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Background. Low-level, partial resistance is pre-eminent in natural populations, however, the mechanisms underlying this
form of resistance are still poorly understood. Methodology/Principal Findings. In the present study, we used the model
pathosystem Pseudomonas syringae pv. tomato DC3000 (Pst) - Arabidopsis thaliana to study the genetic basis of this form of
resistance. Phenotypic analysis of a set of Arabidopsis accessions, based on evaluation of in planta pathogen growth revealed
extensive quantitative variation for partial resistance to Pst. It allowed choosing a recombinant inbred line (RIL) population
derived from a cross between the accessions Bayreuth and Shahdara for quantitative genetic analysis. Experiments performed
under two different environmental conditions led to the detection of two major and two minor quantitative trait loci (QTLs)
governing partial resistance to Pst and called PRP-Ps1 to PRP-Ps4. The two major QTLs, PRP-Ps1 and PRP-Ps2, were confirmed
in near isogenic lines (NILs), following the heterogeneous inbred families (HIFs) strategy. Analysis of marker gene expression
using these HIFs indicated a negative correlation between the induced amount of transcripts of SA-dependent genes PR1, ICS
and PR5, and the in planta bacterial growth in the HIF segregating at PRP-Ps2 locus, suggesting an implication of PRP-Ps2 in
the activation of SA dependent responses. Conclusions/Significance. These results show that variation in partial resistance
to Pst in Arabidopsis is governed by relatively few loci, and the validation of two major loci opens the way for their fine
mapping and their cloning, which will improve our understanding of the molecular mechanisms underlying partial resistance.
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INTRODUCTION
Plants are exposed to a wide variety of pathogens with different

invasion strategies. Successful infections are, however, relatively

rare because plants have evolved powerful preformed and

inducible defence mechanisms to restrict pathogen growth.

Nonhost resistance relies on multiple mechanisms, which are

beginning to be uncovered [1–3]. This defense system shows

some similarity with the mammalian innate immunity [4,5] and is

associated with multiple signal transduction events like an

oxidative burst, ion fluxes, activation of MAP kinase cascades,

with the transcriptional induction of pathogen-responsive genes

and with localized callose deposition at the cell wall [6–9]. If

a pathogen can overcome nonhost resistance, it can spread in its

host plant; however, different defense mechanisms in plants can

still be activated, leading to complete or partial resistance.

Complete resistance, developed in the case of an incompatible

interaction, is usually governed by the gene-for-gene system, and

also called race-specific resistance. Much research has focused on

this form of resistance which is generally inherited as a monogenic

trait and is determined by the concomitant presence of a resistance

(R) gene in the plant and the corresponding avirulence (avr) gene

in the pathogen. Mechanistically, specific resistance relies on the

recognition of avr pathogen factors by plant R gene products and

the elicitation of local defense responses, often associated with

a rapid programmed cell death, called the hypersensitive response

(HR). A variety of R genes have been cloned from model and crop

plants, and many avr genes have been characterized from bacteria,

fungi and oomycetes[10]. Interestingly, although R genes confer

resistance to diverse pathogens, their products share structural

similarities suggesting the conservation of some signalling events in

plant defense [10].

In contrast, the so-called partial resistance is quantitative,

presumably non race-specific, and polygenic [11–13]. It limits the

extent of disease caused by virulent pathogens and constitutes an

additional layer of resistance in the absence of R function, during

compatible interactions. The genetics of partial resistance has been

characterized in many crop plants, such as rice and barley [14,15]

but remains poorly understood in Arabidopsis. One way to

increase our knowledge in this field is a genetic study of the

quantitative variation in resistance to virulent pathogens.

Although QTL analyses are increasingly used to study complex

traits in Arabidopsis, such as developmental and yield traits

[16,17], only a few studies have investigated the genetic bases of

quantitative variation in resistance and susceptibility to pathogens

[18–22]. In most of these studies one or two major QTLs and

a few minor loci were identified. In one study investigating plant

susceptibility to the fungus Botrytis cinerea, multiple small-to-

medium effect QTLs were identified [20], suggesting that multiple

mechanisms are involved in susceptibility, or that a large number

of polymorphic loci exert an effect on a particular mechanism. In

some cases, genes underlying the QTL have been identified. For

example, the major QTL for resistance to Plectosphaerella cucumerina

was demonstrated to correspond to the ERECTA gene [22] which
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is implicated in plant development and also contributes to

resistance to Ralstonia solanacearum [19].

