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Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized

by widespread tense blisters. Standard of care typically involves immunosuppressive

treatments, which may be insufficient and are often associated with significant adverse

events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid

diseases is necessary in order to identify improved therapeutic approaches. A major

initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins

at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The

contribution of proteases to pemphigoid disease pathogenesis has been investigated

using a combination of in vitro and in vivo models. These studies suggest proteolytic

degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal

separation and blister formation. In addition, proteases can also augment inflammation,

expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which

are all important in pemphigoid disease pathology. The present review summarizes and

critically evaluates the current understanding with respect to the role of proteases in

pemphigoid diseases.

Keywords: pemphigoid diseases, proteases, bullous pemphigoid, epidermolysis bullosa acquisita, mucous

membrane pemphigoid, elastase, MMP, granzyme

CHARACTERISTICS OF PEMPHIGOID DISEASES

The term pemphigoid disease is defined as a specific subset of autoimmune subepidermal blistering
diseases having autoantibodies against proteins at the dermal epidermal junction (DEJ) (1). This
group includes bullous pemphigoid (BP), epidermolysis bullosa acquisita (EBA), pemphigoid
gestationis (PG), mucous membrane pemphigoid (MMPh), linear IgA bullous dermatosis also
known as linear IgA disease (LABD), anti-laminin γ1 pemphigoid, lichen planus pemphigoid
(LPP), and other rare diseases. Dermatitis herpetiformis (DH) is not included since its autoantigen
(transglutaminase) does not localize at the DEJ (1, 2).

Pemphigoid diseases typically share a similar clinical presentation as either localized or
generalized tense blisters and erosion on the skin (1). However, this presentation varies for
each disease and there is heterogeneity within the same disease. BP typically presents as
generalized blistering eruptions accompanied/preceded by erythema and pruritis (3). Although
the presentation of PG is similar to that of BP, it normally develops during the second trimester
of pregnancy (4, 5). The clinical features of EBA are also often similar to that of BP (referred to
as an inflammatory variant of EBA), however, one third of the patients exhibit less inflammation
(classical mechanobullous variant) (6–8). In MMPh, blistering and erosive lesions preferably but
not exclusively develop on mucosa, such as the oral cavity and conjunctiva, genitalia, perianal
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region, pharynx, esophagus, and nasal (9, 10). This may result
in critical complications such as blindness and strictures. Unlike
other pemphigoid diseases, EBA and MMPh lesions may heal
with scarring and/or milia formation (6, 9). LABD presents
with generalized tense blisters with eruption characteristically
accompanied by pruritus (11).

Histology of blistered skin in pemphigoid diseases normally
shows superficial and mid-dermis perivascular inflammation
infiltrated by lymphocytes, neutrophils, eosinophils, mast cells,
and other immune cells, with the relative abundance and
contribution depending on each disease (1, 12). The hallmark
of BP lesions is eosinophil infiltration, whilst MMPh and
classical variant EBA lesions exhibit minimal inflammation
compared to the other pemphigoid diseases (12–14). Direct
immunofluorescent microscopy of the patient skin is used
diagnostically to visualize the deposition of immunoglobulins
and/or complements along the basement membrane zone (1, 9,
11). Further analysis with direct (using patient prelesional skin)
and/or indirect (using healthy human skin treated with patient
serum) immunofluorescent microscopy of skin treated with 1M
NaCl solution (salt-split skin) is sometimes clinically used to test
the localization of the immunoglobulins (15, 16). Since this salt-
split treatment separates the skin at the level of lamina lucida
and the localizations of target autoantigens in each disease are
characteristic [detailed in the Pathomechanism(s) of Pemphigoid
Diseases section], salt-split skins of BP, PG, LPP, LABD, and
most of MMPh show the immunoglobulin deposition in the
epidermal side or in both the epidermal and dermal sides. On
the other hand, the deposition of immunoglobulins is observed
in the dermal side of the salt-split skin in EBA, anti-laminin γ1
pemphigoid, and a subset of MMPh (16–18). Tomore specifically
differentiate between the pemphigoid diseases, identification
of target antigens for the autoantibodies is required, using
enzyme-linked immunosorbent assay (ELISA) and/or western
blotting (19–21).

The combined prevalence of pemphigoid diseases was
estimated at 380 cases per million people (pmp) (22). BP, the
most common disease within this group, was estimated at 259
pmp. The affected population in BP is increasing over time,
presumably linked to the increasing risk factors such as aging,
pharmacologics, and improved diagnostic techniques (1, 16, 23).
In MMPh, prevalence was up to 25 pmp, whilst in EBA it was
estimated at about 3 pmp. Other pemphigoid diseases including
LABD and anti-laminin γ1 pemphigoid were estimated as 5 pmp.

Abbreviations: α1-AT, α1-antitrypsin; ADAM, a disintegrin and metalloprotease;

BP, bullous pemphigoid; BPAG, bullous pemphigoid antigen; COPD, chronic

obstructive pulmonary disease; DEJ, dermal-epidermal junction; DH, dermatitis

herpetiformis; DPP-4i, dipeptidyl peptidase-4 inhibitor; DPPI, dipeptidyl

peptidase I; enzyme-linked immunosorbent assay, ELISA; EBA, epidermolysis

bullosa acquisita; Gzm, granzyme; human leukocyte antigen, HLA; Kitl, kit

ligand; LABD, linear IgA bullous dermatosis; LAD-1, linear IgA disease

antigen-1; LABD97, linear IgA bullous disease antigen of 97 kDa; LPP, lichen

planus pemphigoid; mMCP-4, Mouse Mast Cell Protease 4; MMP, Matrix

metalloproteinase; MMPh, mucous membrane pemphigoid; NE, neutrophil

elastase; NK, natural killer; Pas, plasminogen activators; PAR-2, protease-activated

receptor 2; PG, pemphigoid gestationis; PI-9, proteinase inhibitor-9; pmp, per

million people; ROS, reactive oxygen species; Scf, stem cell factor; TIMP, tissue

inhibitor of matrix metalloproteinase.

PG in expectant mothers was diagnosed in approximately 1 out
of 1,700–50,000 pregnancies (4). While BP and MMPh onset
occurs typically in the elderly (median age of onset is∼80 and 70
years, respectively), other pemphigoid diseases show different age
distributions (22). Onset of EBA is typically in the elderly (20% of
patients are over 70 years old), although a second onset peak has
been identified in individuals younger than 30 years old (22, 24).
LABD onset peaks before the age of 5 and again after 60 years old
(25). The mean age of onset in LPP is between 40 and 50 years of
age (1), whilst in PG, as the disease develops during pregnancy,
the median age of the onset is∼30 years of age (22).

