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Abstract: Lyophilization is often employed to transform nanoparticle suspensions to stable solid
forms. This work proposed Neurofuzzy Logic (NFL) to better understand the lyophilization process
of Nanostructured Lipid Carriers’ (NLCs) dispersions and the carbohydrate cryoprotectants’ (CPs)
performance in these processes. NLCs were produced by hot homogenization, frozen at different
speeds, and lyophilized using several CPs at variable concentrations. NLCs were characterized,
and results were expressed as increase in particle size (∆ size), polydispersity (∆ PdI), and zeta
potential (∆ ZP) of lyophilized powders (LP) regarding initial dispersions. CPs were classified
according to their molecular weights (MW), and the osmolarities (Π) of CPs solutions were also
determined. Databases obtained were finally modelled through FormRules® (Intelligensys Ltd., Kirk-
wall, Scotland, UK), an NFL software. NFL models revealed that CPs’ MW determines the optimal
freezing conditions and CPs’ proportions. The knowledge generated allowed the establishment of
a traffic light system intended to successfully select and apply sugars for nanoparticles lyophilization.

Keywords: artificial intelligence; cryoprotectants; lyophilization; nanostructured lipid carriers;
neurofuzzy logic; sugars; traffic light system

1. Introduction

Nanostructured Lipid Carriers (NLCs) are drug delivery systems experiencing in-
creased attention in the pharmaceutical field [1]. They exhibit a core matrix composed of
solid and liquid lipids, showing several advantages over conventional carriers, such as
improved solubility capacity and drug half-life, greater permeability, and better stability
during storage [1]. Furthermore, in recent years, scientific literature has evidenced the util-
ity of these nanocarriers to achieve controlled release after intravenous [2], pulmonary [3],
oral [4], or topical [5] administration.

Despite these promising features, lipid nano-dispersions are susceptible to hydrolysis,
gelation, flocculation, creaming, and sedimentation or coalescence, triggering system
destabilization [6–8]. These stability issues, together with the need to produce easy-to-
transport-and-store dosage forms [9], make necessary their drying to obtain a powder
that, once reconstituted, generates the original NLC. With this regard, lyophilization using
cryoprotectants (CPs) was considered an appropriate approach to enhance long-term
nanoparticles’ stability, avoiding freezing stress [8,10]. This technique has gained relevance
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nowadays, due to the urgent need of improving the long-term stability of certain lipid
nanoparticle-based formulations, as is the case of SARS-CoV-2 vaccines [11].

Carbohydrate cryoprotectants (CPs), such as trehalose, mannitol, sucrose, or glucose,
are the most popular cryoprotectants for nanoparticle lyophilization [10,12–14]. These
compounds are known to vitrify at a certain temperature, generating a glassy matrix
capable of protecting nanoparticles from the ice mechanical stress [7,15].

The lyophilization performance involves a significant number of variables related to
the characteristics of the formulation, the addition or not of cryoprotectants, their type
and content, and the operating conditions [7]. In general, lyophilization conditions are
established by trial-and-error procedures, without considering the interactions between
these variables, or analyzing in depth the mechanisms involved in the process [10].

In the last decade, Artificial Intelligence (AI) tools, such as Artificial Neural Networks
(ANNs) or Neurofuzzy Logic (NFL) systems, have gained increasing attention for phar-
maceutical applications [16] being used to study and optimize various processes such as
wet granulation [17], the formulation of micro- and nanoparticles [18,19], or the prepara-
tion of hydrogels [20,21]. In these systems, AI allowed the prediction of the endpoint of
the granulation process, to obtain particulate drug delivery systems exhibiting optimal
characteristics, and also to develop smart, thermosensitive hydrogels [17–21].

ANNs are biologically inspired artificial intelligence tools, designed to mimic the
information processing of the human brain, allowing the establishment of relationships
between the process variables (inputs) and experimental results (outputs) [20]. The main
unit of an artificial neural system is the artificial neuron or node. These nodes establish
connections with each other and the strength of these connections is known as weight [22].
However the interpretation of these ANNs might not be a simple task [23]. NFL systems
are hybrid technologies remarkably suitable for data mining, as they integrate the ability of
ANNs to learn from data and the capacity of fuzzy logic to express concepts in a simple
way through linguistic “IF-THEN” rules [16].

Therefore, the main hypothesis of this work was that AI tools, such as NFL, could
be useful to rationally establish a suitable lyophilization procedure for NLCs using car-
bohydrates as cryoprotectants, a procedure traditionally established experimentally. Fur-
thermore, this information would predictably allow achieving a better understanding of
the lyophilization conditions’ (CP type and concentration or freezing speed) impact on
lyophilized NLCs’ properties, and also to assess the physicochemical phenomena driving
sugars’ effectivity as CP.