The Arabidopsis-Pseudomonas interaction is a model pathosystem

[23,24] and has largely contributed to a better understanding of

pathogen recognition in plants, pathogen virulence and avirulence

determinants, host susceptibility and signal transduction pathways

controlling plant defense responses [25]. In a previous study,

analysis of natural variation in tolerance indicated that it behaves

as a quantitative trait [26]. Tolerance, which can be defined as the

ability of the host to endure the presence of the pathogen and to

express less severe disease symptoms or less damage [27], differs

from resistance in that symptom formation is uncoupled from

pathogen growth [28]. When the genetic basis of variation of this

trait was analysed in the Arabidopsis accessions Col-0 and No-0,

only two minor loci for symptom severity and no QTL for

bacterial colonization could be identified [21], although bacterial

growth is a key quantitative component of the compatible

interaction between Arabidopsis and the endophytic bacterial

pathogen Pst.

In this paper, we use QTL analysis to investigate the genetic

basis of partial resistance to Pst using the virulent strain DC3000.

Natural variation in Arabidopsis for partial resistance to Pst

allowed us to identify parental lines exhibiting significant

differences in this trait, and to choose a RIL population derived

from crosses between the accessions Bay-0 and Shahdara for

detailed genetic analysis. Quantitative evaluation of this RIL

population after infection with Pst DC3000 showed that partial

resistance to Pst is controlled by two major and two minor QTLs.

Using the heterogeneous inbred family strategy (HIF) [29], the two

major QTLs were validated. To investigate whether these two

major loci could influence known signalling pathways, the

expression of marker defense genes was analyzed in HIFs,

revealing an influence of the PRP-Ps2 locus on the signalling

pathway involving salicylic acid.

RESULTS

Natural variation for Pst resistance in Arabidopsis
In order to investigate natural variation of partial resistance to Pst

in Arabidopsis thaliana, 27 Arabidopsis accessions were tested for

their response to the virulent Pst strain DC3000. The accessions

correspond to a core-collection composed of 16 accessions which

are estimated to represent most of the variation present within the

species Arabidopsis thaliana [30], plus other parental accessions of

RIL populations that are publicly-available or under construction

(http://www.inra.fr/vast/RILs.htm).

Plant resistance was evaluated by the measurement of bacterial

in planta growth 3 days after leaf-infiltration of a bacterial

suspension. The chosen inoculation procedure circumvents some

layers of resistance operating in a natural infection process, but it is

proven to be highly reproducible and allows the quantitative

evaluation of resistance and susceptibility. As shown in Figure 1,

bacterial growth varied continuously over a range of four orders of

magnitude in the different accessions. This result indicates that

partial resistance to Pst is a quantitative trait, suggesting that it may

be under polygenic control.

Among the parental accessions showing very contrasting

phenotypes, Ler and Cvi seemed to be good candidates for further

QTL analysis, since a well characterised Ler6Cvi RIL population

exists [31,32]. However, the analysis of selected RILs from this

population revealed, in accordance with published data [33] that

25% of the RILs are very early-flowering even under short day

conditions. This was a major obstacle for the use of this

population, because the evaluation of resistance is performed on

fully expanded rosette leaves of non flowering plants. As the

accessions Bayreuth (Bay-0) and Shahdara (Sha) also exhibited

contrasting phenotypes, a F6 RIL population of 420 lines derived

from these lines was chosen for QTL analysis [34]. Evaluation of

resistance of reciprocal F1 hybrids between Bay-0 and Shahdara

revealed that bacterial densities in F1 plants were similar to that

evaluated in the parental line Shahdara, and higher than that in

Bay-0 (Supplementary Figure 1).

QTL analysis identifies two major and two minor loci

for partial resistance
To identify loci responsible for the genetic differences in partial

resistance to Pst between Bay-0 and Shahdara, three independent

experiments, with two blocks in a complete randomized design,

were performed on 165 RILs in greenhouse conditions, and one

experiment was performed using 370 RILs under growth chamber

conditions (Table 1). A total number of 1730 plants were evaluated

for their response to Pst, using generally 14 plants per RIL.

Figure 1. Natural variation of partial resistance to Pseudomonas syringae
pv. tomato DC3000 among Arabidopsis accessions.
In planta bacterial growth was assessed three days post inoculation
with a bacterial suspension adjusted to 105 cfu/mL. Means and
standard errors were calculated from bacterial densities in at least 4
plants.
doi:10.1371/journal.pone.0000123.g001

Table 1. The influence of genotype on partial resistance to
Pseudomonas syringae pv. tomato DC3000.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Experiment Effect dfa F valueb P valueb h2c

