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Abstract

Rich-club organization is key to efficient global neuronal signaling and integration of

information. Alterations interfere with higher-order cognitive processes, and are

common to several psychiatric and neurological conditions. A few studies examining

the structural connectome in obsessive–compulsive disorder (OCD) suggest lower

efficiency of information transfer across the brain. However, it remains unclear

whether this is due to alterations in rich-club organization. In the current study, the

structural connectome of 28 unmedicated OCD patients, 8 of their unaffected sib-

lings and 28 healthy controls was reconstructed by means of diffusion-weighted

imaging and probabilistic tractography. Topological and weighted measures of rich-

club organization and connectivity were computed, alongside global and nodal mea-

sures of network integration and segregation. The relationship between clinical

scores and network properties was explored. Compared to healthy controls, OCD

patients displayed significantly lower topological and weighted rich-club organization,

allocating a smaller fraction of all connection weights to the rich-club core. Global

clustering coefficient, local efficiency, and clustering of nonrich club nodes were sig-

nificantly higher in OCD patients. Significant three-group differences emerged, with

siblings displaying highest and lowest values in different measures. No significant

correlation with any clinical score was found. Our results suggest weaker structural

connectivity between rich-club nodes in OCD patients, possibly resulting in lower

network integration in favor of higher network segregation. We highlight the need of

looking at network-based alterations in brain organization and function when investi-

gating the neurobiological basis of this disorder, and stimulate further research into

potential familial protective factors against the development of OCD.
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1 | INTRODUCTION

Obsessive–compulsive disorder (OCD) is a severe psychiatric condi-

tion affecting 2%–3% of the population world-wide, characterized by

the combined or isolated presence of intrusive, recurrent thoughts,

and associated repeated behaviors or mental rituals (Association &

Association, 2013). Despite the abundance of evidence that has accu-

mulated in the last decades, the exact neurobiology of OCD remains

elusive; neuroanatomical models attempting to identify dysfunction of

one or a few isolated brain regions are labelled as too simplistic, and it

has long been recognized that looking at networks is the key

(Shephard et al., 2021). Graph-theoretical analyses of magnetic reso-

nance imaging (MRI) data have proven valuable to understanding how

information is integrated and communicated throughout the brain as a

complex network, and have been widely employed to study several

neurological and psychiatric conditions (Cao et al., 2015; Griffa

et al., 2013).

In the normal functioning brain, spatially and functionally distinct

regions exchange information quickly and efficiently, facilitating cog-

nitive and behavioral responses appropriate to the environmental

demands. Key players in this process are network hubs, regions that

display high connectivity to the entire network, but are first and fore-

most densely interconnected with each other. This ensemble of con-

nections forms a “rich-club” within the brain, a high-capacity

structural core that allows information to travel across distant regions

that would hardly communicate otherwise (van den Heuvel

et al., 2012). Rich-club connections have been mainly characterized by

macroscopic white-matter connections (van den Heuvel et al., 2012;

van den Heuvel & Sporns, 2011), although studies have also linked

structural and functional rich-club organization with each other

(Grayson et al., 2014; Senden et al., 2014; van den Heuvel &

Sporns, 2013). Regions belonging to the rich-club have been shown to

span all major resting-state networks (RSNs), and to participate in a

large proportion of inter-RSNs connections (van den Heuvel &

Sporns, 2013). For this reason, the rich-club is regarded as the ana-

tomical substrate for efficient communication across distant and/or

segregated functional systems (van den Heuvel & Sporns, 2013),

argued to significantly contribute to global neural integration (Senden

et al., 2014; van den Heuvel et al., 2012; Vértes et al., 2014) and

healthy brain function (Baggio et al., 2015; Ball et al., 2014). Given its

prominent role, alterations in rich-club organization are believed to

interfere with higher-order cognitive processes, leading to behavioral

dysfunction. Such alterations are reported for several neurological and

psychiatric conditions, including Alzheimer's disease (Dai et al., 2019),

Parkinson's disease (Hall et al., 2018), schizophrenia (van den Heuvel

et al., 2013), major depression disorder (Wang et al., 2019), autism

spectrum disorder and attention-deficit/hyperactivity disorder (Ray

et al., 2014).

A few studies examining white-matter networks in OCD suggest

altered efficiency of information transfer across the brain (Peng

et al., 2021; Reess et al., 2016; Zhong et al., 2014; Zhou et al., 2021).