2. Materials and Methods
2.1. Materials

Precirol® ATO 5 (glyceryl distearate) and Epikuron® 145V (deoiled phosphatidyl
choline-enriched lecithin) were kindly donated by Gattefossé (Saint-Priest, France) and
Cargill (Wayzata, MN, USA), respectively. Polysorbate 80 (Tween® 80), Oleic acid, D-(+)-
trehalose dihydrate, D-mannitol (≥98%), D-(−)-fructose, D-sorbitol, and dialysis mem-
brane (Spectrum™ Labs Spectra/Por, MWCO 3.5 KDa) were acquired from Sigma Aldrich
(St Louis, MO, USA). D-glucose anhydrous and lactose were obtained from Fisher Scientific
(Hampton, NH, USA) and Merck (Madrid, Spain), respectively. D-(+)-sucrose was acquired
from Acros Organics, Fisher Scientific (Hampton, NH, USA). Ultrapure water (MilliQ plus,
Millipore Ibérica, Madrid, Spain) was used throughout.

2.2. Methods
2.2.1. NLCs’ Formulation

NLCs’ formulations were prepared by hot, high-shear homogenization, following
the procedure and composition previously optimized in our laboratory through Arti-
ficial Intelligence tools [19]. Oleic acid and Precirol® ATO 5 (Gattefossé, Saint-Priest,
France) were used as liquid and solid lipid, respectively, while Epikuron® 145V (Cargill,
Wayzata, MA, USA) and Tween® 80 (Sigma Aldrich, St. Louis, MO, USA) were employed
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as emulsifiers. Briefly, an oil phase (300 mg), composed by a 75:25 ratio of liquid:solid lipid,
was melted at 80 ◦C. Then, an aqueous phase (10 mL), comprising Epikuron® 145V (Cargill,
Wayzata, MA, USA) (0.5% w/w regarding oil phase) and Tween® 80 (Sigma Aldrich,
St. Louis, MO, USA) (1.9% w/v regarding aqueous phase), was also heated at 80 ◦C and
added to the oil phase. The mixture was hot, high-shear homogenized at 14,800 rpm for
10 min using an Ultra-Turrax T25 (IKA Labortechnik, Staufen, Germany), leading to a NLC
dispersion, which was cooled in an ice bath for 2 min with gentle stirring.

Furthermore, to remove the non-incorporated components, nanoparticle dispersions
were dialyzed overnight using a porous membrane (Spectrum™ Labs Spectra/Por, MWCO
3.5 KDa) (Sigma Aldrich, St. Louis, MO, USA). The particle size and surface charge of the
NLCs were characterized as indicated below.

2.2.2. NLCs’ Lyophilization and Reconstitution

A selection of carbohydrate cryoprotectants (trehalose, lactose, sucrose, sorbitol, glu-
cose, fructose, and mannitol) at different concentrations (2.5, 5, 10, 15, and 20% w/v) were
used for the lyophilization of NLCs. In addition, the effect of two freezing procedures was
also evaluated (fast by immersion in liquid nitrogen or slow in a freezer at −80 ◦C).

Briefly, 2 mL of dialyzed NLC suspensions were mixed with accurate amounts of
the CPs in 5-mL tubes. Then, mixtures were manually homogenized (by tube inversion)
until complete dissolution and subsequently frozen. Lyophilization was carried out by
duplicate in a freeze dryer Telstar LyoQuest Plus −85 ◦C/ECO (Telstar, Madrid, Spain)
for 24 h. During the process, the chamber temperature was maintained at −70 ◦C, under
a high vacuum of 0.01 mbar, approximately.

Lyophilized NLCs (50 mg) were resuspended in 10 mL of Milli-Q® (Millipore Ibérica,
Madrid, Spain ) water. The dispersions were shaken manually and then sonicated for 30 s
at a frequency of 20 kHz with a Sonicator 700W Sonic Dismembrator (Fisher Scientific,
Hampton, NH, USA) to ensure complete resuspension. Then, the particle size and surface
charge of the NLCs were again characterized.

2.2.3. Particle Size and Surface Charge Characterization

NLCs’ particle size, polydispersity index (PdI), and surface charge, before and af-
ter lyophilization, were determined using a Zetasizer Nano ZS (Malvern Instruments,
Malvern, UK). Particle size and PdI measurements were performed in polystyrene cuvettes,
after proper dilution with Milli-Q® (Millipore Ibérica, Madrid, Spain ) water. Surface charge
was determined through particle mobility in an electric field as zeta potential (ZP). For this
purpose, a specific cuvette was employed where a potential of ±150 mV was established.
All measurements were conducted by triplicate at 25 ± 1 ◦C. Results were expressed as the
increase in particle size (∆ size), polydispersity index (∆ PdI), and zeta potential (∆ ZP).