1 RIL 164 10.7 0.0013 0.77

Block 1 7.9 ,0.0001

RIL*Block 163 2.1 ,0.0001

2 RIL 163 5.12 ,0.0001 0.71

Block 1 16.7 ,0.0001

RIL*Block 156 1.6 0.0003

3 RIL 164 3.5 ,0.0001 0.58

Block 1 1.5 0.23

RIL*Block 163 1.6 0.0001

4 RIL 369 4.76 ,0.0001 0.68

adegree of freedom
bFischer value for the effect and associated probability
cbroad sense heritability (h2)
doi:10.1371/journal.pone.0000123.t001..
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Distributions of the RILs, according to bacterial populations

measured in planta (log(cfu/cm2)), showed a continuous variation,

suggesting a quantitative and polygenic control of the response

(Figure 2). The parental accessions Bay-0 and Shahdara showed,

as expected, different levels of bacterial growth. Moreover,

transgressive segregation was observed in the RILs. Data obtained

from the four experiments performed under different environ-

mental conditions showed significant correlations (Table S1), and

within each experiment, the randomized blocks were significantly

correlated with R2 values varying from 0.57 to 0.76 (data not

shown). Variance analysis of the phenotypic data showed that

differences among RILs were highly significant (Table 1). The

block effect, except for one of the experiments (experiment 3), and

the RIL/block interaction were also significant for all the

experiments performed in the greenhouse. Two plants for each

RIL were evaluated for their response to Pst in each block, but no

significant plant effects could be detected (data not shown). Broad-

sense heritabilities calculated from the different experiments,

ranged from 0.58 to 0.77, indicating that most of the phenotypic

variation appeared to be genetically determined (Table 1).

For QTL detection, only composite interval mapping (CIM)

results are presented for each experiment, because as compared to

other methods, they provide a more accurate estimation of R2

values (phenotypic variances explained by the QTL) and additive

effects [35]. Besides, the results of QTL detection obtained for

each block of the experiments were the same as those obtained

with the adjusted means on blocks (data not shown). Two major

QTLs for partial resistance to Pst, PRP-Ps1 (Partial Resistance to

Pathogen - Pseudomonas 1) and PRP-Ps2, were detected in all experi-

ments (Figure 3). PRP-Ps1 was localized on chromosome 2 and

explained more than 1/4 of the phenotypic variance (up to 42%)

except in experiment 1 where it explained only 9%. PRP-Ps2

usually explained less than 20% of the phenotypic variance,

Figure 2. Distribution of bacterial growth values in the Bay-06Shahdara
recombinant inbred line (RIL) population.
The frequency histogram shows the range of in planta bacterial
populations observed in RILs three days post inoculation with
Pseudomonas syringae pv. tomato DC3000 in one of the greenhouse
experiments. The values obtained for the parental accessions, Bay-0 and
Shahdara (Sha), and the genetic mean of the population are indicated.
doi:10.1371/journal.pone.0000123.g002

Figure 3. Arabidopsis QTLs controlling partial resistance to Pseudomonas syringae pv. tomato DC3000 in the Bay-06Shahdara recombinant inbred line
population.
The detected QTLs are represented by bars located at the closest marker position (black, experiment 1; blue, experiment 2; green, experiment 3;
purple, experiment 4) on the Bay-06Shahdara genetic map [34]. The length of the bar is proportional to the QTL effect (R2).
doi:10.1371/journal.pone.0000123.g003
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whereas its effect was much stronger in experiment 1 where it

explained 62% (Table 2). The allelic additive effects of these QTLs

are in the same direction, the Bay-0 allele increasing partial

resistance compared to the Shahdara allele. In experiment 4,

performed under growth chamber conditions, additional minor

QTLs were detected on chromosomes III (R2 = 8%) and V

(R2 = 5%). In contrast to the major loci, the Shahdara allele at

these minor QTLs improves partial resistance to Pst. These

observations might explain at least in part, transgressions above

the Shahdara phenotypic value and below the Bay-0 phenotypic

value in the RIL population (Figure 2).

Testing of the 703 possible pairwise interactions revealed highly

significant digenic epistatic interactions (Table 2). Most of them

occurred between markers with no additive effects and only a few

of them were detected between a QTL (or close to the QTL) and

a marker of the genetic background.

The total phenotypic variance explained by QTLs with additive

effects for partial resistance to Pst ranged from 37% to 67% (data

not shown), and increased to 39% to 73% when epistatic

interactions were included (Table 2).

Confirmation of the major QTLs PRP-Ps1 and PRP-

Ps2 in near isogenic lines

To confirm the effects of the major QTLs PRP-Ps1 and PRP-Ps2 in

near isogenic lines (NILs), RILs still segregating for the region of

interest (so-called heterogeneous inbred families (HIFs)) were

identified. Two sets of HIFs, segregating for the PRP-Ps1 locus

surrounding marker MSAT2-38, and two sets segregating for the

PRP-Ps2 locus surrounding marker MSAT5-14, were evaluated for

partial resistance to Pst (Figure 4A). Each of the chosen RILs

displays a different genetic background, a mix of both parental

genomes Bay-0 and Shahdara.