One study reports lower global and regional efficiency in OCD

patients, predominantly within fronto-striatal and fronto-parietal

networks (Zhong et al., 2014). Another study points to a cluster of

lower connectivity comprising temporo-limbic, insular, orbitofrontal

and striatal regions. Their analysis of graph measures highlights local

alterations of mainly temporo-limbic regions, with indications of lower

efficient connectivity of the left amygdala in particular (Reess

et al., 2016). Remarkably, neither of these studies have investigated

whether the reported decrease in efficiency of information transfer

could relate to alterations in the rich-club organization of the brain.

An attempt in this direction has been made recently by Zhou et al.

(2021), who show in contrast with findings above, higher global effi-

ciency and higher rich-club organization and rich-club connectivity in

OCD patients. The authors suggest that long-distance information

integration and transmission capacity might be enhanced, potentially

as a result of compensatory mechanisms (Zhou et al., 2021). These

results have however not been replicated by Peng et al. (2021), who

report lower rich-club organization and rich-club connectivity in OCD

patients. Their findings of similar alterations in a group of unaffected

first-degree relatives support altered rich-club organization as a candi-

date vulnerability marker of OCD (Peng et al., 2021).

The thorny problem of connectome-based studies is the myriad

of methodological choices that stand between the construction of the

network and the implementation and interpretation of graph mea-

sures. Contradicting findings are often blamed on the technical diver-

sity of the study that generated them, rarely questioning the true

biological validity of what is being explored. However, when there is

no gold standard set out to follow, and each technical choice has its

own pro and counterarguments, the scientific reliability of any result

lies within their stability and replicability across a variety of methodo-

logical nuances. The limited and contradicting findings available to

date do not suffice for a clear understanding of the rich-club phenom-

enon in this patient population, but more research is clearly needed.

The present study adds to the discussion and investigates rich-

club organization and rich-club connectivity as potential markers of

OCD, by using probabilistic tractography to reconstruct the white-

matter network of a group of unmedicated OCD patients. Further, we

included the preliminary analyses of a small sample of unaffected

first-degree relatives, with the aim of prompting further research into

familial vulnerability. We hypothesized that OCD patients and their

unaffected siblings would show abnormal rich-club organization and

rich-club connectivity in their white-matter network.

2 | METHODS AND MATERIALS

2.1 | Participants

The study included 44 patients diagnosed with OCD who were

medication-free for at least 4 weeks at the time of enrolment (mean

age 38.5 ± 9.9 year), 15 of their unaffected siblings (SIB, mean age

38.1 ± 14.1) and 37 healthy controls (HC, mean age 39.5 ± 11.5 year),

matched on age, sex and education level. Details about the sample

and recruitment have been described elsewhere (Fan et al., 2016).

Briefly, patients were excluded in case of current psychoactive
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medication use, current or past psychosis, current or past alcohol

usage disorder, major physical or neurological illness or in the pres-

ence of MRI contra-indications. Psychiatric comorbidity did not con-

stitute a reason for exclusion, as long as the primary diagnosis was

OCD, without predominant hoarding. Clinical characteristics were

assessed with the Yale-Brown Obsessive Compulsive Scale (Y-BOCS,

symptom list and severity scale) (Goodman et al., 1989), the

Obsessive–Compulsive Inventory-Revised (OCI-R) (Foa et al., 2002)

and the Montgomery-Åsberg Depression Rating Scale (MADRS)

(Montgomery & Åsberg, 1979). All participants were screened on axis

I psychiatric disorders using the Structural Clinical Interview for DSM-

IV-TR Axis I Disorders (First, 2014). Siblings should not meet lifetime

criteria for OCD nor for any psychiatric diagnosis. Healthy controls

had no current psychiatric diagnosis nor a family history of OCD.

2.2 | MRI acquisition

MRI was performed using a 3-Tesla MR system (Signa HDxt, GE

Healthcare, Milwaukee, USA) equipped with an eight-channel phased-

array head coil. Diffusion-weighted echo-planar imaging (Lidstone

et al., 2010) was collected at 30 randomly distributed diffusion

weighted (b = 1000 s/mm2) and five reference (b = 0 s/mm2) volumes

with 49 axial slices at 2.4 mm thickness covering the whole brain (rep-

etition time TR = 14,000 ms, echo time TE = 85 ms). The acquired in-

plane resolution was 2.0 � 2.0 mm2, which was reconstructed to

1.0 � 1.0 mm2. Parallel imaging was applied with an acceleration fac-

tor of 2. Structural images were acquired using a 3D sagittal

T1-weighted sequence (TR = 7.8 ms, TE = 3 ms, TI = 450 ms, FlipAn-

gle = 12, voxel size 1.0 � .0.977 � 0.977 mm3, 172 slices).

