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Mitochondrial DNA depletion
induces innate immune
dysfunction rescued by IFN-g
To the Editor:
Sepsis is a clinical syndrome with increasing incidence and

mortality in which a systemic inflammatory response is triggered
by infection. The clinical outcome of sepsis is primarily
determined by the host response; in particular, monocyte
deactivation plays a key role in sepsis-induced immune
suppression and contributes to mortality.1,2 While the underlying
mechanisms ofmonocyte deactivation are not understood, there is
increasing evidence that mitochondrial dysfunction contributes to
the pathogenesis of sepsis. Monocytes from sepsis patients
have impaired mitochondrial respiration and depletion of
� 2017 The Authors. Published by Elsevier Inc. on behalf of the American Academy of

Allergy,Asthma& Immunology. This is an open access article under theCCBY license

(http://creativecommons.org/licenses/by/4.0/).
mitochondrial DNA (mtDNA). These findings correlate with
the severity of the illness,3-6 but it is unclear whether the
mitochondrial defects lead to the immune deactivation of blood
monocytes or occur simply as a consequence of sepsis. To
address this issue, we studied the effects of reducing mtDNA
levels on immune function in THP-1 cells, a human monocyte
cell line.

Treatment of THP-1 cells with 50 ng/mL ethidium bromide for
8 weeks generated r0 cells lacking mtDNA (Fig 1, A) without
adverse effects on cell viability (see Fig E1, A and the Methods
in this article’s Online Repository at www.jacionline.org). This
completely suppressed mtDNA-encoded MT-CO1 protein
levels and cytochrome c oxidase activity, without affecting
nuclear-encoded SDHA expression or mitochondrial mass,
measured by citrate synthase activity (Fig E1, B-D). The r0 cells
had a blunted TNF-a response to treatment with 100 ng/mL LPS
for 4 hours (Fig 1, B), consistent with monocyte deactivation.
Repeating the experiments with short-interfering RNA ([siRNA],
30 nmol/L for 8 days) silencing the expression of mitochondrial
transcription factor A (TFAM), a major component of the
mitochondrial nucleoid that regulates mtDNA replication and
gene expression (Fig 1, C), also suppressed mtDNA levels (Fig 1,
D), reducedmitochondrial-encoded proteins and oxygen consump-
tion (seeFigE2,C andD in this article’sOnlineRepository atwww.
jacionline.org), and impaired theTNF-a response toLPS (Fig 1,E).
While theTFAM siRNA-transfectedTHP-1 cells also had a reduced
ability to phagocytose the gram-negative bacterium Escherichia
coli (Fig E2,E), therewas not a global downregulation of immunity
as LPS-induced IL-8 production was unaltered (Fig 1, E). The ef-
fects of mtDNA depletion were partially reversed after removal
of the siRNA (Fig 1, F-H and Fig E2, F-H).

To determine the mechanism linking mtDNA depletion with
impaired immune function, we performed whole transcriptome
RNA-Seq before and after TFAM siRNA transfection (Fig 2, A
and Fig E3 in the Online Repository at www.jacionline.org).
There were 1389 differential expressed genes in TFAM
siRNA-transfected THP-1 cells compared with control cells
(Fig 2, A and B, see Data File E1 in this article’s Online
Repository at www.jacionline.org). Ingenuity Pathway Analysis
(IPA) of the gene ontology showed suppression of key innate
immune signaling pathways, including interferon and TREM1
signaling (Fig 2, C, and see Fig E3 and Table E1 in this article’s
Online Repository at www.jacionline.org). Following 4 hours’
treatment with 100 ng/mL LPS, we observed a consistent
upregulation of inflammatory genes (log fold-change
[LogFC] > 1.5) (Fig E3, D). Gene ontology analysis showed
that mtDNA depletion was associated with a significant
downregulation of multiple signaling pathways involved in
pathogen recognition following exposure to LPS (Fig E3, E-H,
Table E2). Thus, the mtDNA depletion induced by TFAM siRNA
blunts the immune response of THP-1 cells to LPS through known
innate immune pathways. These findings were validated in
independent experiments using quantitative RT-PCR; mtDNA
depletion blunted the LPS-induced upregulation for key genes
encoding cell surface receptors (TLR4, TREM1), proinflamma-
tory cytokines (IL1B, TNF), interferon signaling molecules
(IFIT1, IFITM1), and inflammatory mediators (MYD88, STAT1)
(Fig 2, D-G). TLR-4 expression, measured by flow cytometry,
was significantly decreased following mtDNA depletion (Fig 2,
H), providing a potential explanation for the blunted immune
response in THP-1 cells lacking mtDNA.
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FIG 1. MtDNA depletion and reversible impaired immune functions in THP-1 cells. A and B, Treatment with