Multiple factors have been reported to trigger pemphigoid
disease onset. For BP, several inflammatory skin conditions
(such as trauma, burn, ultraviolet irradiation, radiation,
surgical wound, ostomy, and skin graft), specific drugs
[including aldosterone antagonists, neuroleptics, spironolactone,
phenothiazines with aliphatic side chain, loop diuretics, and
dipeptidyl peptidase-4 inhibitor (DPP-4i)], vaccination, and
viral infection have been indicated to trigger onset (3, 26–34).
The association between BP and neurologic diseases such
as stroke, epilepsy, Parkinson’s disease, multiple sclerosis,
dementia, and unipolar or bipolar disorder is well-documented
(3, 28, 35). In LABD, skin trauma and exposure to drugs such
as vancomycin have been reported as the triggering factors
(11, 36, 37). In addition, several case reports have suggested
drugs and inflammatory diseases as initiating other pemphigoid
diseases (38–41).

Current treatment modalities for pemphigoid diseases mainly
non-specifically target the inflammatory response as their main
treatment options, corticosteroids, and immunosuppressive
drugs target both innate and adaptive immunities (42–44).
For BP, systemic corticosteroid administration remains the
standard treatment, however, higher doses of prednisolone may
cause critical adverse effects such as diabetes, decreased bone
density, and increased susceptibility to infection (45, 46). Topical
application of high potency corticosteroids is also used in clinical
practice (16, 46, 47). Dapsone, a sulfone with antibacterial
properties that is responsible for controlling neutrophil-induced
inflammation in the skin, may be used in combination
with topical/systemic corticosteroids (48). Other treatment
options include systemic administration of a combination
of nicotinamide and tetracyclines (tetracycline, doxycycline,
or minocycline) (49, 50). Adjuvant immunosuppression with
either mycophenolate mofetil or azathioprine has been reported
(51). Rituximab, intravenous immunoglobulin, omalizumab, and
immunoadsorption have been also reported to show positive
effect on the disease course (52–55). PG treatment basically
follows a similar course to that of BP including topical
corticosteroids and/or low dose systemic corticosteroids (4,
47). LABD often responds well with dapsone (47). EBA is
normally treated with systemic corticosteroids in combination
with other immunosuppressive/modulatory agents (24). While
mild cases of MMPh are often treated with dapsone, severe
cases with critical mucosal complications are treated with
more aggressive immunosuppressive treatments such as pulse
intravenous corticosteroids, cyclophosphamide, or rituximab (9).
Overall, pemphigoid disease treatment remains non-specific
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and often with critical adverse effects. As such, a deeper
understanding of the pathology of these diseases is necessary to
identify more specific and safer therapeutic approaches.

PATHOMECHANISM(S) OF PEMPHIGOID
DISEASES

The hallmark of pemphigoid diseases is the deposition of
autoantibodies targeting specific protein(s) at the DEJ (1).
The protein or combination of proteins recognized by the
autoantibodies vary for each specific pemphigoid disease:
collagen XVII [BP180, bullous pemphigoid antigen 2 (BPAG2)]
and/or BPAG1e (BP230, dystonin) for BP, PG, and LPP, collagen
VII for EBA, collagen XVII, BPAG1e, laminin-332 (laminin-
5), laminin-311 (laminin-6), collagen VII, or β4 integrin for
MMPh, truncated collagen XVII fragments [linear IgA disease
antigen-1 (LAD-1), linear IgA bullous disease antigen of 97 kDa
(LABD97)], and/or BPAG1e for LABD, and laminin γ1 for anti-
laminin γ1 pemphigoid (56–74). Most of these autoantigens
are components or associated proteins of a DEJ anchoring
complex, hemidesmosome. Hemidesmosomes are expressed by
basal epithelial cells and perform an anchoring function in
the skin between the epidermis and dermis (75, 76). In skin,
the hemidesmosome consists of transmembrane proteins such
as α6β4integrin, collagen XVII, and CD151, and cytoplasmic
proteins such as BPAG1e and plectin, to link cytoplasmic keratin
with extracellular laminin-332. Laminin-332 binds to collagen
VII in the anchoring fibrils. Saliently, genetic mutations of these
proteins cause congenital blistering diseases (i.e., epidermolysis
bullosa) (77).

It remains unclear as to how immune tolerance is lost
in pemphigoid diseases and how/why autoantibodies
are formed against hemidesmosome-associated proteins.
Several genetical and/or environmental backgrounds, such as
human leukocyte antigen (HLA) allele and regulatory T cell
dysfunction were suggested to increase autoreactive T and B
cells in the pemphigoid diseases (78–85). These autoreactive
lymphocytes possibly react with hemidesmosome-associated
protein fragments disseminated in the extracellular space
by exaggerated proteolytic cleavages at the DEJ during the
aforementioned triggering events including skin inflammatory
diseases and immunization.

The pathological functions of autoantibodies in blister
formation has been studied using passive transfer mouse models.
The models involve injections of anti-mouse collagen XVII
IgG, anti-mouse collagen VII IgG, anti-laminin-332 IgG, or
anti-human LAD-1/LABD97 IgA into healthy wild-type or
human skin transplanted mice, resulting in the development
of BP, inflammatory variants of EBA, anti-laminin-332 MMPh,
or LABD model, respectively (86–91). Most of these animal
models demonstrate the deposition of immunoglobulin and
complements C3 at the DEJ, infiltration of inflammatory
cells, and the presentation of subepidermal blistering. Ex vivo
skin systems also provide a valuable research tool to reveal
pemphigoid disease pathology (92). Cryosections of healthy skin
are incubated with patient-derived IgG and leukocytes, leading

to the induction of dermal-epidermal separation (93, 94). Based
on these studies, it is now recognized that the blisters present in
most pemphigoid diseases are triggered by the accumulation of
autoantibodies at the DEJ followed by complement recruitment
and inflammatory cell infiltration.