2.3 | Image preprocessing

Diffusion MRI data were preprocessed using the FMRIB Software

Library (FSL version 6.0; http://www.fmrib.ox.ac.uk/fsl) and Advanced

Normalization Tools (ANTs version 3.0; http://stnava.github.io/ANTs/).

Images were corrected for motion and eddy current-induced susceptibil-

ity distortions by applying affine alignment of each diffusion-weighted

image to the mean b = 0 image (Andersson & Sotiropoulos, 2016). EPI-

induced distortions correction was performed by nonlinear registration

of the DWI to T1 (Wang et al., 2017), using ANTs' symmetric normaliza-

tion SyN registration algorithm (Avants et al., 2008). We visually

inspected the output of registration for all participants.

FSL's bedpostX (Behrens et al., 2007) was used to estimate the

voxel-wise diffusion parameter distributions. We ran probtrackx2 for

probabilistic fiber tracking with crossing fibers with the following param-

eters: 2000 steps per samples with a steplength of 0.5 mm, curvature

threshold of 0.2 and volume fraction set to 0.1, sampling a total of 5000

streamline fibers per voxel and keeping all other default parameters. We

corrected path distribution for the length of the pathways.

Tracking was performed by seeding from 210 bilateral cortical

regions and 36 bilateral subcortical regions obtained from the

Brainnetome Atlas (Fan et al., 2016). Adding to this set, the subthala-

mic nucleus and the bed nucleus of the stria terminalis were obtained

from the Subthalamic Nucleus Atlas (Forstmann et al., 2012) and from

a probabilistic map of the National Institute of Mental Health (https://

afni.nimh.nih.gov), respectively. All seeds (n = 250) were registered

from standard to native space following previously described methods

(Gong et al., 2009). Briefly, T1 images were registered to the

MNI1521 mm brain template using ANTs' SyN registration tools

(Avants et al., 2008). antsApplyTransforms was used to warp the corti-

cal and subcortical seeds from MNI to native space by concatenating

the inverse of warp fields and generic affine matrix using GenericLabel

[Linear] as interpolation method. All masks were thresholded (at 50)

and binarized.

2.4 | Network construction

For each participant, a brain network was reconstructed with the cortical

and subcortical seeds representing its nodes, and the white-matter tracts

interconnecting them representing its edges. For each pair of nodes, the

value of each edge was assigned as the number of reconstructed stream-

lines (NOS). First, the arithmetic average of NOS connecting node (i, j)

and that connecting (j, i) was obtained to create an undirected network.

Next, proportional thresholding of the network edges was applied by

retaining only a proportion (.23) of the strongest network edges (Tijms

et al., 2012). Further, only those edges that were present in at least 60%

of all group members were retained, calculated per group separately

(de Reus & van den Heuvel, 2013). Next to NOS-weighted networks,

binary networks were computed (i.e., thresholded edge weights were set

to 1, 0 otherwise). The stability of the results was checked using propor-

tional thresholds of .30 and .55 (Supplementary Material).

2.5 | Network characteristics

All graph measures were computed using the Brain Connectivity Toolbox

(Rubinov & Sporns, 2010) in Matlab (Matlab R2019b; Mathworks Inc).

Basic network characteristics such as network density (i.e., fraction of pre-

sent connections to possible connections, ignoring edge weights) and over-

all network connectivity (i.e., sum of edge weights across all nodes) were

compared between groups for the raw and thresholded networks. Follow-

ing the two-step thresholding procedure, obtained networks were checked

to preserve key properties of biological networks, namely connectedness

(i.e., >80% of nodes being connected to at least another node) and small-

world topology (i.e., a small-world index >1) (Lynall et al., 2010). Global and

local graph measures of efficiency and clustering coefficient were com-

puted on the weighted networks (Supplementary Material).

