean 3420.78 3439.21

% volume diff. (SD)
L-hippocampus —2.81(5.27)
R-hippocampus —5.46 (8.33)
L-amygdala 0.48 (13.94)
R-amygdala 4.35(12.76)
L-thalamus 0.82 (8.19)
R-thalamus 1.82 (7.94)
L-putamen —0.79 (2.62)
R-putamen —0.14 (2.67)
L-GP —0.06 (2.48)
R-GP 0.34 (6.29)
L-caudate 2.12 (4.51)
R-caudate 3.03 (4.65)
L-accumbens 8.33 (18,63)
R-accumbens 6.40 (10,41)
L-cau + acc 2.64 (5.13)
R-cau + acc 3.31 (4.74)
Combined mean 1.52

Notes: The volumetric unit used is 1 voxel (= 1 mm?). Description of mean volumes and mean percentage of volume difference (% volume diff.) in intra-rater
segmentations.

Abbreviations: Cau + acc, combined volume of the caudate and nucleus accumbens;

Combined mean, mean of all structures combined; GP, globus pallidus; L, left; R, right; SD, standard deviation.

reproducibility than the amygdala, which has been et al, 2016) that reported Pearson correlation
shown in multiple previous studies (Morey et al.,, 2009;  coefficients ranging from r=0.47 to r=0.67 for the
Nugent et al., 2013; Pardoe et al., 2009; Schoemaker hippocampus and r = 0.24 to r = 0.35 for the amygdala
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TABLE 6 Comparison of correlation analysis between intra-
rater data
PCC ICC (A, k) DSC (SD)
L-hippocampus 0.91 0.93 0.91 (0.03)
R-hippocampus 0.73 0.70 0.90 (0.03)
L-amygdala 0.80 0.82 0.82(0.11)
R-amygdala 0.92 0.92 0.86 (0.06)
L-thalamus 0.76 0.87 0.96 (0.03)
R-thalamus 0.78 0.87 0.96 (0.02)
L-putamen 0.96 0.98 0.98 (0.01)
R-putamen 0.98 0.99 0.98 (0.01)
L-GP 0.97 0.99 0.98 (0.01)
R-GP 0.81 0.91 0.97 (0.02)
L-caudate 0.93 0.96 0.94 (0.02)
R-caudate 0.93 0.95 0.95 (0.02)
L-accumbens 0.63 0.73 0.90 (0.06)
R-accumbens 0.91 0.94 0.91 (0.03)
L-cau + acc 0.90 0.94 0.94 (0.02)
R-cau + acc 0.92 0.94 0.95 (0.02)
Combined mean 0.87 0.90 0.93

Notes: Pearson correlation coefficients (PCC), intraclass correlation
coefficients (ICC) (A, k) and mean dice score correlation coefficient (DSC)
computed between intra-rater volumes. PCC p-values were p < 0.05 for all
structures.

Abbreviations: Cau + acc, combined volume of the caudate and nucleus
accumbens; Combined mean, mean of all structures combined; GP, globus
pallidus; L, left; R, right; SD, standard deviation.

using FSL-FIRST and r = 0.67 to r = 0.82 and r = 0.45 to
r = 0.61 for the hippocampus and amygdala, respectively,
using FreeSurfer. Similar results were shown regarding
the DSC with every automated method producing higher
mean values for the hippocampus (DSC > 0.76) than the
amygdala (DSC > 0.60) in our results. The studies
conducted by Morey et al. and Pardoe et al. also included
DSC analysis showing results of the hippocampus
producing higher spatial overlap than the amygdala with
both FSL-FIRST and FreeSurfer, which is in line with
our findings.

We found that FreeSurfer performed poorer than
FSL-FIRST overall. This was an unexpected finding, as
FreeSurfer has previously been reported to be overall
more accurate and consistent than FSL-FIRST for both
the hippocampus and amygdala for paediatric and adult
populations (Morey et al., 2009; Schoemaker et al., 2016).
Inter-rater variability may have contributed to these dif-
ferences, as it is one of the key challenges with manual
segmentation. The differences can be more pronounced
in structures such as the amygdala, where the border
around the structure may be difficult to distinguish

visually. In these instances, the rater must rely on general
anatomical knowledge instead of the intensities of the
MR image to determine the exact shape of the structure.
This is even more significant in paediatric MR images,
because they have different contrast and comparatively
lower resolution than adult images (Gousias et al., 2012).
Example segmentations of the hippocampus and amyg-
dala are presented in Figure 9.