As shown in Figure 4B and 4C, all the HIF lines carrying

the Bay allele at PRP-Ps1 or PRP-Ps2 showed significantly

lower bacterial colonization than the corresponding NILs

carrying the Sha alleles. In planta bacterial growth was between

5 to 10 fold lower when the Bay-0 alleles were present. These

results confirmed the quantitative contribution of both loci to

partial Pst resistance and validated the major QTLs, PRP-Ps1

and PRP-Ps2.

Table 2. Arabidopsis QTLs controlling partial resistance to Pseudomonas syringae pv. tomato DC3000 in the Bay-06Shahdara
recombinant inbred line population.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Experiment
QTL
name Chromosome

Position
(cM)a Markerb

Confidence
interval

LOD
score

R2

(%)c
Additive
effectd

1 PRP-Ps1 II 20 MSAT2-38 12–28 3.3 9 20.18

PRP-Ps2 V 18 MSAT5-14 16–20 29.7 62 20.61

MSAT2-56
MSAT2-10

11

T1G116
T27K12

5

73

2 PRP-Ps1 II 14 MSAT2-38 10–18 18.7 42 20.65

PRP-Ps2 V 14 MSAT5-14 10–20 7.8 20 20.48

46

3 PRP-Ps1 II 14 MSAT2-38 8–20 10.7 26 20.37

PRP-Ps2 V 14 MSAT5-14 8–22 6.4 16 20.34

MSAT2-366
MSAT2-7

17

NGA1286
MSAT3-18

8

MSAT3-186
MSAT5-19

6

50

4 PRP-Ps1 II 14 MSAT2-38 8–18 22.5 23 20.45

PRP-Ps2 V 16 MSAT5-14 10–20 13.6 14 20.40

PRP-Ps3 III 58 MSAT3-21 50–64 7.8 8 0.28

PRP-Ps4 V 56 MSAT5-9 48–64 5.2 5 0.24

MSAT1-106
NGA172

2

MSAT2-226
PRP-Ps3

11

39

aPosition from the first marker of the chromosome
bMarker associated with the QTL and markers involved in epistatic interactions
cPercentage of phenotypic variance (R2) explained by the QTL or by epistatic interactions
dAdditive effect of the QTL in the direction Shahdara-Bay-0
doi:10.1371/journal.pone.0000123.t002..
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PRP-Ps2 influences SA-dependent gene expression
Genetic analyses revealed that the balance between signalling

components such as ethylene (ET), jasmonates (JA) and salicylic

acid (SA) is crucial to modulate and adapt the various defense

mechanisms to a given pathogen [36]. While JA and ET are

important positive regulators in the resistance to necrotrophic

pathogens, SA has been demonstrated to play a central role in

resistance to biotrophs [36,37]. Partial resistance to Pst relies to

a large part on SA dependent defense responses and is negatively

regulated by the JA pathway.

We therefore analysed to what extent PRP-Ps1 and PRP-Ps2

influenced signalling through these pathways. The expression of

marker genes of SA and JA/ET signalling was investigated in the

lines HIF200 and HIF214 segregating at the PRP-Ps1 or PRP-Ps2

locus, respectively. For SA-dependent signalling, the expression of

the defense genes PR1 (Pathogenesis Related 1), PR5 (Pathogenesis-

Related 5) and ICS (IsoChorismate Synthase) was analysed in parental

ecotypes and in HIFs before and 24 h after infection with virulent

Pst (Figure 5) [38,39]. As expected, all three marker genes showed

stronger pathogen-responsive expression in the more resistant Bay-

0 accession than in Shadhara (Figure 5). Interestingly, they were

also expressed at significantly higher levels in HIF214 plants that

carry the Bay allele of PRP-Ps2, than in HIF214 plants carrying

the Sha allele. Thus, the differences observed between the HIFs

for in planta bacterial growth at the PRP-Ps2 locus can be

correlated with those observed for expression of SA-dependent

genes, suggesting an implication of PRP-Ps2 in the activation of

SA dependent responses. In contrast, there was no significant

difference in expression levels of SA marker genes when HIF200

plants were analysed, suggesting that the PRP-Ps1 locus does not

influence SA-dependent gene expression.

For JA- and ET-dependent signal transduction pathways, the

expression of PR3 (Pathogenesis-Related 3) and VSP (Vegetative Storage

Protein) was analysed [38,40]. Although these genes were induced

upon inoculation, no correlation between resistance level and gene

induction level could be observed when parental accessions or the

HIFs were compared (data not shown).

DISCUSSION
In natural populations there is a prevalence of low level, partial

resistance that often prevents pathogens from reaching seriously

damaging levels. Several studies have identified major genes

controlling partial resistance in various crops [41–43]. However,

the molecular mechanisms underlying these loci were not identified.