2.6 | Rich-club analysis

A schematic representation of the rich-club analysis steps is shown in

Figure 1.
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2.6.1 | Rich-club organization

Computing the rich-club coefficient Ø at degree level of k allows char-

acterizing the rich-club behavior of a network (van den Heuvel &

Sporns, 2011). In the topological, unweighted rich-club (Ø), rich-club

nodes preferentially create connections between each other. In the

weighted rich-club (Øw), rich-club nodes preferentially allocate the

strongest weights to the connections between them (Alstott

et al., 2014). The empirical Ø and Øw were computed on the binary

and NOS-weighted networks respectively, and normalized by the

averaged rich-club curve of a set of comparable random networks

(Ørand) (van den Heuvel & Sporns, 2011). For each network, a popula-

tion of 1000 random networks was generated by rewiring the edges

of the original matrix, while preserving its connection density, degree

and strength distribution (Rubinov & Sporns, 2011). A normalized

coefficient Ønorm >1 (calculated as Ø/Ørand) is indicative of rich-club

organization in a network (Colizza et al., 2006) and is assigned a (one-

sided) p-value by calculating the proportion of Ørand that exceeded

the empirically measured metric Ø (FDR-corrected at q = 0.05).

2.6.2 | Nodes classes: rich-club vs non-rich club

Rich-club nodes (i.e., nodes with degree > k) were defined for each

participant as the top 16% (k > 38) highest-degree regions (van den

Heuvel & Sporns, 2011). The regions classified as rich-club nodes

common to all participants were then selected as the final set and

used for subsequent analyses, as previously reported (van den

Heuvel & Sporns, 2011). This was done separately for the two-group

(OCD vs. HC, n = 56) and the three-group (n = 64) comparisons. Ana-

lyses were repeated considering smaller and larger sets of hub regions

(including from the top 5% to the top 25% highest degree-regions)

(Supplementary Material).

2.6.3 | Connections classes: rich-club, feeder and
local

Structural connections between nodes were classified accordingly into

rich club (i.e., between rich-club nodes), feeder (i.e., between rich-club

F IGURE 1 Schematic representation of the rich-club analysis. First, rich-club coefficients Ø (unweighted and weighted) are calculated at
increasing rich-club levels k and normalized by the averaged rich-club curve of a set of comparable random networks. A schematic representation
of the normalized groups average rich-club curve is shown (a top). Normalized Ø > 1 (dashed line in a top) indicates significant rich-club
organization in a network. The bar graph represents the proportion p of participants for which this holds true across rich-club levels (p = 1
indicates that all participants display significant rich-club organization) (a bottom). Next, the nodes of the network are classified into rich-club or
nonrich-club nodes (b). Members of the rich-club are defined as the most highly connected nodes of the network common to all participants.
Main results are reported for the top 16% highest-degree regions, but a wider range is considered, including from the top 25% to the top 5%
highest-degree regions (red shaded area in a top and bottom). Network edges are classified accordingly into rich-club (connections between rich-
club nodes), feeder (connections between rich-club and nonrich-club nodes) and local (connections between nonrich-club nodes) (b). Two
connectivity measures are finally computed; connectivity strength represents the sum of all edge weights within each connection class, and
weighted connectivity density represents the ratio of the connectivity strength of each connection class to the connectivity strength of the whole
brain (c). FEE, feeder connections; LOC, local connections; RC, rich-club connections; TOT, whole-brain connections
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and non-rich-club nodes) and local (i.e., between non-rich-club nodes)

connections. Two measures of connectivity were calculated for each

connection class and compared between groups. Connectivity

strength was defined as the sum of all edge weights (i.e., sum of all

NOS) within each connection class. Weighted connectivity density

was defined as the ratio of the connectivity strength of each connec-

tion class to the connectivity strength of the whole brain, representing

an index of network topology (van den Heuvel et al., 2012).

2.7 | Statistical analysis

ANOVA was used to compare age, years of education, sex, and clin-

ical variables between groups. Comparisons of network characteris-

tics were performed using nonparametric permutation testing for

randomizing group assignment (separately for OCD-HC, OCD-SIB,

SIB-HC) (Krol, 2020). The 50,000 permutations of group assign-

ments yielded an empirical null distribution of effects under the

hypothesis of no difference between groups. The measured differ-

ence was assigned a (two-sided) p-value, as the percentage of the

computed null distribution greater than or equal to the empirically

measured metric. The same procedure was followed to compare

rich-club measures between OCD patients and controls. We sepa-

rately tested for ordered differences between the three groups

using the Jonckheere-Terpstra test (Supplementary Material). Group

comparisons of rich-club coefficients were iterated over the range

of increasing k displaying significant rich-club organization

(Ønorm >1) for at least 97% of participants, and a false-discovery

rate (FDR) threshold of q = .05 was applied on the obtained p-

values. Spearman's partial correlation coefficients were calculated in

the OCD group to investigate the relationship between rich-club

measures and clinical variables (Y-BOCS and OCI-R total and sub-

scores, disease duration and MADRS), while controlling for age, sex

and education. The area under the curve (AUC) was computed for

rich-club, feeder and local measures across the range of increasing

k considered for the between-group comparisons.