Passive-transfer mouse models of MMPh developed by
Lazarova et al. and Darling et al. showed subepidermal blisters
with IgG and C3 deposition but without obvious inflammation
(90, 91). In addition, in one ex vivo skin study with anti-laminin-
332 MMPh patient IgG, there was a failure to induce leukocyte
recruitment and dermal-epidermal separation, suggesting an
inflammation-independent mechanism is involved in blister
formation in laminin-332 MMPh (19, 95). Conversely, a recent
study using the anti-laminin-332 MMPh model developed by
Heppe et al. showed complement activation and inflammation
are indeed required for blister formation (88). Further studies
are therefore needed to further elucidate the mechanisms in
anti-laminin-332 MMPh.

Ex vivo skin- and passive transfer murine-models of
pemphigoid diseases have demonstrated that neutrophils are
especially important amongst the infiltrated inflammatory cells
in blister formation (93, 94, 96). The ex vivo skin model showed
neutrophils to be indispensable for BP and EBA blister formation
as the patient IgG induced dermal-epidermal separations were
only observed when co-incubated with neutrophils (93, 94). Liu
et al. utilized the passive-transfer mouse model to demonstrate
the importance of neutrophils in BP pathology, as depletion
of circulating neutrophils in the BP mice showed resistance to
blistering (96). To fight against pathogens, neutrophils provide
reactive oxygen species (ROS), antimicrobial peptides, and
proteases (97, 98). Since blister formation should be induced
by the loss of epidermis and dermis attachment, it validated
subsequent studies focusing on the function of proteases
on the cleavage of anchoring proteins at the DEJ, such as
hemidesmosomal components.

PROTEASES IN PEMPHIGOID DISEASES

Proteases are classically categorized into six groups based on the
catalytic residue; serine, cysteine, aspartic, glutamic, threonine,
andmetalloproteases (99). Proteases exert both physiological and
pathological roles through proteolytic cleavage and degradation
of wide variety of substrates such as extracellular matrices,
cell surface molecules, transmembrane proteins, growth factors,
cytokines, and chemokines. The remainder of this review will
summarize the current understanding with respect to the role of
proteases in the pathogenesis of pemphigoid diseases.

Neutrophil Elastase
Neutrophil elastase (NE) is a serine protease that exhibits
relatively broad cleavage site specificity and has a preference for
regions containing several aliphatic amino acids (100). NE is
stored in both azurophilic (also called primary) granules and
the nuclear envelop of neutrophils as an active-form (101–
103). Following bacterial infection and subsequent inflammatory
stimulation, neutrophils phagocytose the invading bacteria,
with NE contributing to intracellular killing (104, 105). In
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addition, upon neutrophil activation, NE is also secreted
into the extracellular space, acting anti-bacterially to degrade
bacterial proteins and various virulence factors such as outer
membrane protein, flagellin, and leukotoxin (101, 106–108).
NE also cleaves targets within the skin such as chemokines,
cytokines, growth factors, cell surface molecules, adhesion
proteins, and extracellular matrices (101, 109–113). These
proteolytic functions serve to augment inflammation and to
repair tissue at early phases of wound healing. However, excessive
NE activity may cause unintended pathological consequences.
Exaggerated NE-mediated proteolysis has been implicated as
a key factor in inflammatory diseases [chronic obstructive
pulmonary disease (COPD), cystic fibrosis, acute lung injury,
acute respiratory distress syndrome], autoimmune diseases (type
1 diabetes), cancer (squamous cell carcinoma), and inflammatory
skin diseases (psoriasis, skin photoaging) (101, 114–120). To
defend against excessive NE proteolysis, there are endogenous
secretory NE inhibitors such as α1-antitrypsin (α1-AT), serpin
B1, proteinase inhibitor-9 (PI-9, serpinB9), chelonianin, and
macroglobulin (114). However, an imbalance of local protease-
antiprotease activity has been observed, likely due to genetics,
environmental factors, or simply an inability to cope with the
massive degree of inflammation (101, 120, 121). In this context,
the function of NE in pathology and underlying pemphigoid
diseases remains a topic of further study.

Abundant NE-positive neutrophils and NE activity have been
reported in human BP blister fluid (122–124) (Table 1). A
direct link between NE and blistering was identified using the
passive-transfer BP model with anti-mouse collagen XVII IgG
where NE null mutant mice or wild type mice administered NE
inhibitors (α1-AT and MeOSuc-AAPV-CH2Cl) were resistant
to blister formation (125, 126). In addition, in the ex vivo
human skin model, leukocytes and BP patient IgG dependent
dermal-epidermal separation was blocked with a NE inhibitor
(MeOSuc-AAPV-CK) (95). Using the same model but with IgG
from EBA patients, it was confirmed that pathogenic IgG in
EBA patients also contributes to NE-dependent blister formation
(95). NE-induced blistering in BP and EBA was proposed to
be generated by the degradation of hemidesmosomal proteins
including collagen XVII (126, 127) (Figure 1; Table 1). NE also
cleaved laminin-332 in vitro, which is another hemidesmosome-
associated protein (128).

The degradation of hemidesmosomal proteins might
exaggerate the inflammatory response in pemphigoid disease.
Mydel et al. and Lin et al. indicated that NE-induced fragments of
laminin-332 and collagen XVII are chemotactic for neutrophils
(127, 128). Bergh et al. demonstrated that loss of collagen XVII
induces IL-8 expression in keratinocytes, which potentially
induces further inflammation in BP (129).

Based on its role in pemphigoid diseases, NE has been
proposed as a therapeutic target. However, there has been
no reported clinical evidence forwarded that supports the
use of NE-inhibiting drugs such as sivelestat (ONO-5046) or
AZD9668 for pemphigoid diseases (130, 131). One recent paper
suggested a possible mechanism which may induce resistance
against macromolecular NE inhibitors (132). It was proposed
that the closed compartment between neutrophils and immune

complexes prohibits the access of inhibitors, which implies NE
inhibition as a treatment strategy for pemphigoid diseases may
be challenging.