In the model plant Arabidopsis, while the characterization of

simply inherited R genes mediating strain-specific recognition of

pathogens and complete resistance has been intensively investi-

gated, the mechanisms that control partial resistance are poorly

understood. Evidence has however been obtained that the

different types of resistance already described (nonhost, complete,

partial) have several features in common. For example, genes

necessary for R-gene mediated resistance are also involved in non-

host and partial resistances in Arabidopsis. For example, eds1, pad4

and sag101 mutants, which are impaired in R-gene dependent

resistance, show enhanced susceptibility to the virulent bacterium

Pst and allow invasive growth of non-host powdery mildew isolates

[2,44–46]. In addition, whole genome gene expression analysis

[47] and the study of the expression of individual genes [48],

indicate similar transcriptional changes in compatible and in-

compatible interactions with Pst, with most differences in the

defense transcriptome being due to the kinetics and the amplitude

of the response. In addition, defense mechanisms involved in

partial, complete and nonhost resistances, are modulated by many

Figure 4. Validation of the major QTLs for partial resistance to
Pseudomonas syringae pv. tomato DC3000 with heterogeneous inbred
families (HIFs).
A HIF 102 segregates around MSAT2-38 and HIF 200 segregates for
a region of chromosome II around markers MSAT2-5 and MSAT2-38. HIF
214 segregates for a region of chromosome V around MSAT5-14 and
NGA139 and HIF 400 segregates around MSAT5-14, NGA139 and
MSAT5-22. Regions for which the HIFs segregate are indicated in
hatched boxes and the white regions of the chromosomes represent
a mix of both parental genomes Bay-0 and Shahdara.
B and C In planta bacterial growth in HIFs fixed for the Bay (grey bar)
or Sha (black bar) allele of PRP-Ps1 (B) or PRP-Ps2 (C). Each value is the
average of measurement of in planta bacterial growth in at least 8
plants (means and standard errors) from one experiment. Three
independent experiments were performed and showed similar results.
Asterisks show significant difference in partial resistance (P,0.05).
doi:10.1371/journal.pone.0000123.g004
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type III effector proteins (TTEs) delivered by bacteria during

infection [49,50]. Interestingly, the outcome of the interaction

between effectors and defense mechanisms depends not only on

the nature of the effector but also on the kinetics of its delivery by

the bacteria [51]. In conclusion, these findings point to a complex

network of regulators and regulatory mechanisms operating for the

different forms of resistance in Arabidopsis. Although genetic

analyses have clearly identified several R genes and some EDS

genes acting in complete resistance pathways and affecting other

types of resistance, to our knowledge and with the exception of the

work of Kover already mentioned [21], no such a direct genetic

approach has been conducted for partial resistance to the model

pathogen Pst in Arabidopsis, which should reveal major actors of

this resistance.

The most important finding of this study was the discovery in

Arabidopsis of two major loci governing variation in partial

resistance to Pst, in the Bay-06Shahdara RIL population. In

addition, the validation of these loci opens the way for their fine

mapping and their cloning, which will improve our understanding

of the molecular mechanisms underlying partial resistance.

PRP-Ps1 and PRP-Ps2, two major traits controlling

partial resistance to Pseudomonas
Two major QTLs and two minor loci controlling partial resistance

to Pst have been identified through our quantitative analysis. For

the two major QTLs, the Bay-0 allele enhances the resistance to

Pst. On the contrary, for the two minor QTLs, PRP-Ps3 and PRP-

Figure 5. Expression analysis of the defense marker genes PR1 (A), ICS (B) and PR5 (C) in HIFs and parental accessions. The transcript levels were
determined by Q-RT-PCR with cDNA generated from leaves before (grey) and after (black) inoculation with Pst DC3000 at 5.105 cfu/mL. The
expression value of the individual genes was normalized by using the expression level of b-Tubulin4 as an internal standard. Mean mRNA levels of
three plants are shown with corresponding standard errors. Similar results were obtained from two biological experiments.
doi:10.1371/journal.pone.0000123.g005
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Ps4, the Shahdara allele enhances the resistance to Pst. Alleles from

the susceptible parent that enhance disease resistance were already

reported for several host-pathogen interactions [52–55]. This may

also explain transgression towards susceptibility in the RIL

population.

Highly significant correlations between experiments validate

reproducibility of the phenotypic evaluations. The homogeneous

behaviour of RILs also contributed to confer high heritabilities,

indicating that the variations observed are mostly genetically

controlled and that the estimation of partial resistance by

phenotypic evaluations is reliable. However, the detected QTLs

explained from 39% to 73% of the phenotypic variance, and

comparison with the narrow sense heritabilities (from 0.58 to 0.77)

suggests that not all the genetic variance is explained by these

QTLs. This may result either i) from the choice of the significance

threshold (2.7) which could have prevented the detection of minor

QTLs, or ii) from the underestimation of the QTL contribution.