3 | RESULTS

3.1 | Demographic and clinical characteristics

Following visual inspection of the raw images, 16 OCD patients,

7 unaffected siblings and 9 healthy controls were excluded from

subsequent analyses, due to positioning of the field of view result-

ing in (major) cuts of the bilateral temporal pole. The final sample

thus included a total of 28 OCD patients (mean age 36.8

± 9.2 year), 8 unaffected siblings (mean age 37.8 ± 13.2 year) and

28 healthy controls (mean age 40.6 ± 11.0 year). Age, sex and edu-

cation did not differ significantly between the three groups

(Table 1). OCD patients displayed significantly higher Y-BOCS,

OCI-R, and MADRS scores compared to their unaffected siblings

and controls (Table 1).

3.2 | Network characteristics

No significant differences in network density (p = .26) and overall net-

work connectivity (p = .53) emerged, both looking at the raw and

thresholded networks of OCD patients and healthy controls

(Table S1). Compared to the latter, OCD patients displayed signifi-

cantly higher global clustering coefficient (p = .03), but no differences

in global efficiency (p = .64) or small world-topology (p = .82)

(Table S1). OCD patients also displayed significantly higher local effi-

ciency for n = 7 nodes and higher local clustering for n = 74 nodes

(q < .05), spanning extensive frontal and temporal areas, cingulate cor-

tex, lateral occipital cortex and subdivisions of the thalamus, among

others (Table S2). Unaffected siblings presented with significantly

lower overall network connectivity (p < .001), lower global efficiency

(p < .001) and lower global clustering coefficient (p < .001) compared

to OCD patients and healthy controls. On the other hand, following

the two-step network thresholding procedure, siblings displayed sig-

nificantly higher network density (p < .001). The details and implica-

tions of these results are outlined in the Supplementary Material.

3.3 | Rich-club organization

Rich-club organization was found in the white-matter networks of

both OCD patients and healthy controls (Ønorm range k = 20–53;

Ønorm
w range k = 42–63) (Figure 2a,c). Compared to controls, OCD

patients displayed significantly lower topological rich-club organiza-

tion (range k = 29–40, q < .01, Hedge's g = [.81, 1.48]). OCD patients

also displayed lower weighted rich-club organization for the range

k = 42–56, although this difference was not significant (q > .34). A

significantly lower weighted Ønorm
w was found when using propor-

tional thresholds of .30 and .55 (Figure S1).

The three-group analysis revealed significant ordered differences

between groups for both topological (HC > OCD > SIB, range k = 20–

53, q < .05) and weighted (SIB > HC > OCD, k = 42–58, q < .05) rich-

club organization (Supplementary Material, Figure S3).

3.4 | Connectivity strength and density of rich-
club, feeder and local connections

Consistent with previous reports, rich-club nodes selected at the top

16% highest-degree nodes across OCD patients and controls included

the middle and inferior frontal gyrus, superior temporal gyrus, fusi-

form gyrus, inferior parietal lobule, precuneus, postcentral gyrus,

insula, cingulate gyrus, ventral and lateral occipital cortex and, subcor-

tically, the hippocampus, (posterior parietal, occipital and lateral pre-

frontal) thalamus and regions of the basal ganglia (caudate, putamen,

and globus pallidus) (Peng et al., 2021; van den Heuvel &

Sporns, 2011; Zhou et al., 2021) (Figure 2b).

No significant differences between groups were found in the con-

nectivity strength of either rich-club (p = .45), feeder (p = .91) or local

(p = .37) connections (Figure 2d bottom). OCD patients displayed
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significantly lower rich-club weighted connectivity density (p < .001,

Hedge's g = .94) and a trend to increased local connectivity density

(p = .052, Hedge's g = .53) compared to controls. No significant dif-

ferences were observed for feeder connectivity density (Figure 2d

top). Results were stable when using proportional thresholds of .30

and .55 (Figure S2).

Unaffected siblings displayed the highest rich-club and local con-

nectivity density, but the lowest feeder connectivity density

(Supplementary Material, Figure S3).