50 ng/mL ethidium bromide (EtBr) for 8 weeks.A,MtDNA levels. B, LPS-induced TNF-a and IL-8 release. C-E,

Transfection with 30 nmol/L negative or TFAM siRNA for 8 days. C, TFAM protein relative to b-actin. D,

MtDNA levels. E, LPS-induced TNF-a and IL-8 release. F-H, TFAM recovery 8 days after removal of TFAM
siRNA. F, TFAM protein relative b-actin. G, MtDNA levels. H, LPS-induced TNF-a and IL-8 release. All

experiments are presented as means 6 SD of 3 to 4 independent biological replicates. *P < .05,

**P < .01, and ***P < .001.

J ALLERGY CLIN IMMUNOL

NOVEMBER 2017

1462 LETTERS TO THE EDITOR



FIG 2. Transcriptomic response and immune dysfunction in TFAM siRNA-induced mtDNA-depleted

THP-1 cells is rescued by IFN-g treatment. A, Hierarchical clustering for the 3000 most expressed genes in

all the samples used for RNA-Seq. B, Volcano plot of differentially expressed genes between control and

siRNA cells (dot size proportional to LogFC >1.5 red [upregulated], blue [downregulated], green 5 the

mitochondrial genes). C, Altered canonical signaling pathways with siRNA. D-G, Quantitative PCR

validation of key genes. H, Cell surface expression of TLR-4. I, LPS-induced TNF-a release after treatment

with 100 ng/mL IFN-g for the final 24 hours of the transfection period. J, Phagocytosis of E coli.
K, Phagocytosis of E coli. Data are presented as means 6 SD of 3 independent biological replicates;

*P < .05, **P < .01, and ***P < .001. iNOS, Inducible nitric oxide synthase; IRF, interferon regulatory factor;

PI3K, phoshoinositide-3-kinase; RIG1, retinoic acid-inducible gene-1; TSP-1, thrombospondin-1.
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IFN-g has been shown to reverse immune deactivation in septic
monocytes7 and is a monocyte activator that stimulates TLR-4
expression through the interferon signaling pathways that
are downregulated with mtDNA depletion. Treating mtDNA-
depleted THP-1 cells with 100 ng/mL recombinant human
IFN-g in the final 24 hours of the 8-day siRNA transfection period
had no adverse effects on THP-1 cell viability (see Fig E4,A in the
Online Repository at www.jacionline.org), but increased both
LPS-induced TNF-a release (Fig 2, I) and the capacity to
phagocytose E coli (Fig 2, J and Fig E4, B). IFN-g treatment
increased cell surface expression of TLR-4 in all experimental
conditions (Fig 2, K and Fig E4, C).

Using 2 independent methods to induce mtDNA depletion, we
show that mtDNA depletion can reversibly impair innate immune
responses in THP-1 cells. In particular, we identify a significant
inhibition of TNF-a production in response to LPS, thus
reproducing the key phenotypic marker of immune deactivation
in monocytes from patients with sepsis. The mtDNA depletion
also inhibits interferon and pattern-recognition receptor-mediated
signaling and decreased cell surface expression of TLR-4,
changes that would fundamentally impair the responses of
THP-1 cells to LPS and gram-negative bacteria.

How can we explain the transcriptional changes we observed
following mtDNA depletion? Mitochondrial abundance and
mtDNA levels are tightly regulated in response to cellular
energetic demands, and mtDNA depletion leads to a bioenergetic
defect of OXPHOS and a reduction in ATP production. This could
have several consequences. First, in cell lines from patients with
rare inherited mtDNAmutations, the biochemical defect activates
a retrograde signaling response from the mitochondria to the
nucleus that alters the transcription of several genes known to be
involved in immune activation. Linked to this there may be
compensatory mitochondrial biogenesis, including the activation
of peroxisome proliferator activated receptor (PPAR) signaling,
similar to our observation in mtDNA-depleted THP-1 cells (Fig 2,
C and Fig E3). Increased PPAR signaling has been associated
with a shift to an anti-inflammatory phenotype in animal models
of sepsis.8 Finally, the shift from oxidative to glycolytic
metabolism in mtDNA-depleted THP-1 cells could produce
changes in gene expression and immune phenotype. However,
in macrophages, a shift to glycolytic metabolism has been
associated with the adoption of a proinflammatory phenotype,
with anti-inflammatory macrophages rather having enhanced
OXPHOS activity.8

