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Abstract: Enterococcus faecalis is known as a significant nosocomial pathogen due to its natural
resistance to many antibacterial drugs. Moreover, it was found that E. faecalis infection causes
inflammation, production of reactive oxygen species, and DNA damage to human gastric cancer cells,
which can induce cancer. In this study, we synthesized and tested the biological activity of a new Schiff
base, 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine (3),
and compared its properties with an analogous amine (2). In the biological investigation, 3 was found
to have antibacterial activity against E. faecalis 29212 and far better anticancer properties, especially
against gastric adenocarcinoma (human Caucasian gastric adenocarcinoma), than 2. In addition, both
derivatives were non-toxic to normal cells. It is worth mentioning that 3 could potentially inhibit
cancer cell growth by inducing cell apoptosis. The results suggest that the presence of the –C=N–
bond in the molecule of 3 increases its activity, indicating that 5-iminomethylpyrimidine could be a
potent core for further drug discovery research.

Keywords: antibacterial activity; anticancer activity; apoptosis; pyrimidines; Schiff bases

1. Introduction

Enterococcus is a large genus of gram-positive cocci traditionally considered part of
the lactic acid bacteria [1]. They are ubiquitous and can be found as commensal organ-
isms in the gastrointestinal tract of humans and animals, and also in soil, water, and
plants [2]. Furthermore, their resistance to physical and chemical conditions and ability
to exploit various substrates as a growth medium results in their being present also in
food [3]. Generally, they are not desirable in processed meat because they prompt decay-
ing processes. However, on the other hand, they have an important application in the
fermentation products industry because of their significant role in developing peculiar
organoleptic characteristics of such food products. Thus, Enterococci are included as part
of starting cultures in cheese production [4]. It was reported that Enterococci were used
as probiotics, but such application became a controversial issue owing to the emergence
of antibiotic-resistant strains and their association with human diseases (see below) [3].
Over the years, Enterococci were believed to be harmless to humans and thus medically
unimportant. They were recognized as a significant nosocomial pathogen due to their
natural resistance to antibacterial drugs, and their ability to acquire virulence and mul-
tidrug resistance even to last-resort medicines such as linezolid, quinupristin-dalfopristin,
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or daptomycin [5]. Enterococci can cause different infections (e.g., endocarditis, bacteremia,
urinary tract infections, meningitis, and wound infections). Currently, they are the leading
cause of hospital-acquired infections [6]. It was reported that enterococcal cell extracts
and whole organisms are capable of generating superoxide (O2−) [7], which can lead to
oxidants like hydrogen peroxide or hydroxyl radicals that damage DNA [8] and induce
genetic instability in cells [9,10]. The bacterium also activates macrophages to produce
4-hydroxy-2-nonenal, which in turn promotes colon carcinogenesis in Il10−/−mice [11].
One study demonstrated that the bacterium is significantly more often detected in stool
specimens of colorectal cancer cases than in controls [12]. The nexus of the presence of
E. faecalis and stomach carcinogenesis is critical. Enterococci are predominant bacteria found
in the stomachs of achlorhydric mice [13]. Their presence may increase stomach cancer risk
in achlorhydric individuals since the overgrowth of bacteria other than Helicobacter pylori in
the gastric lumen is common among patients with gastric cancer [14]. It was also confirmed
that E. faecalis infection causes inflammation, production of reactive oxygen species, and
DNA damage to human gastric cancer cells. There are many similarities between infections
by E. faecalis and H. pylori that can induce cancer-promoting events in humans [15,16].