Matrix Metalloproteases (MMPs)
MMPs (also known as matrixins) are a family of calcium-
dependent zinc-containing proteases generally consisting of a
signaling peptide-, propeptide-, catalytic-, and hemopexin-like-
domains (133, 134). To activate these proteolytic functions, the
interaction between catalytic domain and propeptide domain
needs to be removed normally by other proteases, such as
plasmin, trypsin, kallikrein, tryptase, and other MMPs (134–
137). Once activated, MMPs are available to cleave a diverse
range of substrates such as chemokines, cytokines, growth
factors, cell surface molecules, adhesion proteins, extracellular
matrices, and other proteases (134, 138). Because of this
wide range of substrates, MMPs play a number of roles in
physiological processes, including in inflammatory responses,
angiogenesis, reproduction, development, wound closure, and
tissue remodeling (133, 134, 139–142). To avoid excess host tissue
damage and unregulated inflammation, endogenous inhibitors
such as α2-macroglobulin and all types of tissue inhibitor of
matrix metalloproteinases (TIMPs) block excessive enzymatic
activity of MMPs (137, 143). However, and similar to NE,
several reasons may create an imbalance between proteases
and antiproteases, resulting in multiple diseases. MMPs have
been implicated in pathological roles in cancer, inflammatory
diseases, autoimmune diseases, neuropsychiatric disorders,
central nervous system diseases, cardiovascular diseases, and
delayed wound healing (134, 137, 139, 142, 144–146). The
pathological functions of MMPs in pemphigoid diseases have
been studied, predominantly focusing on MMP-9.

MMP-9, also known as gelatinase B or 92 kDa type
IV collagenase, is secreted from several cell types including
neutrophils, macrophages, eosinophils, and fibroblasts (147,
148). In neutrophils, MMP-9 is stored in zymogen granules
and secreted upon an inflammatory stimulation (149, 150).
Conversely, in macrophages, MMP-9 does not accumulate and
instead is secreted as a 92-kDa proactive form following synthesis
(151). Once activated, the 88-kDa active form of MMP-9
extracellularly cleaves a variety of substrates such as chemokines,
cytokines, growth factors, cell surface molecules, transmembrane
proteins, extracellular matrices, and proteases (147, 152–154).

While multiple studies report MMP-9 positive keratinocytes,
neutrophils, T-cells, mast cells, and eosinophils to be abundant
in lesional and perilesional BP skin (Table 1), Verraes et al.
indicated that blister fluid MMP-9 may present only as
proenzyme and therefore not able to degrade collagen XVII
(124, 148, 155–159). Moreover, they indicated that TIMP-1 is
abundant in the blister fluids, which would likely inhibit activity
of MMP-9. On the other hand, Niimi et al. suggested TIMP-1
expression was less compared to MMP-9 at the BP lesion (156).
In MMPh, MMP-9 protein levels and the MMP-9/TIMP-1 ratio
were increased in patient tears (160, 161) (Table 1).

Once activated, and in the absence of inhibition, MMP-9
degrades the extracellular domain of human collagen XVII and
the NE inhibitor, α1-AT (124, 125). The role of MMP-9 in BP and
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FIGURE 1 | Role of proteases in pemphigoid disease. Tissue-type plasminogen activator (tPA) secreted from keratinocytes activates plasminogen to plasmin. Plasmin

activates pro-matrix metalloprotease-9 (pro-MMP-9) to MMP-9. MMP-9 degrades α1-antitrypsin (α1-AT). Without inhibition by α1-AT, neutrophil elastase (NE) cleaves

hemidesmosome-associated proteins including collagen XVII (COL17) and laminin-332 (lam332). Granzyme B (GzmB) also cleaves hemidesmosome-associating

proteins to induce dermal-epidermal separation. GzmB may induce additional neutrophil infiltration through chemoattractant production such as IL-1α, C5a, and

COL17/lam332 fragments. ADAM-10 sheds semaphorin-4D (sema4D) to activate autoantibodies (autoAb) production from B cells.

EBA blistering was confirmed with ex vivo human skin models
(95). Cryosections of human skin incubated with BP- or EBA-
patient IgG and leukocytes created dermal-epidermal separation
through an MMP-9-dependent manner as it was blocked by the
MMP-9 inhibitor, 3G12scFV. Passive transfer BP mice showed
MMP-9 activation at the lesional skin, whilst MMP-9 deficiency
induced resistance to blister formation (162, 163). MMP-9 is
likely to induce blistering through NE activation by degrading
α1-AT, but not through direct-collagen XVII degradation, as
direct stimulation withMMP-9 did not induce dermal-epidermal
separation in ex vivo mouse skin sections (125) (Figure 1;
Table 1). MMP-9 has also been indicated as having a role in
complement activation in BP through CD46 shedding (164).

Other than MMP-9, MMP-2, -3, -12, and -13 have been
reported to be upregulated in pemphigoid diseases (124,
156, 165–169). MMP-2 (gelatinase A, type IV collagenase) is
ubiquitously and constitutively expressed in many cells and
tissues including dermal fibroblasts (170). Multiple physiological
and pathological roles have been indicated for MMP-2 in
angiogenesis, tissue repair, cancer, and inflammation through
the cleavage on cytokines, chemokines, cell surface proteins,
extracellular matrices, and proMMPs.MMP-2 has been identified
in the tears and sera of MMPh patient, blister fluids and
lesional skins of BP, and sera of EBA (124, 156, 165, 166)
(Table 1). MMP-2 is predicted to regulate Hsp-90-dependent
blister formation through ROS release in EBA, since MMP-2
is complexed with Hsp-90 to be stabilized by the chaperone in

the patient sera (166) (Table 1). MMP-2 cleaves some anchoring
proteins such as collagen XVII, collagen VII, and laminin-332 in
vitro, however, the direct function in the pathology remains to be
elucidated (171, 172).

MMP-3 (stromelysin-1) exhibits multiple functions in
development, inflammation, cancer, wound repair, skin
inflammation through proteolyses on cytokines, chemokines,
cell surface proteins, extracellular matrices, growth factors,
proMMPs, and protease inhibitors (134, 170, 173). Increased
MMP-3 has been detected in BP serum and lesional skin
(167, 168) (Table 1). In vitro, MMP-3 can activate MMP-9
(174). However, MMP-3 deficient mice fail to display impaired
MMP-9 activation and were still susceptible to experimental
BP, suggesting that MMP-3 is dispensable to the pathology of
BP (163) (Table 1).