During severe sepsis, intense on-going mtDNA damage and
mitochondrial dysfunction could overwhelm the capacity for
mitochondrial biogenesis, leading to a gradual decline in mtDNA
levels over time. Our data suggest that this may contribute to
monocyte immune deactivation, which is associated with adverse
clinical outcomes and could be reversed by IFN-g. Our
observations were made on a transformed human monocyte line
and focused on TLR-4 specific mechanisms. If confirmed in
human monocytes this would provide new opportunities to treat
sepsis.
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Mepolizumab efficacy in patients
with severe eosinophilic asthma
receiving different controller
therapies
To the Editor:
Severe asthma is a heterogeneous disease that can require

multiple treatments to help maintain control of symptoms and
exacerbations.1 Severe eosinophilic asthma is characterized by
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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METHODS

Cell culture
THP-1 cells (TIB-202; ATCC, Manassas, Va) were maintained at a

concentration of <1 3 106 cells/mL in RPMI 1640 medium supplemented

with 10% FCS (subsequently termed growth medium) and contamination

with mycoplasma was periodically excluded. Cell viability was determined

by exclusion of 0.4% trypan blue (Sigma-Aldrich, St Louis, Mo), propidium

iodide or 7-aminoactinomycin-D. All reagents were obtained from Thermo

Fisher Scientific unless otherwise stated.

Generation of r0 THP-1 cells
THP-1 cells were incubated in RPMI 1640 medium supplemented with

50 ng/mL ethidium bromide, 110 mg/mL sodium pyruvate, 50 mg/mL uridine,

2 mmol/L L-glutamine, and 10% FCS (all final concentrations) for 8 weeks.

RNA interference
THP-1 cells were transfected with Silencer Select TFAM siRNA (s14001,

sense—GAAGAGAUAAGCAGAUUUAtt, antisense—UAAAUCUGCUUA

UCUCUUCtt) or Silencer Select Negative Control siRNA number 1 (Thermo

Fisher Scientific, Waltham, Mass) using the Lipofectamine RNAiMAX

transfection reagent (Invitrogen, Thermo Fisher Scientific) and following

the manufacturers’ protocols. The transfection was repeated every 48 hours

for 8 days. The effect of IFN-g was determined by treating THP-1 cells

with 100 ng/mL recombinant human IFN-g (R&D Systems, Minneapolis,

Minn) for the final 24 hours of the 8 day siRNA transfection.

Detection of cytokines
We seeded 2.53 105 THP-1 cells in 500mL growthmediumper well onto a

24-well plate (Grenier Bio-One, Monroe, NC) and incubated for 4 hours at

378C6 100 ng/mL LPS from E coli O26:B6 (Sigma-Aldrich). Subsequently,

the release of TNF-a and IL-8 in supernatant sampleswasmeasured by ELISA

using Novex Human Antibody Pair kits (Invitrogen) and following the manu-

facturer’s protocol.

Phagocytosis of E coli
Serum-opsonized fluorescein-labelled E coli K-12 strain were incubated

with THP-1 cells at a multiplicity of infection of 10:1 for 1 hour at 378C. After
washing and quenching extracellular fluorescence through the addition of

0.1% trypan blue, the proportion of cells internalizing bacteria was then

measured using the FACSCanto II flow cytometer (BD Biosciences, San

Jose, Calif).

MtDNA copy number
DNAwas extracted from cell pellets using the DNeasy blood and tissue kit

(Qiagen, Hilden, Germany). The relative mtDNA copy number was

determined by comparing the level of the mtDNA-encoded MT-ND1 gene

(primers: F—ACGCCATAAAACTCTTCACCAAAG, R—GGGTTCATA

GTAGAAGAGCGATGG) to that of the nuclear reference geneB2M (primers:

F—CACTGAAAAAGATGAGTATGCC, R—AACATTCCCTGACAATC

CC) by quantitative RT-PCR using the SYBR Green technique and the

MyiQ PCR machine (both BioRad Laboratories, Hercules, Calif).E1

Immunoblotting
THP-1 cells were lysed using a lysis buffer containing 1% Triton X and