2.2.4. Osmolarity Determination

Samples of Milli-Q® (Millipore Ibérica, Madrid, Spain ) water, NLCs’ dispersions,
and aqueous solutions of the CPs under evaluation were experimentally evaluated using
a Vapro® vapor pressure osmometer (model 5600, Wescor, ELITechGroup, Logan, UT, USA).
Osmolarity values of CPs’ solutions were determined using concentrations ranging between
2.5–20%, except for lactose and mannitol, where the studied concentrations were 2.5–10%
or 2.5–15%, respectively, due to their low aqueous solubility.

2.2.5. Modelling through Artificial Intelligence Tools

The variables studied followed an experimental design for three variables (CP selected,
CP concentration, and freezing speed) at 7, 5, and 2 levels, respectively. Additionally, the
database was completed with the CPs’ molecular weight (MWCP) and the osmolarity at the
specific concentration (Table 1). Moreover, the parameters derived from the NLCs’ analysis
regarding particle size and surface charge expressed as ∆ Size, ∆ PdI, and ∆ ZP were also
added to the database.
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Table 1. Variables included as inputs for modelling: CP type, CP concentration, MWCP, and osmolar-
ity in aqueous solution.

CP CP Concentration (%) MwCP (g/mol) Π (mmol/kg)

Fructose 2.5 180.16 154
Fructose 5 180.16 279
Fructose 10 180.16 551
Fructose 15 180.16 894
Fructose 20 180.16 1141
Glucose 2.5 180.16 135
Glucose 5 180.16 257
Glucose 10 180.16 547
Glucose 15 180.16 820
Glucose 20 180.16 1127

Mannitol 2.5 182.17 142
Mannitol 5 182.17 270
Mannitol 10 182.17 593
Mannitol 15 182.17 945
Sorbitol 2.5 182.17 131
Sorbitol 5 182.17 253
Sorbitol 10 182.17 615
Sorbitol 15 182.17 864
Sorbitol 20 182.17 1146
Sucrose 2.5 342.3 73
Sucrose 5 342.3 140
Sucrose 10 342.3 300
Sucrose 15 342.3 434
Sucrose 20 342.3 602

Trehalose 2.5 342.3 70
Trehalose 5 342.3 134
Trehalose 10 342.3 281
Trehalose 15 342.3 381
Trehalose 20 342.3 538
Lactose 2.5 342.3 72
Lactose 5 342.3 142
Lactose 10 342.3 248

The complete database was modelled using FormRules® v4.03 (Intelligensys Ltd.,
Kirkwall, Scotland, UK), which is a Neurofuzzy Logic (NFL) software that enables answer-
ing “WHAT IF” questions through the generation of “IF-THEN” rules [19]. “IF-THEN”
rules consist of an antecedent and a consequent part, indicating the relationship between
the variables or inputs and the resulting values or outputs [19]. These rules were obtained
after a fuzzification process, where each value of an input was classified and described
by a word (low, medium, or high) and an associated membership degree (MD) ranging
from 0 to 1. Values of MD close to 1 indicated a certain hypothesis was true (e.g., ∆ Size
is low), while values of MD close to 0 imply a certain hypothesis was false (e.g., ∆ Size is
not low) [16].

Two Neurofuzzy logic models were carried out. Model 1 studied the effect of freezing
speed, the CP type, and CP percentage (included as inputs), on the ∆ Size, ∆ PdI, and ∆ ZP
of the lyophilized powders (LPs, included as outputs). Neurofuzzy logic systems need to be
trained to learn from data and, during this training process, they established relationships
between the inputs and the outputs of the database using different algorithms to alter the
strength of the connections in the neural network [22]. This process allowed us to modulate
the signal flow, establishing generalizations between the variables studied (inputs) and the
nanoparticle characteristics (outputs) [22]. In this way, the training parameters selected
for model 1 were: ridge regression factor of 1 × e−6, two set densities, Structural Risk
Minimization as model selection criteria (C1 = 0.70 and C2 = 4.80), two maximum inputs
per submodel, and 15 maximum nodes per input.
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Model 2 explored the effect of specific CP characteristics (CP type, MWCP, osmolarity)
and the freezing speed on the three outputs. For model 2, training parameters similar to
model 1 were used, with two exceptions: C1 value needed adjustment (C1 = 0.928) and the
maximum number of inputs per submodel increased to 4.