3.5 | Correlations with clinical characteristics

The AUC computed for rich-club organization (Mean [±SD]:

Ønorm = 35.71 [±0.37], Ønorm
w = 26.05 [±3.25]), and for strength

and weighted density of rich-club ([Mean [±SD]:

strength = 4.65e + 09 [±6.84e + 08], density = 109.13 [±6.98]),

feeder ([Mean [±SD]: strength = 9.05e + 09 [±1.37e + 09], den-

sity = 212.23 [±9.16]) and local ([Mean [±SD]: strength = 5.82e +-

10 [±8.2e + 09], density = 1.37e + 03 [±23.67]) connections was

correlated with clinical characteristics (Y-BOCS and OCI-R total

and subscores, disease duration and MADRS, Table 1), while con-

trolling for age, sex and education. No significant correlations are

reported (Table S3).

4 | DISCUSSION

The current study used probabilistic tractography to investigate

white-matter rich-club organization in OCD. Compared to healthy

controls, OCD patients displayed significantly lower unweighted and,

to some extent, weighted rich-club organization, suggesting that brain

network hubs exhibit less connections between them, and do not nec-

essarily allocate the strongest weights thereto (Alstott et al., 2014).

OCD patients congruously displayed significantly lower rich-club

weighted connectivity density, representing a smaller fraction of all

connection weights allocated to the rich-club compared to the healthy

counterpart. On the other hand, no differences emerged between

groups when comparing connectivity strength in absolute terms, nei-

ther for whole-brain, rich-club, feeder nor local connections. Thus, our

results mostly point to differences in the topological arrangement of

connections and their weights to the rich-club, rather than absolute

differences in the strength of such connections. While still being able

to draw on comparable resources, OCD patients might manage their

connectivity system differently, allocating more weight to peripheral

connections at the detriment of a central core of hub nodes. Consis-

tent with this hypothesis, OCD patients also displayed a trend to

increased local weighted connectivity density, meaning that a higher

fraction of all connection weights is allocated to local connections

compared to healthy controls.

TABLE 1 Demographic and clinical characteristics of OCD patients, their unaffected siblings and healthy controls

OCD patients (n = 28) Siblings (n = 8) HC (n = 28) Analysis

Mean (±SD) Mean (±SD) Mean (±SD) F (p value)

Demographic variables

Age1 36.8 (±9.2) 37.8 (±13.2) 40.6 (±11.0) 0.99 (.378)

Education1 13.6 (±3.4) 12.3 (±2.4) 12.2 (±2.8) 1.55 (.219)

Sex (M/F) 11/17 4/4 12/18 0.14 (.866)

Clinical variables

Disease duration1 22.7 (±11.3) 0 0 66.5 (<.001)

Y-BOCS (total score) 21.3 (±6.0) 0.1 (±0.4) 0 220 (<.001)

Y-BOCS obsessions 10.3 (±3.6) 0.1 (±0.4) 0 146 (<.001)

Y-BOCS compulsions 11.0 (±3.0) 0 0 236 (<.001)

OCI-R (total score) 22.8 (±11.7) 2.9 (±2.9) 3.3 (±5.4) 37.3 (<.001)

OCI-R washing 3.0 (±3.6) 0 0.4 (±0.7) 7.97 (<.001)

OCI-R checking 6.4 (±4.2) 0.6 (±0.9) 0.3 (±0.6) 32.5 (<.001)

OCI-R ordering 4.4 (±3.7) 0.4 (±0.7) 0.9 (±1.8) 12.4 (<.001)

OCI-R obsession 4.9 (±3.5) 0.6 (±1.2) 0.4 (±1.6) 21.1 (<.001)

OCI-R hoarding 1.8 (±2.6) 1.1 (±1.4) 1.2 (±2.2) 0.4 (0.67)

OCI-R neutralizing 2.1 (±3.0) 0.1 (±0.4) 0.1 (±0.2) 7.46 (<.001)

MADRS 9.3 (±6.9) 1.3 (±2.9) 1.0 (±1.6) 20.6 (<.001)

Note: 1 expressed in years.

Abbreviations: HC, healthy controls; MADRS, Montgomery-Åsberg Depression Rating Scale; OCI-R, obsessive–compulsive inventory revised; SD, standard

deviation of the mean; Y-BOCS, yale-brown obsessive–compulsive scale.
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F IGURE 2 Individual normalized Ø and Øw are plotted for OCD patients (purple) and healthy controls (yellow) for different rich-club levels.