MMP-12 (macrophage elastase) is produced in and secreted
from mainly macrophages but also detected in other cell types
including dermal fibroblast and vascular smooth muscle cells
(170, 175). Through the proteolysis of cytokines, chemokines, cell
surface proteins, extracellular matrices, proteases, and bacterial
cellular membranes, MMP-12 contributes to inflammation,
infection, tissue remodeling, and cancer. Increased MMP-12 has
been observed in EBA sera and the lesional skin of BP (166, 169)
(Table 1). In the EBA patient sera, and the same as observed for
MMP-2, MMP-12 is complexed with Hsp-90 to regulate Hsp-90-
dependent blister formation through ROS release (166) (Table 1).
The direct function of MMP-12 in pemphigoid diseases remains

Frontiers in Immunology | www.frontiersin.org 5 June 2019 | Volume 10 | Article 1454

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hiroyasu et al. Proteases in Pemphigoid Diseases

TABLE 1 | Major proteases in pemphigoid diseases.

Protease Class Location in PD Functions in PD References

NE serine protease BP—blister fluids BP, EBA

Hemidesmosomal protein degradation

(COL17 and laminin-332)

(95, 122–127)

MMP-2 (gelatinase A, 72 kDa type IV

collagenase)

Metalloprotease BP—blister fluids, lesional skin

EBA—sera

MMPh—tear, sera

EBA

Complexed with Hsp-90

(124, 156, 165, 166)

MMP-3 (stromelysin-1) Metalloprotease BP—serum, lesional skin Negative in BP mouse model (163, 167, 168)

MMP-9 (gelatinase B, 92 kDa type IV

collagenase)

Metalloprotease BP—lesional and perilesional

skin, blister fluid

MMPh—tear

BP, EBA

NE activation through α1-AT degradation

CD46 shedding

(96, 124, 125, 148,

155–160, 163, 164)

MMP-12 (macrophage elastase) Metalloprotease EBA—sera

BP—lesional skin

EBA

Complexed with Hsp-90

(166, 169)

MMP-13 (collagenase-3) Metalloprotease BP—lesional skin Unknown (156)

Plasmin, plasminogen, tPA, and uPA Serine protease BP—blister fluid, lesional skin BP

MMP-9 activation

COL17 shedding

(163, 201–207)

Chymase/mMCP-4 Serine protease BP—non lesional skin BP

MMP-9 activation

COL17 degradation

(244, 304)

Granzyme B Serine protease BP, EBA, DH—lesional skin DEJ protein degradation (COL7, α6β4

integrins, COL17)

IL-1α activation

C5a production

(298, 299)

ADAM-8 Metalloprotease BP—epidermis of lesional skin Unknown (159, 258, 259)

ADAM-9 Metalloprotease BP—epidermis of lesional skin COL17 shedding (159, 258, 259)

ADAM-10 Metalloprotease BP—epidermis of lesional skin COL17 shedding

CD46 shedding

Semaphorin 4D shedding

(159, 164, 258, 259)

ADAM-15 Metalloprotease BP—epidermis of lesional skin Unknown (159, 258, 259)

ADAM-17 Metalloprotease BP—epidermis of lesional skin (Indirect) COL17 shedding (159, 258, 259)

Tryptase Serine protease BP—blister fluid, sera Unknown (302–304)

Cathepsin-G Serine protease BP Negative in BP mouse model (126, 163, 301)

unknown, however, MMP-12 cleaves laminin-332, suggesting it
may directly cause dermal-epidermal separation (128).

MMP-13 (collagenase-3) is distributed in multiple cell
types such as in connective tissue, epithelial cells, and
neural cells (134, 170). It cleaves cytokines, chemokines,
extracellular matrices, proMMPs, and protease inhibitor to
exhibit functions in inflammation, cancer, and tissue remodeling.
Increased MMP-13 positive cells have been detected in
lesional skin of BP (156) (Table 1). Although its role in
pemphigoid diseases has not been studied, it may contribute to
disease through MMP-9 activation, which have been indicated
before (176).

As mentioned above, a number of studies implicate MMPs
(especially MMP-9) as promising targets for pemphigoid disease
treatment. However, it should be noted that therapeutic use
of broad spectrum MMP inhibitors have failed in cancer
clinical trials with a lack of efficacy and adverse effects
possibly caused by inhibiting the essential physiological roles
of MMPs (139). Indeed, multiple MMPs appear to exert
beneficial functions such as anti-tumorigenesis and/or anti-
inflammation and have therefore been proposed as “anti-targets”
whereby their inhibitions would cause severe adverse effects

(139). For example, since MMP-9 also exhibits aforementioned
critical physiological roles, it is not surprising that even the
specific MMP-9 inhibitor, andecaliximab showed several adverse
effects in the clinical trial, such as nausea, vomiting, fatigue,
diarrhea, asthenia, arthralgia, joint stiffness, and dyspnea, which
would not be tolerated in treatments for benign diseases
such as pemphigoid diseases (177). There are no reports
of MMP inhibitors such as andecaliximab being tried as a
therapeutic approach to treat pemphigoid diseases. Notably,
doxycycline has been reported to regulate MMP-9 activation
in other organs (178–181). Although its mechanism in the
BP treatment is still unclear, Williams et al. reported 200
mg/day oral doxycycline is as effective as 0.5 mg/kg/day oral
prednisolone (50).

Plasmin, Plasminogen, Tissue-Type
Plasminogen Activator (tPA), and
Urokinase-Type Plasminogen Activator
(uPA)
Plasmin is a serine protease well-recognized as functioning in
the fibrinolytic cascade (182, 183). Its precursor, plasminogen
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is created in liver cells and secreted into plasma (184, 185).
Subsequently, plasminogen is cleaved by tPA and uPA to
generate plasmin. Plasmin preferably cleaves following the
arginine or lysine residues (186). As an important factor
in the fibrinolytic system, plasmin degrades fibrin clots,
thus prevents pathological conditions such as thrombosis
(183). In addition to fibrin, plasmin cleaves many other
substrates including coagulation factors, complement C3 and
C5, hormones, metalloproteases, growth factors, cytokines,
chemokines, cell surface molecules, and extracellular matrices
(184, 187–194). With this variety of cleavage substrates, plasmin
has been linked to multiple physiological processes such as
inflammation, wound healing, and tissue remodeling (182,
195, 196). To prevent excessive proteolysis, plasmin activity
is regulated by endogenous inhibitor, α2-antiplasmin (184).
However, and similar to other proteases, an imbalance between
plasmin and its inhibitor trigger pathological conditions, for
example in cancer and inflammatory diseases (inflammatory
response after the major surgery and trauma, asthma, COPD, and
central nervous system inflammation) (182, 197–200).