The quality of the models for each output was assessed using the calculated f ratio
from the analysis of variance (ANOVA) and the determination coefficient of train set (R2),
which estimated their accuracy and predictability, respectively. The train set R2 values
were calculated as follows [24]:

R2 = [ 1−
n

∑
i=1

(
yi− yi′

)2/
n

∑
i=1

(
yi− yi′′

)2
]× 100%, (1)

where yi is the experimental value obtained for a given output, yi′ is the predicted value for
the output calculated by the model, and yi′ ′ is the mean of the experimental value. Values
of R2 ranging from 70% to 99.9% indicate satisfactory model predictabilities [25].

A calculated f ratio higher than the critical f value for the same degrees of freedom in-
dicates there are not statistically significant differences between predicted and experimental
data; therefore, the model is accurate.

3. Results
3.1. Cryoprotectants’ Characterization

The carbohydrate cryoprotectants (CPs) selected for this work included monosaccha-
rides, such as fructose and glucose, disaccharides, such as lactose, sucrose, and trehalose,
and sugar alcohols, such as mannitol and sorbitol (Figure 1). To better understand the
CPs’ properties’ effect on the lyophilization procedure, these compounds were classified by
their MWCP and characterized in terms of osmolarity (Π) (Table 1). Fructose and glucose
had a MWCP of ≈180.16 g/mol, while lactose, sucrose, and trehalose had a MWCP of
≈342.3 g/mol, and mannitol and sorbitol had a MWCP of ≈182.17 g/mol [26].
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Figure 1. Chemical structure of (A) Fructose, (B) Glucose, (C) Lactose, (D) Mannitol, (E) Sorbitol, (F) Sucrose, and
(G) Trehalose.

On the other hand, Π led to values ranging from 154–1141, 135–1127, 72–248, 142–945,
131–1146, 73–602, and 70–538 mmol/kg for fructose, glucose, lactose, mannitol, sorbitol,
sucrose, and trehalose, respectively, for the different concentrations under study. Π values
were in agreement with those expected by multiplying CPs’ molar concentration by their
dissociation factor, which is known to be 1 for molecules that do not dissociate in solution,
as is the case for sugars. As an example, a 5% (w/v) solution of trehalose and glucose would
exhibit a molarity of approximately 140 and 278 mmol/L, respectively, which closely agrees
with the experimental Π values obtained.
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3.2. Physicochemical Characterization of NLCs and Lyophilized Powders

Both size and PdI are key parameters determining nanoparticles’ stability and, there-
fore, it is of utmost importance to control ∆ Size and ∆ PdI of NLCs, which should be
maintained as low as possible. NLC formulations (n = 5) showed initially a particle size of
126 ± 19 nm, a PdI of 0.28 ± 0.05, and a ZP of −26 ± 3 mV. The values of ∆ Size, ∆ PdI,
and ∆ ZP were 62 ± 9 nm, 0.10 ± 0.06, and −2 ± 1 mV for reconstituted NLCs when fast
freezing was carried out and 61 ± 7 nm, 0.14 ± 0.07, and −1 ± 2 mV when slow freezing
was performed. The nanocarriers exhibited a suitable ability to endure lyophilization
without CPs. However, NLCs showed a gummy-like appearance, and some difficulties
were found during the re-constitution step, which justified the need of CPs. The use of
CPs allowed us to obtain nanoparticles with a dry appearance and easy and quick reconsti-
tution. Moreover, after CPs’ incorporation, ∆ Size values were in the range of 23–94 nm
and 31–157 nm for fast and slow freezing, respectively. As can be observed in Figure 2,
CPs’ effectivity widely varied over the range of concentrations tested. Furthermore, a dif-
ferent behavior pattern can be noticed as a function of the type of CP (monosaccharides,
sugar alcohols, or disaccharides), the concentration used, and the freezing process. As
an example, sucrose (a disaccharide) appeared to perform better at high concentrations
(Figure 2A,E). At 2.5%, and with fast freezing, sucrose led a ∆ Size of 80 ± 16 nm, while
20% sucrose promoted a smaller ∆ Size of 40 ± 21 nm. In contrast, a monosaccharide
such as fructose appeared to behave better at low proportions, exhibiting ∆ Size values
of 58 ± 2 nm and 87 ± 14 nm for concentrations of 2.5% and 20%, respectively, when fast
freezing was employed. Additionally, as a general trend, the use of fast freezing seemed to
favor low ∆ Size values.

The ∆ PdI values ranged from 0.06–0.37 and 0.09–0.51 for fast and slow freezing,
respectively. Similar trends to those described for ∆ Size in terms of CP type, concentration,
and freezing speed were observed (Figure 3).