Another explanation could be the involvement of the epistatic

interactions detected in our study and which can potentially have

an important contribution in genetic variation in complex traits

[56].

Strong interaction with the environment is one of the hallmarks

of quantitative traits and it is not uncommon that the magnitude of

QTLs varies with changing environmental conditions or even, that

QTLs are only expressed in a given environment and not in others

[57,58]. Environmental effects on epistatic loci are even more

pronounced [59,60]. Therefore plant resistance and susceptibility

are strongly influenced by environmental conditions, and must be

studied in controlled experimental setups. The fact that, in another

study investigating natural variation in tolerance of Arabidopsis to

Pst, different resistance levels were found for several accessions

[26], may be due to such environmental effects. Although

environment-genotype interactions were not evaluated in our

study, we detected significant ‘‘experiment’’ and ‘‘block’’ effects

(Table 1) suggesting that environmental conditions influence

partial resistance to Pst. In addition, the relative contributions of

the major QTLs, PRP-Ps1 and PRP-Ps2, to the overall phenotypic

values showed some variation between experiment 1 and

experiments 2, 3 and 4, and the detected epistatic interactions

were not consistent for all experiments. However, despite the

apparent effects of the environment on partial resistance, the two

major QTLs, PRP-Ps1 and PRP-Ps2, were detected in four

independent experiments whatever the environmental conditions,

and could be confirmed in NILs using the powerful HIF strategy

[29]. The fact that the effects of PRP-Ps1 and PRP-Ps2 can be

detected in segregating populations opens the way for their fine-

mapping and their molecular cloning. Knowing the molecular

identity of PRP-Ps1 and PRP-Ps2 will not only give new,

fundamental insights into partial resistance, but also allow to

study on a molecular level, the plasticity of partial resistance.

Candidate loci
Two major QTLs, and two minor loci accounting for about one

half of the phenotypic variation have been identified through our

quantitative analysis, suggesting that a few major mechanisms are

controlling partial resistance to Pst. This is surprisingly similar to

complete resistance in which the genetics of the plant-pathogen

interaction is under the control of one or a few major genes.

Consequently, it would be interesting to investigate whether

putative disease resistance proteins, or other candidate genes

related to different types of resistance (as described earlier), are

found at the genomic location of the QTLs identified in this study.

However, since no pathogen resistance QTL has been cloned as

such and only a few genes acting as resistance QTL in defined

interactions have been identified, the molecular nature of such

genes remains elusive.

Partial resistance QTLs frequently co-localize with known R

gene loci and it is assumed that many QTLs correspond to weak or

defeated R-genes with, in most cases, the canonical NB-LRR

domains[61]. Since resistance genes are highly polymorphic within

species and populations [62], such QTLs may correspond to allelic

variants of qualitative resistance genes with intermediate pheno-

types [63]. For example, the rice Xa21D gene confers partial

resistance to bacterial blight, while other Xa21 alleles confer

complete resistance [64]. In barley, clustering of major resistance

gene and resistance QTL has also been reported [65]. PRP-Ps2,

PRP-Ps3 and PRP-Ps4 co-localize with regions containing

hypothetical NB-LRR resistance genes (http://niblrrs.ucdavis.

edu/At-RGenes) [66], making them potential candidate genes.

Thus, within the confidence interval defined for the QTL PRP-Ps4

on chromosome V, is located a cluster of resistance genes, and

among them the R gene RPS4. In addition, PRP-Ps2 and PRP-Ps3

co-localize with a resistance QTL to powdery mildew,

RPW11[18], and with a QTL detected for tolerance to Pst

associated with symptom severity [21], respectively.

In addition to a role in pathogen perception, partial resistance

QTLs may also operate in signal transduction. Multiple signalling

elements of resistance have been identified by genetic means and

a central role of SA production and signal transduction is well

established [67]. However, none of the identified genes nor eds, co-

localize with the PRP-Ps QTLs.

Partial resistance QTLs might also correspond to genes involved

in constitutive defense responses. The cell wall is generally believed

to be an efficient physical barrier against microbial attack.

Alterations in cell wall structure could therefore result in altered

partial resistance. QTL analysis employing the Bay-Sha popula-

tion has detected multiple loci influencing cell wall structure [68]

and some of them co-localize to PRP-Ps QTLs. PRP-Ps1 co-

localizes with the ARH-1 QTL for the Ara-Rha ratio reflecting

difference in RGI (rhamnogalacturonan I) structure and PRP-Ps3

and PRP-Ps4 co-localize with two minor QTLs, HLD-3 and HLD-

4 (HLD for dark-grown hypocotyl length) for hypocotyl length

reflecting cell elongation.