1 mmol/L of the protease inhibitor phenylmethanesulfonyl fluoride (both

Sigma-Aldrich) and the protein concentration in the lysates determined by

Bradford assay. Equal amounts of protein were separated on the basis of size

by SDS-PAGE, transferred onto polyvinylidene fluoride membranes and

blotted with different antibodies. Signal intensity was assessed after addition

of an enhanced chemiluminescent substrate using the MultiSpectral Imaging

System (UVP, Upland, Calif). In addition to the antimouse Ig-HRP (0260)

secondary antibody from Dako (Agilent, Santa Clara, Calif), the following

mouse antihuman antibodies were used: b-actin (ab8226), MTCO1

(ab14705), and SDHA (ab14715) from Abcam (Cambridge, UK) and

TFAM (NBP1-71648) from Novus Biological (Littleton, Colo).

Oxygen consumption
Oxygen consumption for different aspects of mitochondrial respiration was

measured using the Mito Stress kit and the Seahorse XF96e Extracellular Flux

analyzer (both Seahorse Biosciences, Chicopee, Mass) as previously

described.E2 In each well 0.8 3 105 THP-1 cells were seeded in 175 mL of

an assay medium, consisting of modified Eagle medium supplemented with

11.1 mmol/L D-glucose and 2 mmol/L L-glutamine and adjusted to pH 7.0.

Oxygen consumption rate (OCR) was measured at baseline and following

the sequential addition of 1 mmol/L oligomycin (a complex V inhibitor),

0.5 mmol/L then 1 mmol/L carbonyl cyanide 4-(trifluoromethoxy) phenylhy-

drazone (an electron transport chain uncoupler), and finally 1 mmol/L

rotenone (a complex III inhibitor) plus 1 mmol/L antimycin A (a complex I

inhibitor). During each of the 4 stages of the assessment, the OCR was

measured in 16 wells per condition at 3 different time points. All OCR data

were normalized to the total protein per well, which was determined using

the Bradford assay.

RNA-Seq
RNAwas extracted from pellets of 43 106 THP-1 cells using the RNeasy

mini kit (Qiagen) and any residualDNAwas then removed using theDNA-free

DNase treatment kit (Thermo Fisher Scientific). The RNA samples with a

RNA Integrity Number > 7 were sent to AROS Applied Biotechnology A/S

(Ebersberg, Germany) where the RNA-Seq was carried out. The total RNA

was converted into a library of template cDNA using the Illumina TruSeq

Stranded Total RNA Sample Prep kit (San Diego, Calif) and this cDNA library

was then sequenced using the Illumina HiSeq 2500 machine. Reads were

aligned to the hg19 (human genome version 19, Genome Reference

Consortium GRCh37.p13) reference genome, annotated and normalized to

produce a read per kilobase per million mapped reads for each gene.

Differential gene expression between samples and conditions was determined

using DESeq2 software.E3,E4 The biological significance of the changes in

gene expression on cellular processes and signaling pathways was investigated

using IPA (Qiagen). In IPA the differential expression data were analyzed in

the context of the Ingenuity Knowledge Base, a large curated database of

published observations on mammalian biology, to identify the likely upstream

causes and downstream effects of any changes in gene expression.E5 Prior to

the pathway analysis the normalized read per kilobase per million mapped

data were filtered to include only genes that had>0.5 log-fold change between
conditions and were significantly differentially expressed, as defined by a

P-value adjusted for multiple comparisons using the Benjamini-Hochberg

method<.05.E6 The assessment of the effect of the changes in gene expression

on canonical signaling pathways was also filtered to only include significantly

altered pathways (adjusted P < .05) that differed from the mean in the control

sample by >2 SD (z-score > 62). Gene Ontology Consortium was used to

perform the gene ontology analysis. Volcano plots and heat maps were

produced using R statistical software (R Foundation, Vienna, Austria).

Volcano plots were produced by plotting the adjusted P-values against the

log2-fold change of the normalized gene counts, obtained from DESeq2.

The most differentially expressed genes were obtained by ordering the

absolute values of the log2-fold change in descending order. The normalized

counts of the top 3000 genes were then used to produce heat maps.