Pyrimidine is commonly found in nature as a constituent of nucleic acids and many other
natural and synthetic compounds, including drugs. It is known as a potent pharmacophore.
Many pyrimidine derivatives have been established as potentially valuable sources of an-
tibacterial, anti-inflammatory, antitumor, and anticancer agents [17,18]. Recently, several
new 2,4-disubstitued pyrimidine compounds acting against E. faecalis have been obtained
and studied [19]. The most potent compound has a nitrogen side chain attached to the
pyrimidine ring at position 2 (Figure 1a). Furthermore, strong antibacterial activity is exhib-
ited by pyrimidines containing the double bond of the chain at position 5 of the ring. Al
Neyadi et al. demonstrated that the double bond in (E)-2-(benzo[d]thiazol-2′-yl)-3-(2′′,4′′-
diaminopyrimidin-5′′-yl)acrylonitrile (Figure 1b) has the potential to irreversibly bind to the
penicillin-binding protein (PBP) and covalently bind to the β-lactamase enzyme, which ex-
plains its capability to overcome bacterial resistance by demonstrating significant synergism
when combined with amoxicillin [20]. Good bactericidal activity and low toxicity to human
cells were also shown by pyrimidine-oxazolidone analogs (Figure 1c), wherein the rings are
connected through a methine bridge. A molecular docking study suggested that these com-
pounds could inhibit protein biosynthesis by binding to sites on the bacterial ribosomes [21].
Antibacterial and antifungal effects of imines of pyridi[1,2-a]pyrimidine (Figure 1d) and vari-
ous amino acids were reported. Researchers found that aromatic amino acid compounds are
more potent than aliphatic amino acid compounds [22]. Strong antifungal activity was also
exhibited by Shiff bases (Figure 1e) and phenylhydrasones (Figure 1f) of pyrimidinetriones.
Their minimum inhibitory concentration (MIC) against C. albicans and C. glabrata ranged
from 1 to 8 ug/mL, and a mechanism of action connected with hindering fungal energy
production was proposed [23]. By modifying the lead structure of 2-methylpyrimidine-4-
ylamine derivatives containing a 1,2,3-triazole ring, He et al. substituted the benzene ring
and the aminomethyl bridge at position 5 of the pyrimidine ring (Figure 1g) and obtained
new, highly potent pyruvate dehydrogenase multienzyme complex E1 (PDHc E1) inhibitors
with bactericidal activity. It was demonstrated that the inhibitory potency of compounds
against E. coli PDHc E1 could be greatly enhanced when the linkage (between pyrimidine
and benzene ring moiety) of the lead compound was replaced with N-acylhydrazone moiety.
The most potent compound (Figure 1h) containing the azomethine group (–CH=N–) could
selectively inhibit the enzyme activity of microorganisms with little effect on mammalian
cells, and thus could be used as a novel lead structure for further optimization [24,25].
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Figure 1. New potent antibacterial pyrimidines: derivative of 2,4-disubstitued pyrimidine (a); pyrimidines with the
double bond of the chain at position 5 of the ring (b,c); pyrimidines containing the azomethine group at position 5 of the
ring (d–f); lead structure (g) and the most active derivative obtained by He et al. (h)The azomethine group is present in
such classes of compounds as imines, oximes, or hydrazones that are formed in the reaction of carbonyl compounds with
amines, hydroxylamine, or hydrazine, respectively. In the chemistry of pyrimidines, the formation of this group mostly
employs the reaction of aminopyrimidines with aldehydes [26]. Sometimes pyrimidine-5-carbaldehyde is also used [27].
Imines substituted at nitrogen with alkyl or aryl group are known as Schiff bases and were first described in 1864 [28]. To
date, many methods for their synthesis have been described. The most common employ the removal of water, using a
catalytic amount of Lewis acids and irradiation techniques [29–32]. They still arouse the interest of scientists because of
the wide range of pharmacological activities they exhibit, including, among others: antimicrobial [33], anticancer [34,35],
anti-inflammatory [36], and analgesic activity [37].

By now, our research group has synthesized a number of 6-methyl-2-phenylpyrimidin-
4-amine derivatives and evaluated their antimicrobial properties. It was found that the
pyrimidine amines that possess a halo group attached to the phenyl ring at the amino group
at position 4 and an alkoxy group at the phenyl ring at position 5 of the 5-(aminomethyl)-
6-methyl-2-phenylpyrimidin-4-aminesystem and vice versa exhibit strong antibacterial
properties [38,39]. It should be mentioned that a similar impact of the substituents was
also observed in the case of 1,2,3-triazolepyrimidine-based hybrids that can act as potent
reversal agents against ABCB1-mediated multidrug resistance [40]. Additionally, in the
study on 4-aminopyrimidine, we were mainly focused on its 5-aminomethyl derivatives
and their cyclization products with aldehydes because of their interesting antimicrobial
activity [41,42].

During our further research, in the reaction of the product of chlorination of [4-(4-
fluoroanilino)-6-methyl-2-phenylpyrimidin-5-yl]methanol (1) with p-phenetidine, we ob-
served on a TLC plate not only the expected 5-[(4-ethoxyanilino)methyl]-N-(4-fluorophenyl)-
6-methyl-2-phenylpyrimidin-4-amine (2), but also an additional light yellow spot that
turned out to be a new pyrimidine Schiff base, namely 5-[(4-ethoxyphenyl)imino]methyl-
N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine (3).