In summary, a number of genes putatively associated with the

plant defense system, co-localize with some of the PRP-Ps loci.

However, the confidence intervals found for these QTLs involve

rather large genomic regions, which need to be reduced using

HIFs to define candidate genes more precisely.

Gene expression/pathways controlled by PRP-Ps1

and PRP-Ps2
The central role of SA-dependent defense responses in resistance

to Pst is well established [36]. Mutants affected in SA production

or signal transduction show reduced resistance to Pst [39]. The

finding that the resistance level in HIFs differing in the PRP-Ps2

locus, correlates with the expression of marker genes of the SA

response is therefore particularly interesting. It indicates that the

PRP-Ps2 locus might be involved in the activation of inducible

defence responses associated with partial resistance, but it raises

the question at what level PRP-Ps2 is acting; in SA production, in

SA signalling or up-stream of SA? Quantification of SA levels and

responsiveness of HIFs to SA application should provide answers

to this question. PRP-Ps1, in contrast, seems to act independently

of SA. At least SA pathway marker genes show no differential

expression in an HIF segregating for this locus. Therefore, PRP-

Ps1 may act in constitutively expressed defense responses or in SA-

independent pathways necessary for complete resistance. Such
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pathways have been revealed by mutant and transcriptome

analysis [38,69] and their elements are beginning to be identified

[70].

In this context, an interesting recent study aimed at identifying

loci controlling transcriptome variation by global eQTL analysis

[71]. Categorizing eQTLs has the potential to enable reverse

genetics for the identification of genes controlling quantitative

traits and may also help to enhance the rate of QTL cloning.

Interestingly in this analysis, several eQTLs detected on chromo-

somes II, III and V are related to networks involved in plant-

pathogen responses, suggesting that they may influence variation

in plant-pathogen interactions in the Bay-06Sha population. By

mapping QTLs for partial Pst resistance in the same RIL

population that has been used for global gene expression analysis,

the relationship between partial resistance to Pst and genetic

architecture of eQTLs could be evaluated. More generally,

combining QTL mapping with whole genome expression analysis

to identify transcripts corresponding to QTLs will give a more

complete picture of the complex genetic architecture of quanti-

tative traits [57].

In the future, molecular cloning of the QTLs identified in our

study will certainly help to understand the molecular basis of

quantitative variation of partial resistance to Pseudomonas syringae in

Arabidopsis, a model pathosystem in the plant pathology field.

METHODS

Plant material and growth conditions
The Bay-06Shahdara RIL population and the heterogeneous

inbred families (HIFs) derived from the RIL population were

developed by Loudet et al. [34] and unpublished. A complete

description of the RIL population is available at http://dbsgap.

versailles.inra.fr/vnat/Fichier_collection/Rech_rils_pop.php.

HIFs were obtained as previously described [72]. The reciprocal

F1 hybrids derived from the cross between Bay-0 and Shahdara (F1

BS) and between Shahdara and Bay-0 (F1 SB) were generated in

our laboratory. Plants were grown in a growth chamber at 22uC,

with a 9h light period and a light intensity of 190 mmol/m2/s. All

experiments were performed with 4 to 5 week-old plants.

Bacterial strains, plant inoculation procedure and

bacterial growth measurement
Pseudomonas syringae pv. tomato (Pst) DC3000 strain was grown at

29uC on KingB’s medium supplemented with 50 mg/mL of

rifampicin [73]. For the determination of in planta bacterial

growth, we used an inoculum of 4.104 cfu/mL. For gene

expression analysis, we used an inoculum of 5.105 cfu/mL. Plant

inoculations and in planta bacterial growth analysis were performed

essentially as described previously with two to four plants per RIL

and per experiment [74]. In order to analyze in planta bacterial

densities in hundreds of plants in parallel, leaf discs were harvested

in 96 deep-well microtiter plates. Bacteria were extracted by

addition of 0.2% Silwet L-77 and shaking for 30 minutes.

Subsequent serial dilutions and depositions on culture medium

were performed by using microtiter plates and multichannel

pipettes.

Experimental design for Bay-0xShahdara RIL

population and HIFs
The RIL population was evaluated by performing 4 experiments

under different conditions. Three experiments were conducted

with 165 RILs of the population under greenhouse conditions and

another one with 370 RILs under growth chamber conditions. For

the three experiments performed in greenhouse, each RIL was

evaluated in a complete randomized block design. Two plants of

each RIL per block with two blocks in each experiment were

evaluated for partial resistance to Pst. For the other experiment in

growth chamber, complete randomized design of RILs with two

plants for each RIL was used.

HIFs were also evaluated for partial resistance to Pst by in planta

bacterial growth analysis. At least, 32 plants of each HIF were

tested in two to three independent experiments.