Elevated levels of active plasmin and tPA are present in blister
fluid and the lesional skin of BP patients (201–206) (Table 1).
Keratinocytes stimulated by BP-patient IgG release tPA (202)
(Figure 1). The function of the plasminogen/plasmin system in
this context was confirmed using the passive-transfer BP model,
where the administration of a plasmin inhibitor (α2-antiplasmin)
blocked blistering (163). Mice deficient of plasminogen, and
both tPA and uPA exhibit delayed and less intense blistering in
the passive-transfer BP model. Since all of these deficient mice
reconstituted BP with activeMMP-9 but not with the proMMP-9,
the PA/plasminogen/plasmin cascade is likely to induce blistering
through MMP-9 activation (Figure 1; Table 1).

Intriguingly, Hofmann et al. demonstrated using in vitro

system that plasmin generates 97-kDa fragments of collagen
XVII known as LABD97 (203). Similarly, Nishie et al. showed

that BP blister fluid cleaves recombinant collagen XVII into

120-kDa ectodomain in a plasmin-dependent manner (207).
They suggested that this plasmin-induced cleavage of NC16a

domain in collagen XVII generates neoepitopes possibly involved

in the onset of BP and LABD (Table 1). As a related topic,

Izumi et al. suggested that plasmin inhibition with DPP-4i
induced characteristic non-inflammatory BP, possibly through
plasmin independent collagen XVII cleavage, and the generation
of neoepitopes within different domains by other proteases
(208). The physiological role of collagen XVII shedding in re-
epithelialization was indicated using a non-shedding collagen
XVII mouse model, which exclusively expresses non-sheddable
collagen XVII mutant (209).

Anti-plasmin drugs such as ε-aminocaproic acid and
tranexamic acid are mostly used to inhibit fibrinolysis (182).
Intriguingly, Grando has reported the pemphigoid disease
treatment using a combination of oral prednisolone, ε-
aminocaproic acid, and aprotinin, which is an inhibitor of serine
proteases including plasmin (210). However, the therapeutic
effect of this treatment approach compared to the control group
(prednisolone alone) has not been reported.

Chymase and Mouse Mast Cell Protease 4
(mMCP-4)
In human tissues, infiltrating and degranulating mast cells were
associated with BP (211). The importance of mast cells in the
pathology of BP has been suggested, in part through the use
of the passive-transfer model with anti-mouse collagen XVII
IgG on Kit or Scf [stem cell factor, Kitl (kit ligand)]-mutation
dependent mast cell-deficient mice, which failed to develop BP
(212). Since intradermal injection of either polymorphonuclear
leukocytes or IL-8 (a neutrophil chemoattractant) recovered the
lack of phenotypes on Kit- or Scf-mutation mice, they concluded
that mast cells play an essential role in neutrophil recruitment
in BP. However, as recent studies revealed that Kit- or Scf-
mutation affects not only mast cells but also multiple cell types
including those of immune- and non-immune origin, this result
may be questioned (213, 214). The recently developed Kit-
or Scf-mutant independent mast cell deficient mice should be
tested for further analysis. It should be also noted that blocking
mast cell degranulation with the inhibitor (cromolyn sodium)
in BP mice significantly reduced disease phenotype as well,
thereby indicating the importance of mast cell granules in BP
pathogenesis (212, 215).

Although often believed that the pathological mechanisms
operating in BP and inflammatory variant EBA are quite similar,
at least in the passive-transfer disease models, mast cells may
participate differently in each. Both Kit mutation-dependent and
-independent mast cell deficiencies induced consistent blistering
phenotypes in passive-transfer mouse model of EBA, even
though activated mast cells were abundant in the lesions of the
EBA in wild-type mice (216). The results indicate that, in contrast
to the BP model, mast cells and secreted proteases appear to be
dispensable for the blister formation in EBA.

Human mast cells release proteases including chymase,
tryptase, cathepsin G, carboxypeptidase A3, dipeptidtlpeptidase
I/cathepsin C, cathepsins L and S, granzyme B, plasminogen
activators, and MMPs (217). One of the major granule
components of mast cells, chymase, is a serine protease
that cleaves peptides after aromatic amino acids, preferably
phenylalanine and tyrosine residues (217, 218). It is produced
as an inactive form in mast cells and activated by cleavage
with dipeptidyl peptidase I (DPPI) within the granules (219).
Following stimulation, such as during inflammation or injury,
chymase is released into the extracellular space. Chymase is
resistant to multiple endogenous inhibitors such as α1-AT,
α2-antichymotrypsin, α2-macroglobulin, and eglin C, when
bound to heparin proteoglycan (220). While chymase is well-
recognized for its ability to convert angiotensin I to its active
form, angiotensin II, it also reportedly cleaves cytokines, growth
factors, proteases, transmembrane proteins, and extracellular
matrices (221–233). Although rodents have multiple isoforms
of chymase, mMCP-4 is recognized as the isoform comparable
to human chymase because of its biophysical and functional
properties and tissue distribution (221). Based on former
studies using deficient mice in this functional-equivalent,
chymase has been revealed to function in the regulation of
inflammatory response and tissue remodeling (221, 234, 235).
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Chymase has also been suggested to exert pathological roles
in multiple diseases such as cancers, cardiovascular diseases,
inflammatory lung diseases (idiopathic pulmonary fibrosis,
COPD), renal diseases (diabetic nephropathy, hypertensive
nephropathy, rejected kidney allograft), preeclampsia, skin
keloid, and atopic dermatitis (220, 221, 236–243).

The critical contribution of mMCP-4 in disease mechanisms
is also observed in BP as passive-transfer mouse model with
anti-mouse collagen XVII IgG on mMCP-4 deficient mice
showed resistant to blistering even neutrophil recruitment was
observed (244). Since impaired activation of MMP-9 in the
mMCP-4 deficient BP mice and degradation of collagen XVII by
mMCP-4 in vitro were observed, they indicated that mMCP-4
affects BP pathology by both activating MMP-9 and degrading
collagen XVII (Figure 1; Table 1). On the other hand, cathepsin
G/chymase inhibitors (α1-antichymotrypsin or Z-Gly-Leu-Phe-
CH2Cl) did not improve passive-transfer BP model (126).

A few chymase inhibitors were and are being tested in phase II
clinical trials for heart failure, diabetic kidney disease, or atopic
dermatitis (237). The trial of SUN13834 on atopic dermatitis
was discontinued because of adverse side effects. So far, there
is no report of chymase inhibitors being tested on pemphigoid
disease patients.