The therapeutic importance of suitably functionalized pyrimidines encouraged us to
develop an innovative and effective synthesis of Schiff bases in which halo and alkoxy
substituents could be arranged in a pharmacophoric pattern to display diverse pharma-
cological activities. Herein, we evaluated the synthesis and biological properties of a
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new pyrimidine Schiff base that combines the antibacterial activity against E. faecalis and
the anticancer potential against AGS (gastric adenocarcinoma) cell lines, compared its
properties with an analogous amine, and examined the structure-activity relationships.

2. Results
2.1. Chemistry

The studied compounds were synthesized as outlined in Scheme 1. The synthesis
started with 1, which was obtained and then halogenated with SOCl2 according to the
procedure described in the literature [43]. Then the gray halogen-derivative was directly
coupled with p-phenetidine in tetrahydrofuran (THF) at r.t. After 24 h on a TLC plate
beyond the amine spot, we also observed a light yellow speck of an unidentified compound.
During the separation of products via column chromatography, the additional product
went with the solvent front and was collected.

Scheme 1. Synthesis of compounds 2–4. Conditions: (a) SOCl2, benzene, 24 h, r.t.; (b) p-phenetidine, THF, 24 h, r.t.; (c) PCC,
CH2Cl2, 3 h, r.t.; (d) p-phenetidine, THF, 3 h, b.p.; or p-phenetidine, In(OTf)3, THF, 24 h, r.t.; or p-phenetidine, In(OTf)3,
MeOH, 24 h, b.p.

The analysis of MS spectra (see Figures S1–S3 in the Supplementary Materials of this
paper), which compares the isotopic distribution of the ion with the pattern (Figure S4),
indicated that the unknown compound has the same structure as the proposed Schiff base 3.
The IR spectrum (Figure S5) also showed the presence of the –CH=N– group. Unfortunately,
the compound amount was too small to perform other tests.

The NMR spectrum of the main product of the reaction (compound 2, Figure S6)
showed characteristic signals from the ethyl group of p-phenetidine (1.42, t, 3H; 4.01, q, 2H)
and four additional aromatic protons. The newly formed amino group could be observed as
a broad signal at about 3.60 ppm. The IR spectrum (Figure S7) showed the secondary amino
group at 3295 cm−1. In addition, the MS spectrum (Figure S8) and elemental analysis
confirmed the structure of the obtained derivative.

We found it noteworthy to examine the impact of the single versus double bond in
the structures of 2 and 3 on their features and activity. Therefore, we decided to work
out a method of synthesizing 3 that would enable us to obtain a sufficient amount of
the compound for further investigation. The oxidation of the hydroxyl group of 1, and
then coupling it with p-phenetidine, appeared most practical. Pyridinium chlorochromate
(PCC) was selected as the oxidizing agent due to its stability, selectivity, and mild reaction
conditions [44]. The reaction was carried out in CH2Cl2 at room temperature for 3 h to
obtain aldehyde 4. The NMR spectrum (Figure S9) showed the proton of the aldehyde
group at 10.43 ppm. On the IR spectrum (Figure S10), the carbonyl group could be seen at
1630 cm−1. The MS spectrum (Figure S11) and elemental analysis were also in line with
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expectations. The aldehyde 4 was coupled with p-phenetidine in three different ways to
obtain Schiff base 3. The reaction in THF in the presence of a catalytic amount of indium(III)
trifluoromethanesulfonate (In(OTf)3) as Lewis acid at r.t. turned out to be the most effective.
The NMR spectrum (Figure S12) showed characteristic signals from the ethyl group of
p-phenetidine (1.46, t, 3H; 4.09, q, 2H) and additional aromatic protons. Other analyses also
confirmed the structure of compound 3. The IR spectra of the compound obtained in the
first reaction and through the coupling of aldehyde 4 with p-phenetidine were identical
(compare Figures S5 and S13). The analysis of the MS spectrum of 3 showed a signal at
427.1882 and was in line with expectations (Figure S14).

2.2. X-ray Structural Studies

Single-crystal X-ray diffraction was used to determine the crystal structures of com-
pounds 2 and 3. Details of the data collections, analyses, and refinements of the studied
crystals are given in Table S1. A comparison of selected geometrical parameters is presented
in Table S2, Supplementary Materials of this paper.