In the case of the evaluations of the F1 hybrids, 16 plants were

tested for each cross.

Statistical analyses
Data was analyzed for each block and each experiment. Adjusted

means of disease scores (lsmeans) of RILs in blocks were estimated

from variance analysis (ANOVA). Phenotypic correlations among

the blocks, the experiments, and the variables were calculated.

When replicates were available for an experiment, broad sense

heritabilities (h2) were estimated from the mean square (MS) of

ANOVA using the formula adapted from Gallais [75]:

h2~s2
g=(s2

gz(s2
gr=r)z(s2

e=rn)) or h2~s2
g=(s2

gz(s2
e=r))

where s2
g is the genetic variance (MSg-MSgr)/rn, s2

gr the

genotype*block interaction (MSgr-MSe)/n, s2
e the environmental

variance (MSe), n the number of plants and r the number of

replicates.

Data analyses were performed with Statistical Analysis System

(SAS) software (SAS Institute Inc., North Carolina, USA).

Variance analysis of in planta bacterial growth data was performed

using PROC GLM of SAS with randomized effects.

QTL detection
The QTL was detected on the lsmeans of in planta bacterial growth

data for each experiment, and on the means of the in planta

bacterial growth data of each block (when the block effect was

highly significant, P,0.01). Variance analysis (LR), Interval

mapping (IM) and composite interval mapping (CIM) were

performed with the QTL Cartographer software Version 1.17

(Basten et al, North Carolina State University, USA) for each trait.

Interval mapping (IM) and composite interval mapping (CIM)

were also performed with PLABQTL Version 1.2 (Utz and

Melchinger, University of Hohenheim, Germany). After perform-

ing 1000 permutations with ANOVA, a LOD threshold of 2.7 was

used to declare a putative QTL significant. For CIM, 2 to 4 of the

most informative markers per trait were chosen as cofactors. For

each trait, a multiway ANOVA was performed with molecular

markers near the QTL peaks to estimate the total percentage of

phenotypic variation (R2) explained by the significant QTLs.

QTLs were named PRP-Ps for Partial Resistance to Pathogen - Pst.

Confidence intervals of the detected QTLs were estimated from

the PLABQTL software.

In addition to additive effects, digenic epistasis was tested with

a two-factor ANOVA model with an interaction between pairs of

markers. With the PROC GLM of SAS software, 703 interaction

tests were performed and a significance level of P,0.001 (0.7 false

positive) was chosen for detecting digenic epistasis. Global R2 was

estimated with full ANOVA including all additive effects and

digenic epistatic effects.

RNA extraction and Q-RT-PCR analysis
Material for RNA analysis was ground in liquid nitrogen and total

RNA was isolated using the Macherey-Nagel Nucleospin RNA
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plant kit (Macherey-Nagel, Hoerdt, France) according to the

manufacturer’s recommendations. Reverse transcription was

performed with 1 mg of total RNA using the superscript reverse

transcriptase II (Invitrogen, Carlsbad, CA, USA). Quantitative

PCR was run on a Lightcycler system (Roche Diagnostics,

Meylan, France) according to the manufacturer’s recommenda-

tions with the following conditions: 1 cycle: 9 min at 95uC for; 45

cycles: 5 sec at 95uC, 10 sec at 65uC and 20 sec at 72uC. b-

Tubulin4 was used as an internal standard. The primer sets used

are for PR1 (locus At2g14610, forward primer: GGAGCTACG-

CAGAACAACTAAGA, reverse primer: CCCACGAGGATCA-

TAGTTGCAACTGA), for PR5 (locus At1g75040, forward

primer: CGGTACAAGTGAAGGTGCTCGTT, reverse primer:

GCCTCGTAGATG GTTACAATGTCA), and for ICS

(At1g74710, forward primer: GCCGTCTCTGAAC TCAAAT-

CTCAA, reverse primer: GTTACGAGCAAGAACAACCTT-

GTT). Specificity of the amplifications was verified by melting

curve analysis. Efficiency of the amplification was verified by the

analysis of standard curves.

SUPPORTING INFORMATION

Figure S1 Analysis of the F1 progeny of reciprocal crosses

between Bay-0 and Shahdara for partial resistance to Pseudomonas

syringae pv. tomato DC3000. In planta bacterial growth was assessed

three days post inoculation in the F1 generation of reciprocal

crosses between Bay-0 and Shahdara. Each value is the average of

in planta bacterial growth of at least 4 plants (means and standard

errors).

Found at: doi:10.1371/journal.pone.0000123.s001 (0.62 MB EPS)

Table S1 Phenotypic correlations among experiments

Found at: doi:10.1371/journal.pone.0000123.s002 (0.04 MB

DOC)
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