A Disintegrin and Metalloproteases
(ADAMs)
ADAMs are a family of single-pass transmembrane proteins
consisting of an extracellular metalloprotease domain, a
disintegrin domain, a cysteine rich domain, a transmembrane
domain, and a cytoplasmic tail (245). Although all members of
ADAMs contain metalloprotease domains, some of them do
not possess functional protease activity. Only ADAMs 8, 9, 10,
12, 15, 17, 19, 20, 21, 28, and 33 are recognized as exhibiting
proteolytic activity, requiring removal of the extracellular end
prodomain within the cytoplasm (246). These functional ADAM
metalloproteases mainly regulate ectodomain shedding on
multiple cell surface proteins, which results in regulation of
growth factors, cytokines, chemokines, adhesion molecules,
and receptors in order to control physiological systems such as
inflammation and development (247, 248). These proteolytic
activities are controlled by endogenous inhibitors such as TIMPs
and by their cellular localizations regulated by endocytosis
(249–251). However, as with other proteases, dysregulation is
often observed in several diseases. Pathological roles of ADAMs
have now been reported in cancers, wound healing, psoriasis,
rheumatoid arthritis, inflammatory lung diseases, inflammatory
bowel diseases, predominantly functioning through ectodomain
shedding of cytokines, chemokines, and chemoattractant
(247, 252–257).

In BP, elevated protein levels of ADAMs 8, 9, 10, 15, and
17 in the epidermis of the lesional skins have been indicated
(159, 258, 259) (Table 1). ADAMs 9, 10, and 17 are regulated by
TWEAK/Fn14 pathway andmay participate in collagen XVII loss
in the skin lesion of BP (159). Upregulated ADAM10 has also
been suggested to shed CD46, which results in enhancement of
complement activation in BP lesions (164). Moreover, ADAM10

sheds soluble semaphorin 4D from the granulocytes to activate B
cells, which results in enhancing autoantibody production in BP
(259) (Figure 1; Table 1).

Intriguingly enough, mainly ADAMs 9 and 10, but also
indirectly ADAM17, constitutively shed 120-kDa ectodomain of
collagen XVII, LAD-1 (260, 261) (Table 1). ADAMs may also
play a role in neoepitope production through collagen XVII
cleavage, possibly triggering BP and LABD onset (207).

Inhibitors targeting broad spectrum of ADAMs have failed
clinical trials primarily due to adverse effects (262). Development
of drugs that target specific ADAM is challenging due to
structural similarities in ADAMs and MMPs. In addition, many
substrates of ADAMs are shared with other ADAMs and MMPs.
Therefore, specific ADAM inhibitor may not be sufficient to
provide good efficacy. A small molecule inhibitor of ADAMs 10
and 17, INCB7839 has been tested in a breast cancer clinical trial,
which was discontinued likely because of increased deep vein
thrombosis (263). This drug is now being tested in diffuse large
B cell non-Hodgkin lymphoma phase II clinical trial. There is no
report of using ADAM inhibitors on pemphigoid diseases.

Granzyme B
Granzymes (Gzms) are a family of serine proteases that includes
five members in humans: GzmA, GzmB, GzmH, GzmK, and
GzmM (264, 265). Discovered in the granules of cytotoxic T
cells and natural killer (NK) cells, granzymes were traditionally
considered exclusively as key mediators of granule-induced
cell death, targeting cancer or virally infected cells. GzmB
initiates apoptosis through caspase-dependent and/or caspase-
independent pathways after internalized into target cells (266,
267). For internalization, another granule component, perforin,
is required to form pores on the target cell membrane (268, 269).
Saliently, not all secreted GzmB is internalized by the target
cells as approximately one-third escapes from the immunological
synapse and into the extracellular space (270). Moreover,
GzmB is secreted by cells not involved in cytotoxicity or
perforin release, including immune- (mast cells, neutrophils,
macrophages, basophils, dendritic cells, and regulatory T cells)
and non-immune (keratinocytes and chondrocytes) cells (271–
281). In contrast to other proteases which are tightly regulated
in the extracellular spaces, GzmB-mediated proteolysis in the
extracellular space is not likely to regulated by the endogenous
inhibitors, since the only inhibitor identified thus far in human
tissue, PI-9 is located in the cytoplasm and not secreted into
the extracellular space (282). Therefore, GzmB is expected to
exhibit alternative roles in the extracellular space through its
proteolytic activity.

GzmB has cleavage specificity after an aspartic acid or
glutamic acid residues (283). Multiple extracellular substrates for
GzmB have now been identified in vitro, such as cytokines
(IL-1α, proIL-18), complements (C3, C5), extracellular
proteins (fibronectin, vitronectin, laminin, decorin, biglycan),
coagulation/ fibrinolytic factors (von Willebrand factor,
plasminogen), and cell surface proteins (VE-cadherin, ZO-1)
(284–288). Through these cleavages and degradations in the
extracellular spaces, GzmB is expected to regulate inflammation,
cell adhesion, cell migration, anoikis, coagulation, fibrinolysis,
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and cell-cell adhesion. Present at low levels in healthy tissue,
GzmB is elevated in numerous pathological conditions such
as atherosclerosis, rheumatoid arthritis, transplant rejection,
acute graft vs. host disease, discoid lupus, drug eruption, atopic
dermatitis, impaired burn wound, and photoaging (279, 289–
297). In these diseases, pathological contributions of GzmB are
suggested through not only intracellular apoptotic function but
also extracellular proteolytic role.

GzmB positive cells localize to blisters in pemphigoid diseases
(298, 299) (Table 1). However, since GzmB has long been
exclusively recognized as a cytotoxic inducer, the proteolytic
role of GzmB in the extracellular space had not been tested
in pemphigoid diseases until recently (299). GzmB cleaves
multiple anchoring proteins such as α6β4 integrins, collagen VII,
and collagen XVII in vitro. Moreover, GzmB induces dermal-
epidermal separation in ex vivo human skin. These results suggest
that GzmB-induced cleavage of anchoring proteins directly leads
to subepidermal blistering in the pemphigoid diseases (Figure 1;
Table 1). Because of its wide variety of substrates in skin and
inflammatory conditions, GzmB could exert multiple roles in
the pathogenesis of pemphigoid diseases. For example, GzmB
proteolytically augments the pro-inflammatory activity of IL-1α,
which would be predicted to promote neutrophil accumulation at
the lesion through subsequent IL-8 activation (287). In addition,
GzmB cleaves C5 to generate a strong chemoattractant, C5a, to
cause additional inflammatory cell infiltration (286). Since GzmB
directly cleaves collagen XVII, GzmB may also contribute to the
neoepitope generation in BP as similar to plasmin and ADAMs.
Intriguingly, as GzmB is upregulated with age, it could help to
explain its role in age-related autoimmune blistering pathologies
such as BP, however further studies are required (3, 300).