The crystal structure analysis revealed that compound 2 belongs to the orthorhombic
crystal system with the Pca21 space group (Z = 4), and crystallizes with one molecule in
the asymmetric unit (Figure 2).

Figure 2. X-ray molecular structure of 2 with the atom-numbering scheme. Displacement ellipsoids
are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The
dashed line (in black) indicates the N–H· · ·N hydrogen bond.

There is an intramolecular N–H· · ·N hydrogen bond between N4–H4 and N5 of
both amine groups (Table 1), which closes a six-membered ring with an S(6) motif [45]. Such
an intramolecular hydrogen bond, with a similar synthon, can be found in previously stud-
ied crystal structures of 2-phenylpyrimidine-4-amine derivatives [46–48]. The N4· · ·N5
distance [2.9365 (18) Å] is generally longer in 2 than in other such derivatives [47,48];
however, it is comparable with 2.940 (3) Å observed in one polymorphic form (denoted as
Ia) of N-(4-chlorophenyl)-5-[(4-chlorophenyl)aminomethyl]-6-methyl-2-phenylpyrimidin-
4-amine [46]. The dihedral angles describe the conformation of the molecule between the
pyrimidine ring plane and those of the phenyl ring attached to atom C2 and two other
aryl rings of the (4-fluorophenyl)amino or (4-ethoxyphenyl)aminomethyl groups, attached
to atoms C4 or C5 of the pyrimidine ring. The dihedral angles are 8.9 (2), 36.8 (2), and
79.2 (2)◦, respectively.
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Table 1. Hydrogen bonding geometrical parameters for crystals 2 and 3 (Å,◦).

D—H· · ·A d(D—H) d(H· · ·A) d(D· · ·A) <(D—H· · ·A)

Compound 2
N4—H4· · ·N5 0.860 (17) 2.277 (17) 2.9365 (18) 133.6 (14)
N5—H5· · ·N1i 0.93 (2) 2.32 (2) 3.1358 (18) 145.4 (14)

C46—H46· · ·N3 0.95 2.40 2.8894 (18) 111
C43—H43· · ·O5ii 0.95 2.59 3.496 (2) 159
C61—H611· · · F4iii 0.98 2.54 3.277 (2) 132

Compound 3
N4—H4· · ·N5 1.00 (2) 1.75 (2) 2.664 (2) 150.4 (17)

C46—H46· · ·N3 0.95 2.35 2.918 (2) 118
C25—H25· · ·O5i 0.95 2.53 3.452 (3) 165
C24—H24· · · F4ii 0.95 2.63 3.572 (2) 171
C53—H53· · · F4iii 0.95 2.64 3.298 (2) 127

Symmetry codes: 2: (i) – x + 1/2, y, z − 1/2; (ii) – x + 1, − y + 1, z − 1/2; (iii) – x + 1/2, y + 1, z + 1/2; 3: (i) x + 1, y, z − 1; (ii) – x + 1,
y − 1/2, − z + 1/2; (iii) − x, y − 1/2, − z + 3/2.

The molecules of 2 are linked by an intermolecular N–H· · ·N hydrogen bond involv-
ing N5 amine nitrogen as a donor and N1 pyrimidine nitrogen of (−x + 1/2, y, z − 1/2)
as an acceptor (Table 1), which are building a molecular chain in the direction of the
c-axis. Within such chains, one can identify aromatic π-π stacking interactions (with a
centroid· · · centroid separation of 3.71 Å) between pyrimidine rings (Figure 3). Neigh-
boring chains are linked to each other by C−H· · ·O and C−H· · · F contacts, generating a
three-dimensional (3D) network (Figure S15, Supplementary Materials of this paper).

Figure 3. Part of the crystal structure of 2, showing the formation of the one-dimensional chain
through intermolecular interactions with N–H· · ·N (in black) and π-π (in plum). Cg1 is the centroid
of the N1–C6 ring. Symmetry code is the same as in Table 1.