Quantitative RT-PCR
RNAwas extracted from pellets of 43 106 THP-1 cells using the RNeasy

mini kit and single-stranded cDNAwas synthesized from this RNA using the

High Capacity cDNA reverse transcription kit (Invitrogen). Following this the

relative transcription of specific genes was determined by quantitative

RT-PCR using the TaqMan Gene Expression Assay (Applied Biosystems)

and the 7500 Fast Real Time PCR System (Thermo Fisher Scientific). The
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relative amount of cDNA for each specific target was determined by

comparison with the control housekeeping gene ACTB using the difference

in cycle threshold method.

Cell surface receptor expression
The fluorescence due to the labelling of cells with phycoerythrin-

conjugated antihuman TLR-4 (CD284) antibodies (both from BioLegend,

San Diego, Calif) was determined using the FACSCanto II flow cytometer.

The signal intensity for each receptor was then calculated.E7

Statistical analysis
All experiments were carried out on a minimum of 3 biological replicates;

the number of replicates used to generate the data for a specific experiment is

detailed in the legend of each figure. The Shapiro-Wilk test was used to

determine the normality of the data. Normally distributed data are presented as

means6 SD and were analyzed using an independent t-test or 1-way ANOVA

with Dunnett post hoc analysis. Nonnormal data are presented as

medians 6 interquartile ranges and were analyzed using the Mann-Whitney

U test or Kruskal-Wallis analysis of variance with Dunn post hoc analysis.

The relationship between variables was assessed by linear regression and
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FIG E1. Effects of mtDNA depletion on THP-1 cells. THP-1 cells were treated with 50 ng/mL EtBr for 8 weeks.

A, Cell viability. B,Mitochondrial transcripts. C,Mitochondrial proteins relative to b-actin. D, Spectrophoto-

metric measurements of isolated respiratory enzyme activity in cellular homogenates for complex IV (CIV)

and citrate synthase (CS) activity. All experiments had 3 independent biological replicates and are presented

as means 6 SD. *P < .05 and **P < .01.
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FIG E2. MtDNA depletion and impaired immune functions and subsequent recovery in THP-1 cells

following transfection with TFAM siRNA. A-G, Transfection with TFAM siRNA. A, TFAM proteins levels

relative to b-actin during titration of TFAM siRNA, showing optimal knockdown of TFAM protein after

transfection of THP-1 cells with 30 nmol/L siRNA for 8 days. B, Cell viability. C, Cell proliferation. D, The

levels of the MT-CO1 and SDHA proteins relative to b-actin. D, OCR for different aspects of mitochondrial

respiration and respiratory profile. E, Phagocytosis of E coli. Recovery 8 days after removal of TFAM siRNA.

F, Levels of the MT-CO1 and SDHA proteins relative to b-actin. G,Oxygen consumption for different aspects

of mitochondrial respiration. H, Bacterial phagocytosis. All experiments were carried out on 3 to 4 indepen-

dent biological replicates and are presented as means 6 SD. **P < .01 and ***P < .001.
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FIG E3. Canonical signaling pathways in mtDNA-depleted THP-1 cells with and without LPS treatment.

THP-1 cells were incubated in growth medium or transfected with 30 nmol/L of negative or TFAM siRNA for

8 days. After a final incubationwith 100 ng/mL LPS ormedium for 4 hours, gene expressionwas assessed by

RNA-Seq. A, Levels of transcripts for TFAM. B, Principal component analysis plot. C, The effect of

transfection with TFAM siRNA on the interferon signaling pathway extracted from IPA (downregulated

genes are highlighted in green and upregulated genes are highlighted in red). D, Volcano plot showing

differentially expressed genes in each experimental condition following treatment with LPS. E, Volcano

plot comparing the LPS response of TFAM siRNA-transfected cells to negative control siRNA transfected

cells. (In the volcano plots, differentially expressed genes are highlighted in gray, genes with LogFC >1.5

are represented in red [upregulated] or blue [downregulated], while mitochondrial genes are highlighted

in green. The size of the dots is proportional to the LogFC.) F, Gene Slim Ontology analysis carried out

by Gene Ontology Consortium Fold Change enrichment for pathways with P < .05. G, IPA analysis of the

canonical signaling pathways significantly affected by the differential expression of genes after treatment

with LPS in TFAM siRNA-transfected THP-1 cells compared with negative siRNA-transfected cells. The

data were filtered for Benjamini-Hochberg multiple testing correction P-value <.05 and z-score >62.