4.2 | Thalamus

The thalamus was most accurately segmented by Free-
Surfer with only a slight overestimation. FSL Default and
ESL None pipelines produced a larger overestimation,
whereas Fast underestimated the volume. Previous
studies have shown results of FreeSurfer producing larger
or similar volumes compared to FSL-FIRST (Hannoun
et al., 2019; Makowski et al., 2018; Nass-Schmidt
et al., 2016). The discrepancy in results might be partly
caused by inter-rater variability between the researchers
in different studies. Despite having the most accurate
mean volume, FreeSurfer’s Pearson correlation coeffi-
cient was significantly worse, r = 0.60, than any of
FSL-FIRST’s pipelines, ranging from r = 0.86 to r = 0.89,
indicating a larger volumetric variation in individual
segmentations. Intraclass correlation (A, k) was on
similar levels with coefficients ranging from ICC = 0.66
to ICC = 0.72, with all methods, suggesting a low to
moderate reproducibility rate with manual segmentation.
One previous study (Makowski et al., 2018) also showed
weaker Pearson correlations for both FreeSurfer and
FSL-FIRST than our results, ranging from r = 0.37 to
r = 0.44, but included a significantly smaller sample size
of 30 adults and that may explain some of the differences.
The DSC values were great for all methods in our study,
DSC > 0.91 for FSL-FIRST and DSC > 0.88 for FreeSur-
fer. A previous study done by Hannoun et al. (2019),
including subjects aged between 1 and 18 years, showed
similar results with DSC = 0.86 for FSL-FIRST and
DSC = 0.84 for FreeSurfer. Segmentations of the thala-
mus are presented in Figures 10 and 11.

43 | Putamen and GB

The putamen was segmented more accurately than the
GP by all methods in this study. FSL Default and FSL
None as well as FreeSurfer overestimated the putamen
slightly, whereas Fast produced an underestimation of a
similar volume. Similar results were observed with the
GP, but with a greater magnitude. A previous study
yielded similar results with FreeSurfer producing a
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TABLE 7 Volumetric comparison of manual segmentations based on FSL-FIRST none and FreeSurfer automated segmentations

Manual segmentation (FIRST) Manual segmentation (FreeSurfer)

Volume (SD)

L-hippocampus
R-hippocampus
L-amygdala
R-amygdala
L-thalamus
R-thalamus
L-putamen
R-putamen
L-GP

R-GP
L-caudate
R-caudate
L-accumbens
R-accumbens
L-cau + acc
R-cau + acc

Combined mean

% volume diff. (SD)

L-hippocampus
R-hippocampus
L-amygdala
R-amygdala
L-thalamus
R-thalamus
L-putamen
R-putamen
L-GP

R-GP
L-caudate
R-caudate
L-accumbens
R-accumbens
L-cau + acc
R-cau + acc

Combined mean

2999.95 (486.84)
3215.05 (511.68)
916.15 (196.17)
873.75 (207.16)
7380.75 (861.55)
7311.45 (800.43)
5006.70 (579.70)
4990.00 (589.59)
1674.70 (150.39)
1690.05 (181.08)
3999.00 (519.02)
4216.80 (539.52)
520.90 (102.06)
429.20 (88.14)
4519.90 (567.87)
4646.00 (566.61)
3399.40

2784.80 (242.51)
2907.05 (309.86)
1112.95 (152.08)
1181.05 (152.78)
6797.00 (605.05)
6707.80 (619.48)
4894.85 (516.16)
4833.95 (546.43)
1645.05 (246.21)
1499.65 (164.35)
3636.2 (542.85)
3696.25 (533.02)

438.00 (98.98)

462.90 (100.68)
4074.20 (604.42)
4159.15 (596.60)
3176.93

—5.39 (13.81)
—8.35 (10.40)
25.63 (26.91)
40.73 (28.44)
—7.86 (8.59)
—7.86 (7.27)
—1.95 (6.13)
—2.79 (7.23)
—1.76 (11.52)
—10.86 (8.56)
—9.07 (6.69)
—12.47 (3.95)
—13.37 (24.10)
10.40 (26.05)
—9.34 (7.25)
~10.62 (4.71)
—1.56

Notes: The volumetric unit used is 1 voxel (= 1 mm®). Description of mean volumes obtained from manual segmentations based on FSL-FIRST and FreeSurfer
as well as mean percentage of volume difference (% volume diff.) between FSL-FIRST and FreeSurfer based manual segmentation.