Normalized Ø > 1 (dashed line in a and c) indicates significant rich-club organization. The grey shaded area indicates where rich-club organization
of the two groups is significantly different (p < .01, FDR-corrected) (a, c). Rich-club nodes are selected as the top 16% highest-degree nodes of
the network (b), and network edges are classified accordingly into rich-club, feeder and local (d middle). Topological (i.e., connectivity density; D
top) and weighted (i.e., connectivity strength; D bottom) properties are calculated for each connection class and compared between groups.
***p < .001. CG, cingulate gyrus; dCa, dorsal caudate; dlPu, dorsolateral putamen; FuG, fusiform gyrus; GP, globus pallidus; HC, healthy controls;
IFG, inferior frontal gyrus; INS, insular gyrus; IPL, inferior parietal lobule; L, left; LOcC, lateral occipital cortex; lPFtha, lateral prefrontal thalamus;
MFG, middle frontal gyrus; MVcC, medioventral occipital cortex; OCD, obsessive–compulsive disorder patients; Otha, occipital thalamus; PCun,
precuneus; PoG, postcentral gyrus; PPtha, posterior parietal thalamus; R, right; STG, superior temporal gyrus; vCA, ventral caudate; vmPu,
ventromedial putamen
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Rich-club organization is regarded as a marker of network integra-

tion, allowing distant regions to quickly and effectively exchange

information between each other (van den Heuvel & Sporns, 2013).

Efficient brain networks however stem from the delicate balance

between integration and segregation of functions, thus equally relying

on the specialization of regions, or clusters of regions, to take on spe-

cific tasks (Rubinov & Sporns, 2010). In patients with OCD, the scale

might be tipped in favor of a more segregated network. As opposed

to lower rich-club organization, we found OCD patients to display sig-

nificantly higher global clustering coefficient, local efficiency and local

clustering specifically of non-rich-club nodes. These results are consis-

tent with previous evidence of decreased rich-club connectivity (Peng

et al., 2021) and decreased global efficiency as opposed to increased

clustering (Peng et al., 2021; Zhong et al., 2014), while disagreeing

with the pattern described by Zhou et al. (2021), pointing to higher

measures of network efficiency in OCD. After all, the susceptibility of

graph measures to specific methodological choices cannot be

neglected. The methods used by the present and previous studies dif-

fered considerably on multiple fronts. As opposed to deterministic

tractography, we employed probabilistic tractography to map the con-

nectomes of OCD patients. Furthermore, we used a brain parcellation

with a higher resolution compared to what previously used, a method-

ological difference of the known potential impact on connectivity

measures (Carmi et al., 2019; Messé, 2020). Nonetheless, despite the

technical differences, results across studies point to altered efficiency

of information transfer across the brain, yet awaiting for further

research to clarify the nature of rich-club organization anomalies

in OCD.

For both OCD patients and healthy controls, rich-club nodes

included areas of frontal, parietal, temporal and occipital cortices, next

to subdivisions of the insula and cingulate cortex, and subcortical

regions of the basal ganglia, thalamus and hippocampus, to a large

extent consistent with what previously reported (Peng et al., 2021;

van den Heuvel & Sporns, 2013; Zhou et al., 2021). The literature link-

ing dysfunctional nodes of the cortico-striatal-thalamo-cortical loops

to OC symptomatology is extensive and includes several lines of evi-

dence, ranging from early positron-emission tomography studies dem-

onstrating metabolic abnormalities to volumetric, functional and

lesion studies, all pointing to the critical involvement of the frontal as

well as subcortical components of these circuits (Milad &

Rauch, 2012). Beyond this traditional view, a potentially central role

has been ascribed to the dorsal anterior cingulate cortex (dACC), hub

in the cognitive control and fear learning and extinction networks,

exerting control signals via extensive connections with surrounding

cortical and subcortical structures to direct behavioral responses

(McGovern & Sheth, 2017). Not only central to a mechanistic theory

on the emergence of obsessions and compulsions, the dACC is also

the target of surgical and neuromodulatory treatment interventions

(Fineberg et al., 2020; McGovern & Sheth, 2017), placing it under the

spotlight of OCD brain dynamics. Additionally, many of the identified

rich-club nodes critically participate in RSNs like the default mode,

salience and frontoparietal networks, the inter- and intra-connectivity

of which has consistently been reported altered in OCD (Gürsel

et al., 2018). However, despite the overlap between rich-club nodes

and the regions generally implicated in OCD pathophysiology, the

question arises about the specificity of rich-club organization anoma-

lies to OCD. No significant correlation between any rich-club measure

and OCD-specific clinical characteristics were found in neither the

present nor some of the previous studies (Peng et al., 2021; Reess

et al., 2016). A recent meta-analysis comprising almost 900 patients

across 12 neurological and psychiatric disorders found that rich-club

connections were disproportionally affected across disorders com-

pared to peripheral connections (de Lange et al., 2019), and indepen-

dent studies reporting altered rich-club organization in single

disorders are numerous (Dai et al., 2019; Hall et al., 2018; Ray

et al., 2014; van den Heuvel et al., 2013; Wang et al., 2019). It has

been suggested that, because of their central embedding in the net-

work, central regions and connections might be not only particularly

vulnerable to various disease processes themselves (Buckner

et al., 2009), but also at increased risk of propagating these processes

across the network (Fornito et al., 2015; Iturria-Medina et al., 2014).