*P < .05 and ****P < .0001.
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FIG E4. Treatment with IFN-g increases TLR-4 expression and restores immune functions in THP-1 cells with

mtDNA depletion following transfection with TFAM siRNA. THP-1 cells were treated with 100 ng/mL recom-

binant human IFN-g or medium for the final 24 hours of an 8-day transfection with negative control or TFAM
siRNA, or incubation with growth medium. A, Cell viability. B, Phagocytosis of E coli. C, Cell surface expres-

sion of TLR-4. All experiments were carried out on 3 independent biological replicates and are presented as

means 6 SD. ***P < .001.
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TABLE E1. Details of the 5 signaling pathways most significantly affected by transfection with TFAM siRNA

Function z-score P-value

Genes with altered expression

Proportion of genes in pathway Upregulated Downregulated

Interferon signaling

Cellular immune response

Cytokine signaling

23.16 4.9 3 1027 11/34 — IFI35, IFNB1, IFIT1, IFITM1, IFITM2, IFITM3,

IFIT3, IRF9, OAS1, STAT2, STAT1

TREM1 signaling

Cellular immune response

Cytokine response

23.50 7.9 3 1027 16/75 MPO CCL3, CD83, CIITA, IL1B, ITGAX, MYD88,

NLRC4, NLRP12, TLR1, TLR3, TLR6, TLR7,

TNF, TREM1, TYROBP

Role of pattern recognition receptors in recognition of bacteria and viruses

Cellular immune response

Pathogen-influenced signaling

23.74 5.5 3 1026 20/127 IL12A C3AR1, C5AR1, DDX58, EIF2AK2, IFIH1,

IFNB1, IL1B, IRF7, MYD88, NLRC4, OAS1,

OAS2, OAS3, PTX3, TLR1, TLR3, TLR6,

TLR7, TNF

Toll-like receptor signaling

Apoptosis

Cellular immune response

Humoral immune response

Pathogen-influenced signaling

22.33 1.7 3 1025 14/74 IL12A, PPARA EIF2AK2, FOS, IL1B, IL1RN, MYD88,

NFKBIA, TLR1, TLR3, TLR6, TLR7,

TNF, TNFAIP3

Acute phase response

Cytokine signaling 22.67 5.2 3 1023 17/169 FTL, HMOX1, ORM1,

ORM2, SOCS2

A2M, AGT, CEBPB, FOS, IKBKE, IL1B,

IL1RN, MYD88, NFKBIA, SERPINE1,

SOCS3, TNF
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TABLE E2. Details of the 5 pathways most significantly affected by the altered transcriptomic response to LPS following transfection

with TFAM siRNA

Function z-score P-value

Genes with altered expression

Proportion Upregulated Downregulated

TREM1 signaling

Cellular immune response

Cytokine response

24.15 6.3 3 1029 21/75 MPO CCL2, CCL3, CD40, CD83,

CIITA, ICAM1, IL1B, ITGAX,

MYD88, NLRC4, NLRP12,

NOD2, TLR1, TLR3, TLR4,

TLR6, TLR7, TNF, TREM1, TYROBP

Toll-like receptor signaling

Apoptosis

Cellular immune response

Humoral immune response

Pathogen-influenced signaling

22.13 2.8 3 1028 20/74 ELK1, IL12A, MAP3K14,

PPARA, TRAF4

EIF2AK2, FOS, IL1B, IL1RN,

IRAK2, JUN, MYD88, NFKBIA,

TLR1, TLR3, TLR4, TLR6, TLR7,

TNF, TNFAIP3

Interferon signaling

Cellular immune response

Cytokine signaling

23.32 7.2 3 1027 12/34 — IFI35, IFIT1, IFIT3, IFITM1, IFITM3,

IFNB1, IRF9, MX1, OAS1, STAT2,

STAT1, TAP1

Activation of interferon regulatory factors by cytosolic pattern recognition receptors

Cellular immune response 22.00 2.1 3 1026 12/34 — ADAR, CD40, DDX58, DHX58, IFIH1,

IFIT2, IFNB1, IKBKE, IRF7, IRF9,

ISG15, JUN, NFKBIA, STAT1,

STAT2, TNF

Role of pattern recognition receptors in recognition of bacteria and viruses

Cellular immune response

Pathogen-influenced signaling

23.74 5.5 3 1026 20/127 IL12A C3, C3AR1, C5AR1, DDX58, EIF2AK2,

IFIH1, IFNB1, IL1B, IRF7, MYD88,

NLRC4, NOD2, OAS1-3, PTX3, TLR1,

TLR3, TLR4, TLR6, TLR7, TNF
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