In contrast, a narrower results’ range of −5–+5 mV and −4–+7 mV was reported for
∆ ZP using fast or slow freezing, respectively (Figure 4). In this case, positive increases
were considered to be more relevant than negative ones, due to the impact that they could
have over colloidal stability. However, only slight neutralizations were found with some
CPs, such as lactose, fructose, or trehalose.

3.3. Influence of Lyophilization Variables over NLCs’ Characteristics (Model 1)

FormRules® (Intelligensys Ltd., Kirkwall, Scotland, UK) succeeded in modelling
∆ Size and ∆ PdI parameters, as both R2 values were above 70% (Table 2), indicating
suitable predictabilities [25]. Moreover, computed f values were higher than the critical ones
for the degrees of freedom of the model, indicative of no statistically significant differences
among predicted and experimental results and, therefore, accuracy [18]. However, limited
predictability (R2 = 51.35%) was achieved for the ∆ ZP model, probably due to the similarity
of the values obtained, indicating ZP variations cannot be completely explained by the
variables studied.

Table 2. Inputs selected by NFL models that explain ∆ Size, ∆ PdI, and ∆ ZP in lyophilized NLCs’
formulations, along with predictability (R2) and ANOVA parameter (f: critical value of the f dis-
tribution). The most relevant submodel is bolded, while models not meeting quality criteria are
highlighted in red.

Output Submodels Inputs from
FormRules® R2 Calculated f

Value
Degrees of
Freedom

f Critical for
p < 0.01

∆ size
Submodel 1 CP × Speed

91.77 10.17 34 and 31 2.32Submodel 2 CP × %CP

∆ PdI
Submodel 1 CP × %CP

76.04 8.29 18 and 47 2.34Submodel 2 Speed
Submodel 3 %CP

∆ ZP
Submodel 1 CP × Speed

51.35 3.52 15 and 50 2.42Submodel 2 %CP
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Figure 4. Increase in zeta potential of the NLCs (∆ ZP) after lyophilization with different CPs at variable concentrations:
(A) 2.5% w/v, (B) 5% w/v, (C) 10% w/v, (D), 15% (w/v), (E) 20% w/v. Light colours correspond to slow freezing processes and
dark colours to fast freezing processes. The CPs are grouped according to their type into disaccharides (D), sugar alcohols
(SA), and monosaccharides (M).
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Both ∆ Size and ∆ PdI were affected by the three variables studied (freezing speed,
CP selected, and concentration (%CP)), with the interaction between the CP and the
CP concentration having the strongest effect on both outputs (highlighted submodels
in Table 2).

According to the “IF-THEN” rules generated by FormRules® (Intelligensys Ltd.,
Kirkwall, Scotland, UK) for ∆ Size and ∆ PdI (Tables S1 and S2), every CP required a specific
range of concentration for its best performance. As a general trend, a fast freezing speed
favored the obtention of formulations exhibiting a low ∆ Size. The sugar alcohols, mannitol
and sorbitol, led the worst results for ∆ Size in the whole range of concentrations, using
either fast or slow freezing speeds (Rules 19–30, Table S1). Fructose and glucose required
low-medium concentrations (up to 12.5%), along with a fast freezing speed (Rules 1–12,
Table S1). On the other hand, sucrose should be employed at a medium-high concentration
(over 2.5%) if a fast freezing speed is employed. Furthermore, an even higher sucrose
proportion (above 12.5%) would be required if slow freezing is selected. Fructose, glucose,
and sucrose performed slightly better if a fast freezing speed was employed (Rules 31–36,
Table S1). Finally, an optimum cryoprotective performance could be obtained with medium
concentrations (2.5%–12.5%) of trehalose and lactose. Furthermore, these disaccharides
exhibited a similar behavior with both fast and slow freezing speeds (Rules 13–18 and
37–42, Table S1).

Similar conclusions were obtained from the ∆ PdI model set of rules. Although in
general, a low ∆ PdI was achieved, some differences among CPs were found. In the same
way as reported for ∆ Size, mannitol and sorbitol also exhibited a poor performance in
terms of ∆ PdI. However, the use of specific conditions, such as CP proportions ranging
from 7.5% to 12.5% and a fast freezing speed, would allow us to obtain a low ∆ PdI
(Rules 31–50, Table S2). Glucose, lactose, and fructose should be ideally employed in a low-
medium concentration (up to 10%) to achieve a low ∆ PdI. Regarding the freezing step,
no relevant differences were found between freezing speeds for these three compounds
(Rules 1–30, Table S2). On the other hand, sucrose exhibited a different behavior, since
it works better at medium-high concentrations and its concentration requirements vary
depending on the freezing speed (above 3.75% and 12.5% for fast and slow freezing,
respectively) (Rules 51–61, Table S2). Lastly, the rules for trehalose indicated its use at low-
mid proportions (up to 12.5% and in the range of 3.75%–12.5% for fast and slow freezing
speeds, respectively) led to a small ∆ PdI (Rules 62–71, Table S2).