Given the importance of central connections for appropriate cognitive

function (Cees De Groot et al., 2000; van den Heuvel &

Sporns, 2011), any defect that might affect this system could then

result in various forms of cognitive impairment. Considering that defi-

cits in cognitive function overlap across disorders (Millan et al., 2012),

it is possible that abnormal rich-club organization constitutes a trans-

diagnostic vulnerability marker to psychopathology in general, mediat-

ing dysfunctional traits common across diagnostic categories rather

than specific symptoms. Future studies should further address this

hypothesis, trying to identify unique and/or common cognitive

markers relating to rich-club dysfunction in OCD with respect to other

brain disorders.

Alternatively, the absence of disease severity effects could point

to rich-club organization anomalies being trait rather than state

markers of OCD. Family-based studies are valuable tools to unravel

putative vulnerability markers of a disorder, indexing a genetic liability

and allowing the dissection of state and trait signatures. The present

study preliminarily investigated rich-club organization in a small group

of unaffected siblings. Generally, neuroimaging markers of anomaly

present in both patients and unaffected first-degree relatives, but not

in healthy controls, are good candidates, and potential endopheno-

types have been identified in measures of white-matter microstruc-

ture (Dikmeer et al., 2021; Fan et al., 2016; Menzies et al., 2008),

network properties (Peng et al., 2014) and functional patterns of dys-

connectivity (Chamberlain et al., 2008; Peng et al., 2014; Vaghi

et al., 2017). Research on whether rich-club organization could be

considered as such is limited, with only one study reporting intermedi-

ate levels of rich-club connectivity in unaffected siblings (Peng

et al., 2021). Our results however revealed a pattern of higher

weighted rich-club organization and rich-club density in unaffected

siblings compared to OCD patients and healthy controls, as opposed

to lower unweighted rich-club organization. Although limited in their

generalizability by the small sample size, our results point to a buffer-

ing mechanism that unaffected first-degree relatives may put in place.

Namely, they might recruit additional resources (in terms of a higher
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fraction of all connection weights) to preserve cognitive performance

and mental health in spite of a reduction in the number of rich-club

connections (i.e., unweighted rich-club organization). Although no pre-

vious research investigated changes in the trade-off between topolog-

ical and weighted rich-club measures, the idea of a buffering

mechanism is congruous with e.g. reports of increased resting-state

connectivity between cognitive control networks in unaffected sib-

lings (de Vries et al., 2019). However, longitudinal and developmental

studies are needed to correctly place rich-club organization along the

trajectory to OCD manifestation or, if considered as transdiagnostic

marker, psychopathology in general.

The current study has some limitations. First, due to fitting of the

field of view during MRI acquisition resulting in major cuts of the tem-

poral pole, many participants were excluded from the current ana-

lyses, reducing the available sample size. Despite the strong effect

sizes reported, future studies should aim to include larger samples.

Specially, findings concerning the group of unaffected siblings are to

be taken with extreme caution, and are mostly intended to suggest

hypotheses that could be addressed by future studies. Additionally,

inherent limitations of the DWI sequence and probabilistic tractogra-

phy urge us to interpret the results carefully. More advanced proto-

cols such as multi-shell procedures will allow the implementation of

processing and tractography methods offering better control over the

biological plausibility of the reconstructed white-matter pathways

(Smith et al., 2012).

5 | CONCLUSIONS

We investigated rich-club organization in a sample of unmedicated

OCD patients. Our results suggest a topological shift of connec-

tions and their weights away from the rich-club, resulting in weaker

structural connectivity between network hubs. Preliminary findings

of increased rich-club organization in unaffected siblings hint at a

neuroimaging feature worth investigating further in the context of

familial vulnerability or resilience to developing the disorder. We

finally underscore the importance of looking at network-based

alterations in brain organization and function when

investigating OCD.
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