Abbreviations: Cau + acc, combined volume of the caudate and nucleus accumbens; Combined mean, mean of all structures combined; GP, globus pallidus; L,
left; R, right; SD, standard deviation.

higher overestimations than FIRST and GP having a correlations for both putamen and GP, ranging from
greater relative volume difference than the putamen r=10.86 to r = 0.98 across all pipelines. FreeSurfer also
(Velasco-Annis et al., 2017). FSL-FIRST had excellent  had a strong correlation for the putamen but performed
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TABLE 8
segmentation based on FSL-FIRST none and FreeSurfer

Comparison of correlation analysis between manual

PCC ICC (A, k) DSC
L-hippocampus 0.63 0.62 0.85(0.03)
R-hippocampus 0.75 0.70 0.86 (0.03)
L-amygdala 0.36 0.36 0.76 (0.05)
R-amygdala 0.64 0.41 0.76 (0.07)
L-thalamus 0.65 0.64 0.91 (0.02)
R-thalamus 0.72 0.68 0.92 (0.02)
L-putamen 0.84 0.91 0.91 (0.01)
R-putamen 0.79 0.87 0.91 (0.02)
L-GP 0.62 0.72 0.86 (0.03)
R-GP 0.65 0.58 0.83 (0.04)
L-caudate 0.87 0.83 0.90 (0.03)
R-caudate 0.96 0.79 0.90 (0.02)
L-accumbens 0.17 0.23 0.72 (0.08)
R-accumbens 0.47 0.62 0.75 (0.07)
L-cau + acc 0.83 0.79 0.90 (0.03)
R-cau + acc 0.94 0.82 0.90 (0.02)
Combined mean 0.68 0.66 0.85

Notes: Pearson correlation coefficients (PCC), intraclass correlation
coefficients (ICC) (A, k) and mean Dice score coefficients (DSC) computed
between manual segmentations based on FSL-FIRST and FreeSurfer. P
values for PCC were p < 0.01 for all structures.

Abbreviations: Cau + acc, combined volume of the caudate and nucleus
accumbens; Combined mean, mean of all structures combined; GP, globus
pallidus; L, left; R, right; SD, standard deviation.

significantly weaker for the GP with coefficients of
r = 0.49 and r = 0.52 for the left and right GP. ICC (A, k)
were high across the board, with all methods yielding a
coefficient of ICC > 0.80 for the putamen. For the GP,
intraclass correlations were significantly lower for FSL
Fast and FreeSurfer, whereas FSL Default and FSL None
had great values of ICC > 0.80 for both structures, indi-
cating a small estimation bias and good reproducibility
with manual segmentation. A 2017 published study
showed FreeSurfer having slightly better segmentation
reproducibility for both the putamen and GP (Velasco-
Annis et al., 2017). Another study published in 2018
showed the opposite and indicated that for FSL-FIRST
has better consistency for the GP segmentation
(Makowski et al.,, 2018). Direct comparison of these
results is not ideal because both studies were done on an
adult population and included a sample size of 30 or less.
The DSC results in our study were great across the board
with FSL-FIRST producing excellent results of
DSC > 0.90 for both the putamen and GP with all tech-
niques. FreeSurfer’s results were lower, but still satisfac-
tory, DSC > 0.79. A previous study showed similar

TABLE 9 Most common major edits to structures and areas
using the FSL-none segmentations out of 40 randomly chosen

images
Number of
subjects
X edited
Edited areas -
Hippocampus Left Right
Lateral anterior superior area overestimated 35 36
Inferior posterior area overestimated 30 32
Uneven anterior end 12 13
Amygdala
Lateral superior posterior area 39 40
overestimated
Anterior side underestimated 33 35
Lateral inferior edge overestimated 21 18
Thalamus
Medial posterior inferior edge 21 19
overestimated
Anterior end overestimated 5 5
Posterior inferior edge overestimated 3 2
Caudate
Lateral posterior inferior area overestimated 30 26
Superior medial area overestimated 3 17
Superior medial anterior edge 8 7
underestimated
Superior medial inferior edge 5 2
underestimated

results with FSL-FIRST (DSC > 0.90), producing slightly
higher DSC values than FreeSurfer (DSC > 0.80) for the
putamen (Perlaki et al., 2017). However, the age of the
subjects was not specified, so the results may not be ade-
quately comparable with our findings. To our knowledge,
this is the first automated segmentation method valida-
tion study done on a paediatric population including the
putamen and GP. Segmentations of the putamen and GP
are presented in Figure 10.

4.4 | Caudate and nucleus accumbens

The caudate was overall segmented accurately, whereas
the nucleus accumbens was overestimated by all methods
in our study. The caudate was segmented accurately by
all methods excluding FSL None, which overestimated
both the caudate and the nucleus accumbens signifi-
cantly. FreeSurfer and FSL-FIRST’s other pipelines pro-
duced an accurate volume for the caudate with only a
minor underestimation. The nucleus accumbens was
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FIGURE 9 Transversal view of the
segmentations of the hippocampus and
amygdala. Yellow, hippocampus;
turquoise, amygdala
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FIGURE 10 Transversal view of
segmentations of the putamen, globus
pallidus (GP), thalamus and caudate.
Putamen, pink; GP, blue; thalamus,
green; caudate, light blue

overestimated by all methods, with FSL None and Free-
Surfer yielding the highest volumes. Notable is also the
more prominent overestimation of the right nucleus
accumbens, compared with the left, which was present in
all four automated methods. Previous research indicates
a moderate overestimation of both the caudate and
nucleus accumbens with both FSL-FIRST and FreeSurfer
(Perlaki et al., 2017; Velasco-Annis et al., 2017) with simi-
lar volumetric values compared with our results.