3.4. Influence of Cryoprotectant Properties and Operation Conditions over NLCs’ Characteristics
(Model 2)

In a second and more detailed approach, the role of CP-specific characteristics (such as
MWCP and Π) and freezing speed on ∆ Size, ∆ PdI, and ∆ ZP was modelled. FormRules®

(Intelligensys Ltd., Kirkwall, Scotland, UK) also succeeded in modelling ∆ size and ∆ PdI,
leading to R2 higher than 70% and computed f values above the critical ones in both cases.
A suitable model for ∆ ZP was not found in this case. The information provided by the
NFL software showed that both ∆ Size and ∆ PdI are explained by the interaction between
MWCP and Π. Moreover, ∆ Size variations were also associated with the interaction of
MWCP and freezing speed, while changes in ∆ PdI were attributed to the freezing speed
(Table 3).

The rules for ∆ Size model indicated CPs of low molecular weight, below 220 g/mol,
performed better at low Π values. Moreover, those exhibiting a MW ranging from
220 to 300 g/mol needed medium–high Π values for obtaining low ∆ Size. Interestingly,
CPs with a MW above 300 g/mol showed a higher independence of Π values, as a low
∆ Size would be obtained in all cases (Rules 1–9, Table S4). Furthermore, similar results
were obtained for ∆ PdI, although, in this case, Π requirements were reported to increase
progressively with the increase in MWCP in all cases (Rules 1–9, Table S5).
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Table 3. Inputs selected by NFL models that explain ∆ Size, ∆ PdI, and ∆ ZP in lyophilized NLCs’
formulations, along with predictability (R2) and ANOVA parameter (f: critical value of the f dis-
tribution). The most relevant submodel is bolded, while models not meeting quality criteria are
highlighted in red.

Output Submodels Inputs from
FormRules® R2 Calculated

f Value
Degrees of
Freedom

f Critical
for p < 0.01

∆ size
Submodel 1 MWCP × Π

74.38 10.14 14 and 49 2.47Submodel 2 MWCP × Speed

∆ PdI
Submodel 1 MWCP × Π

70.50 12.65 10 and 53 2.68Submodel 2 Speed
∆ ZP Submodel 1 Π 1.58 0.49 2 and 61 4.97

The interaction among MWCP and freezing speed also played a role on ∆ Size. In this
way, CPs of MW below 220 g/mol performed better when fast freezing was employed.
Slower freezing is advisable for CPs of MW ranging from 220 to 300 g/mol, while a higher
independence of freezing speed was found for CPs showing a MW above 300 g/mol
(Rules 10–15, Table S4). As an example, fructose (MWCP = 180.16 g/mol) at 10% (w/v) led
to values of ∆ Size of 47 ± 5 and 78 ± 7 nm when fast and slow freezing were carried
out, respectively.

Furthermore, fast freezing speed promoted lower ∆ PdI, as indicated by a lower
membership degree for rule 11 (Rules 10–11 Table S5).

4. Discussion

NLCs’ formulations demonstrated a good ability to endure the lyophilization process.
This phenomenon might be related to the freezing speeds selected in this work (−80 ◦C
and −196 ◦C), which are likely to limit nanoparticle movement, reducing aggregation [27].
However, LP exhibited a gummy-like nature and a challenging re-dispersion, probably due
to the presence of a high residual water content along with the lack of a porous structure.
These features are related to the collapse of the formulation structures [10] and justify the
use of cryoprotectants.

CPs are usually employed during lyophilization to protect nanoparticles from freezing
stress [28], reduce aggregation, and improve re-dispersion [27]. Several mechanisms of
action of CPs have been proposed. Some authors have suggested that CPs generate a glassy
matrix when the glass transition temperature of the maximum cryo-concentrated solution
(Tg′) is reached, in which the nanoparticles are immobilized and protected [8,10,29]. Tg′

corresponds to the glass transition temperature (Tg) of the highly concentrated solution
generated after the formation of ice crystals during freezing [10,29]. Other authors have
suggested that, during freezing, nanoparticles could be isolated by sugar molecules in
the unfrozen fraction, increased in volume by the addition of CPs, without requiring
sugar vitrification [30]. In this second theory, the sugar acts as a scaffolding, inhibiting
nanoparticle movement locally, as previously described for protein stabilization [31]. CPs
can also act as lyoprotectants, conferring protection from drying stress [32], by generating
hydrogen bonds with the polar groups of the nanoparticle surface, thus replacing water
molecules [7,8,10].