Recently, a topical GzmB inhibitor was tested on impaired
burn wound murine model, however, there are currently no
clinically-approved GzmB inhibitors on the market (289).

Other Proteases
In addition to the above-mentioned proteases, other proteases
have been identified as being upregulated in pemphigoid diseases
including tryptase and cathepsin G (163, 301–304). Although
the functions of these proteases in pemphigoid diseases remain
unclear, we enumerate current understanding of these enzymes
in the pemphigoid diseases and relating fields.

Tryptase is a serine protease mainly secreted from mast cells
(305, 306). It is well-recognized to activate protease-activated
receptor 2 (PAR-2) with its proteolytic activity (307). Through
PAR-2 dependent and independent mechanisms, tryptase
induces the release of cytokines and chemokines from multiple
cell types. Other than PAR-2, it cleaves extracellular matrices
and coagulant factors and exhibits a role in inflammation,
angiogenesis, anticoagulant, tissue remodeling, cancer, allergic
inflammatory diseases, and cardiovascular diseases (305, 306).
Tryptase has been identified as being elevated in blister fluids and
sera from BP patients (302–304) (Table 1). Protein levels show
at least a partial positive correlation with autoantibody titers,
cytokines, and clinical severity, however, its function has not been
tested in pemphigoid disease models.

Cathepsin G is a serine protease mainly localized in
the azurophilic granules of neutrophils (308, 309). With
its proteolytic ability on cytokines, chemokines, cell surface
proteins, extracellular matrices, outer membrane of infectant,
angiotensin II, and proMMPs, cathepsin G exhibit important
roles in inflammation, thrombogenesis, host defense, blood
pressure, tumor invasion, and autoimmune diseases. Elevated
cathepsin G has been observed in BP samples (163, 301)
(Table 1). In vitro cleavage assays indicated that cathepsin
G degrades laminin-332, suggesting it may induce dermal-
epidermal separation (128). However, cathepsin G inhibition by
α1-antichymotrypsin did not reduce disease severity on passive-
transfer mouse model of BP, thus a direct role is yet to be
confirmed (126, 163) (Table 1).

Together, further studies are required to fully elucidate
the contribution of these proteases to pemphigoid
disease pathogenicity.

REGULATORS OF PROTEASES IN
PEMPHIGOID DISEASES

In addition to the above-described regulatory actions by the
endogenous inhibitors, proteases are controlled by other multiple
factors such as cytokines and different proteases. Since former
studies have characterized that the profiles of cytokines and
chemokines in pemphigoid diseases are likely to be unique, these
characteristic profiles may be important for protease regulation.

Th2 relating cytokines such as IL-4, IL-5, soluble CD30, CCL5
(RANTES), CCL11 (eotaxin), CCL17 (TARC), CCL18 (PARC),
CCL22 (MDC), CCL26 (eotaxin 3), and TSLP are elevated in
the sera and/or blister fluids of BP patients (310–326). Elevated
Th1 cytokines such as IFN-γ, IL-1β, TNF-α, CXCL9 (MIG),
CXCL10 (IP10), and IL-18 have been also identified within
the BP patient samples (310, 312, 318, 324, 325, 327). Besides
them, IL-6, IL-8, IL-17, IL-21, IL-22, and IL-23 are elevated
(310, 320, 324, 328, 329). Intriguingly, serum level of IL-17, IL-
23, and CXCL10 in follow-up patients were elevated only in
patients who later relapsed (328, 330). Since these cytokines and
chemokine regulate MMP-9 secretion from inflammatory cells,
it has been suggested that elevated IL-17, IL-23, and CXCL10
could trigger relapse through increased MMP-9 secretion (328,
330). Cytokine and chemokine profiles in other pemphigoid
diseases are poorly defined at present, presumably due to the
rareness of such diseases. Regarding EBA, serum and skin IL-6
expression are increased, however other cytokines did not show
a significant increase due to a high degree of variation (331). In
the same study, elevated concentration of IL-4, RANTES, IL-1α,
IL-1β, TNF-α, IL-6, IL-10, IL-17, MIP-1α, KC, and GM-CSF are
detected in the passive-transfer mouse model of EBA. In MMPh,
elevated IL-4, IL-5, IL-13, IL-1α, IL-1β, IL-2, IL-12, TNF-α, IL-
6, IL-8, IL-17, and TGF-β1 have been detected in serum and/or
lesions of the human patients (161, 332–340).

As indicated above as interaction between NE, MMP-9,
chymase, and plasmin, the proteases influence each other
directly and indirectly by degrading intermediate proteases
or protease inhibitors. Identifying the interaction between the
proteases in the diseases is challenging since tissues include
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many types of proteases and each protease has wide variety of
substrates. To conquer this conundrum, the field of degradomics
was established (341). Combining genomics, proteomics, and
bioinformatics, a whole map of complex protease interactions
and networks is beginning to be elucidated not only in vitro, but
also in vivo including in diseases such as COPD and pancreatic
tumors (154, 342–344). Resulting from these and other studies,
proteases have been recognized as influencing the activities of
other proteases and, helping to define the “protease web” (342).

CONCLUSION

Multiple proteases have been identified as being elevated
in pemphigoid diseases. Several have been proposed to
play key roles in blistering pathology through the cleavage
of hemidesmosomal proteins, resulting in dermal-epidermal
separation and blister formation. In addition, some proteases
have been suggested to contribute to neoepitope generation
and dysregulated inflammatory response in the diseases. Despite
significant advancements, further research is required to further
elucidate the complex role that proteases play in various
pemphigoid diseases.

Inhibition of specific proteases in pemphigoid diseases
provides a unique, potentially safer therapeutic approach
compared to current non-specific immune suppressive
treatments that are often plagued with undesirable adverse
effects. Thus far, evidence of clinical efficacy is minimal,
but this may change as protease function is further defined,
more effective inhibitors are developed, and new trials
are commenced.
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