Pearson correlations coefficients were strong across
all methods for the caudate, ranging from r = 0.69 to
r = 0.84, showing a strong relationship between manual
segmentation and the automated methods. The nucleus
accumbens has similar coefficient values regarding FSL-
FIRST, but FreeSurfer produced significantly weaker
correlations. The ICC (A, k) showed that FSL Default
and FSL Fast had superior reproducibility compared
with FSL None and FreeSurfer for the nucleus accum-
bens. The results are similar for the caudate with the
exception of FreeSurfer performing just as good as FSL
Default and FSL Fast, with ICC values ranging from
ICC =0.85 to ICC = 0.90, whereas FSL None’s coeffi-
cients were significantly lower at ICC =0.37 and
ICC = 0.53 for the left and right caudate, respectively.
The consistency and reproducibility of the caudate and
nucleus accumbens have been documented in previous
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studies with slightly different results compared with our

study (Perlaki et al., 2017; Velasco-Annis et al., 2017).
The article by Velasco-Annis et al. suggested great
reproducibility rates for the caudate with both FreeSur-
fer and FSL-FIRST, with ICC values ranging from
ICC = 0.86 to ICC = 0.93, producing similar values for
each method. The other study conducted by Perlaki
et al. showed a slightly better reproducibility with Free-
Surfer regarding the caudate and nucleus accumbens.
The study by Perlaki et al. (2017) also showed results
similar to ours regarding the DSC values with FSL-
FIRST producing better slightly better values than Free-
Surfer for the caudate.

Overall, these variations in results may be explained
with the difficult determination of the border between
the caudate and nucleus accumbens. The intensities of
the MR image are visually indistinguishable for these two
structures, which may lead to inaccuracy in volumetric
quantification. To assess this problem, we combined the
volumes of both structures to eliminate possible errors
caused by the similarity of intensities. Considering the
relatively small volume of the nucleus accumbens, the
results for combined volume were similar to the results
derived from the caudate volumes. Segmentations of the
caudate and nucleus accumbens are presented in
Figure 11.
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Limitations

4.5 |

Our study presents a few limitations. Firstly, the sample
size is limited due to the time-consuming manual seg-
mentation process but likely sufficient for building study-
specific templates, which is a potential goal for applied
studies (Lee et al., 2019). Secondly, all manual segmenta-
tions were performed by a single rater, which might lead
to some systematic biases in delineation of anatomical
borders in MR images. However, the expert review pro-
vides some safeguard for this. On a related note, the man-
ual segmentation was done by editing models produced
by FSL None, which might potentially cause the manual
segmentations to have a bias towards FSL-FIRST. How-
ever, this was explored by segmenting a subsample based
on FreeSurfer automated segmentation. Generally, the
results were similar. There were some differences in
structures that are smaller and harder to delineate, such
as the amygdala and the nucleus accumbens. Addition-
ally, some minor differences are to be expected simply to
technical challenges when performing the manual seg-
mentation using two different editing tools. Most impor-
tantly, automated FreeSurfer segmentation vastly
overestimated amygdalar volumes even when compared
with the manual segmentation based on it. Therefore,
using FreeSurfer segmentation as the basis would not
have changed the conclusion that visual inspection for
certain structures is strongly advised.

5 | CONCLUSIONS

In this feasibility study, we determined the accuracy of
two automated segmentation tools for T1-weighted MR
images, FSL-FIRST with three different boundary correc-
tion settings and FreeSurfer against manual segmenta-
tion in a paediatric 5-year-old population (N = 80).
Overall, the automated tools show promising accuracies,
but the performance of all automated tools changed

FSL Default

FreeSurfer |

FIGURE 11
thalamus, caudate and nucleus

Sagittal view of the

L

¥ accumbens. Thalamus, green; caudate,

' light blue; nucleus accumbens, orange

1

vastly based on the structure. Small structures such as
the amygdala and nucleus accumbens were inaccurately
segmented by all automated methods. On the other hand,
the segmentation of the putamen and the caudate were
performed accurately with most of the automated
methods and yielded relatively good consistency and
reproducibility with manual segmentation. The use of
these automated segmentation tools in neuroimaging
studies still presents challenges, and careful visual
inspection of the automated segmentations is still
strongly advised, because there are many factors such as
the quality of the used MR images that might impact the
accuracy of the segmentations. Future research should
investigate the benefits of using custom subcortical
atlases to improve the accuracy and reliability of auto-
mated segmentation methods especially for the amygdala
and hippocampus (Lee et al., 2019).
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