In this work, in order to deepen the usefulness of carbohydrates as cryoprotectants for
the lyophilization of NLCs, several of them widely used as CPs were selected, among which
were sugar alcohols, monosaccharides, and disaccharides, and they were tested at differ-
ent concentrations and conditions. After nanoparticle lyophilization and reconstitution,
particle size, PdI, and ZP were determined and compared with their initial values. Highly
heterogeneous values for both ∆ Size and ∆ PdI were obtained (Figures 2 and 3), with
several patterns for the different lyophilization conditions tested (freezing speed, CP type,
and concentration). On the contrary, the zeta potential variations were small, although
positive ∆ ZP was observed for some CPs such as lactose, fructose, or trehalose (Figure 4).
It is likely that this phenomenon is more related to the adsorption of CP molecules on
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the surface of the nanoparticles, due to interactions between these and the OH groups of
the CPs, than to a real modification of the surface of the nanoparticle during the process
of lyophilization [10,33].

Based on the results obtained from the NFL modelling (model 1), we proposed a traffic
light system to establish the effect of CP, its concentration (%CP), and freezing rate on the
reconstituted NLCs’ characteristics and help in the selection of CP and process conditions
(Figure 5). Not desirable conditions to obtain low ∆ size or ∆ PdI are indicated in red
while highly advisable conditions are denoted in green. This classification system was
set up from the obtained “IF-THEN” rules and their membership degrees (MD). Green
and red colors represent lyophilization conditions which, according to “IF-THEN” rules,
exhibited MD values higher than 0.75 to obtain low or high ∆ size/∆ PdI values. Yellow
colors represent conditions leading to either low or high ∆ size/∆ PdI values, obtained
from rules showing a MD ranging from 0.5–0.74.
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Interestingly, the optimal ranges of %CP proposed by the NFL software for sugars
such as sucrose, fructose, glucose or trehalose were in agreement with those selected by
other authors as having the best protective effect [34] (Figure 5).

The second NFL model, focused on understanding the role of certain CP parameters
(such as MWCP and Π, along with freezing speed) on LP properties, was in agreement with
model 1, with a slightly lower predictive capacity.

Results from model 2 indicated the MWCP determined the optimal freezing speed
and Π to obtain a product with easy redispersion and adequate characteristics (low ∆ Size
and ∆ PdI). Thus, for CPs of MW below 220 g/mol (monosaccharides and sugar alcohols),
low Π values and a fast freezing speed are preferred. CPs with a MW above 300 g/mol
(disaccharides) work better at high Π values, and, in these cases, the process was barely
influenced by the freezing speed.

The scientific literature shows some controversy regarding the most suitable freezing
speed for nanocarriers’ lyophilization [15,35]. Model 1 showed a general preference for fast
freezing using liquid nitrogen, in agreement with previous theories, which indicated that
fast supercooling leads to the generation of small ice crystals, reducing mechanical stress
over nanocarriers [7,10]. Moreover, results from model 2 helped to explain this controversy,
indicating that freezing speed requirements vary depending on the MWCP, in agreement
with data reported by other authors [15]. As the freezing front progressed, ice crystals and
a cryo-concentrated solution, consisting of nanoparticles and other formulation elements,
were formed [10,15]. The number of CPs available to protect the nanoparticles varied as
a function of the freezing speed and the diffusion rate of the CP molecules toward the
cryo-concentrated phase [15], which, in turn, depended on the MWCP. Low MW CPs must
migrate faster than high-molecular-weight ones.

In this way, the preference for a rapid freezing observed for CPs with a MW below
220 g/mol can be explained by their expected fast migration capacity. This feature could
allow efficiently protecting NLCs and also to take advantage from the fast freezing benefits,
as smaller ice crystals’ generation [10,15]. Meanwhile, NLCs’ dispersions stabilized with
CPs exhibiting a MW ranging from 220 to 300 g/mol, exhibiting better properties in terms
of ∆ Size if a slower freezing rate was employed.

On the other hand, the higher independence from freezing speed observed for the
biggest molecules can be related to their superior Tg [36]. Disaccharides have higher Tg
than monosaccharides [37], which explains why they vitrify earlier during the freezing
process, immobilizing the NLCs in a vitreous matrix and, thus, minimizing particle damage
and the effects of freezing. This effect is likely to be responsible for the lower prediction
capacity of the second NFL model, due to the involvement of other CP characteristics
different than MW.

Furthermore, the variations in Π requirements as a function of the MWCP described
in the second model could also be explained by the diffusion phenomenon. Hence, the
addition of a high number of poorly diffusive CPs to the nanoparticles could increase
the presence of these compounds in the cryo-concentrated liquid phase and counteract
their slow diffusion [15]. Additionally, considering Π is a colligative property, its require-
ments would be directly related with %CP, which explains the high similarity between the
two NFL models.

As an example, fructose and glucose (MWCP = 180.16 g/mol) were found to be more
effective when employed up to a certain concentration, while the use of higher CP propor-
tions is more advisable for sucrose (MWCP = 342.3 g/mol). Nevertheless, trehalose and
lactose (MWCP = 342.3 g/mol) seemed to exhibit different behaviors than those described
for sucrose, as they were found to perform better when employed at medium concentra-
tions (Figure 5). These contradictory findings could be associated, on the one hand, to the
remarkable protective activity of trehalose, triggered by features such as low hygroscopicity,
higher glass transition temperature, or absence of internal hydrogen bonding [10,12–14].
On the other hand, lactose crystallization during freezing [38] could lead to the low %CP
requirements observed. In this way, the formation of a eutectic with ice and the generation
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of CP crystals could favor nanoparticle aggregation and fusion [10] since the generation
of these ice crystals might induce shear stresses on the nanoparticles and cause a loss of
cryoprotectant–nanoparticle interactions [31]. Furthermore, mannitol and sorbitol have
also been reported to crystallize during the lyophilization process [39], which could explain
the poor cryoprotective effectivity achieved with both CPs.

Therefore, in the same way as described for freezing speed, crystalline behavior could
also be associated with the lower prediction capacity shown by the second model, in
comparison with the first one.

5. Conclusions

The neurofuzzy logic analysis allowed a better understanding of the role of lyophiliza-
tion conditions, such as freezing speed or certain characteristics of the carbohydrate cry-
oprotectants, on the properties of the obtained nanoparticles and to provide some insights
into the physicochemical phenomena involved. The knowledge generated allows a rational
selection (avoiding trial and error approaches) of the variables used for lyophilization to
obtain easily redispersible NLCs, with similar characteristics to those initially produced.
NLCs’ lyophilization could be performed using a considerable variety of variables (CP
choice, proportion employed, or freezing speed) as long as they are properly combined. In
this way, the use of monosaccharides such as glucose or fructose in a concentration up to
10% and a fast freezing speed is highly advisable. Moreover, the addition of disaccharides,
such as sucrose and trehalose, at concentrations higher than 12.5% and in the range of
3.75%–12.5%, respectively, can also constitute interesting options to obtain NLCs with
suitable properties with any of the freezing speeds evaluated. Nonetheless, the usage of
sugar alcohols, such as mannitol or sorbitol, would not be advisable.
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.3390/pharmaceutics13091330/s1. Table S1: Set of combined IF-THEN rules for ∆ size of the first
NFL model. Table S2: Set of combined IF-THEN rules for ∆ PdI of the first NFL model. Table S3: Set
of combined IF-THEN rules for ∆ ZP of the first NFL model. Table S4: Set of IF-THEN rules for ∆
size of the second NFL model. Table S5: Set of IF-THEN rules for ∆ PdI of the second NFL model.
Table S6: Set of IF-THEN rules for ∆ ZP of the second NFL model. Figure S1: DLS measurements of
NLCs lyophilized using trehalose as cryoprotectant. S: slow freezing speed; F: fast freezing speed.
Figure S2: DLS measurements of NLCs lyophilized using sucrose as cryoprotectant. S: slow freezing
speed; F: fast freezing speed. Figure S3: DLS measurements of NLCs lyophilized using lactose as
cryoprotectant. S: slow freezing speed; F: fast freezing speed. Figure S4: DLS measurements of
NLCs lyophilized using fructose as cryoprotectant. S: slow freezing speed; F: fast freezing speed.
Figure S5: DLS measurements of NLCs lyophilized using glucose as cryoprotectant. S: slow freezing
speed; F: fast freezing speed. Figure S6: DLS measurements of NLCs lyophilized using mannitol as
cryoprotectant. S: slow freezing speed; F: fast freezing speed. Figure S7: DLS measurements of NLC
lyophilized using sorbitol as cryoprotectant. S: slow freezing speed; F: fast freezing speed.
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AI Artificial Intelligence
ANN Artificial Neural Networks
CP/CPs Cryoprotectant/Cryoprotectants
LN Lipid Nanoparticles
LP Lyophilized Powders
MD Membership Degree
MW Molecular Weight
MWCP CPs’ molecular weight
NFL Neurofuzzy Logic
NLCs Nanostructured Lipid Carriers
PdI Polydispersity Index
SLN Solid Lipid Nanoparticles
Tg Glass transition temperature
Tg′ Glass transition temperature of the maximum cryo-concentrated solution
ZP Zeta Potential
Π Osmolarity
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