The structure determination revealed that compound 3 crystallizes in the monoclinic
space group P21/c (Z = 4), with one molecule in the asymmetric unit (Figure 4a). The
molecule of 3, compared to the molecule of 2, differs in the presence of an imine bond
[1.288 (2) Å] instead of an amine bond [1.461 (2) Å] between C57 and N5 atoms, which is
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also reflected by a change in orientation of the benzene rings attached to the pyrimidine ring
(Figure 4b). In the case of 3, the aryl rings attached to atoms C2 and C4 of the pyrimidine
ring are only slightly twisted with respect to the pyrimidine ring plane, with the dihedral
angles of 10.3 (3) and 15.2 (3)◦, respectively. The pyrimidine and 4-ethoxyphenyl rings in
3 adopt an E configuration along the imino functional group, and both the planes of the
pyrimidine and the phenyl moieties are twisted only at 8.6 (3)◦ to each other, respectively.
This orientation is probably stabilized by the intramolecular N–H· · ·N hydrogen bond
between N4–H4 and N5 of amine and imine groups (Table 1), similar to 2. However, the
N4· · ·N5 distance of 2.664 (2) Å is shortened compared to 2.937 (2) Å observed in 2.

Figure 4. (a) X-ray molecular structure of 3 with the atom-numbering scheme. Displacement ellip-
soids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
The dashed line (in black) indicates the intramolecular N–H· · ·N hydrogen bond. (b) Overlapping in
the structure of 2 (in blue) and 3 (in light orange); the common reference points are N1, C2, N3, C4,
C5, and C6 atoms of the pyrimidine rings.

The molecules of 3 are linked by an intermolecular C–H· · ·O hydrogen bond, involv-
ing C5 aromatic carbon as a donor and O5 ethoxy oxygen of (x + 1, y, z − 1) as an acceptor,
and build molecular chains (Table 1, Figure 5). A 2D hydrogen-bonded network is created
by the connection of neighboring chains through C−H· · · F hydrogen-bonding interactions
(Figure S16).
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Figure 5. Part of the crystal structure of 3 showing the formation of the one-dimensional chain through C–H· · ·O (in red)
intermolecular interactions. The dashed lines (in black) indicate intramolecular N–H· · ·N hydrogen bonds. Symmetry code
is the same as in Table 1.

2.3. Cells and Cytotoxicity Assay
2.3.1. Proliferation Inhibition Caused by 2 and 3

Regarding primary screening, a neutral red uptake assay was performed using the
L-929 cell line. Results are shown in Figure 6. An enhancement of cell viability for 3 was
observed (p < 0,05; viability for 1000 µM = 115%, 500 µM = 111%, 250 µM = 115%), and
2 did not significantly affect L-929 survival. Presented results are good input data for
further investigation toward potential cytotoxic features of the analyzed compounds.

Figure 6. Viability of L929 cells after treatment with 2 and 3. * Significant difference from control
(p < 0.05).

The neutral red uptake assay was further used to investigate the cytotoxic effect
for neoplastic cell lines. Obtained results for 2 show selective cytotoxicity to HepaRG
(IC50 404.2 µM). For other cell lines, 2 decreased viability when applied in high concen-
trations (100–1000 µM), but IC50 was not reached (Figure 7), while 3 expressed sufficient
activity to calculate IC50 for AGS (IC50 = 50.24 µM), HepaRG (IC50 = 312.7 µM), HeLa
(IC50 = 355.4 µM), and A172 (IC50 = 526.2 µM) (Figure 8).
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Figure 7. Viability changes after 72 h exposure to 2. Concentrations applied to cells: 1000, 250, 100,
and 10 µM for Caco-2, A172, HepaRG, and HeLa; concentrations for AGS cell line: 1000, 500, 100,
and 10 µM. Concentrations were logarithmized, and viability was calculated as percentages.

Figure 8. Viability changes after 72 h exposure to 3. Concentrations applied to cells: 1000, 250, 100,
and 10 µM for Caco-2, A172, HepaRG, and HeLa; concentrations for AGS cell line: 1000, 500, 100,
and 10 µM. Concentrations were logarithmized, and viability was calculated as percentages.

Flow cytometry was performed for the AGS cell line after incubation with 3 within
the 1, 10, 40, 80, and 100 µM concentration ranges. Results are shown in Figure 9. FDA and
PI were used as indicators for viable and nonviable cells. The first quadrant (Q1) contains
cells stained with FDA, which is converted to fluorescein by esterases in viable cells.

Region four (Q4) consists of dead cells stained with PI due to plasma membrane
integrity loss. Unstained cells are located in the third region (Q3), and double-stained
cells are in the second quadrant (Q2). Quantitative analyses were performed from at
least 20,000 events per sample. The number of cells in the first quadrant decreased from
89.90% to 20.20% for 0 to 100 µM, respectively. Subsequently, the number of cells in the
third quadrant increased from 7.57% to 43.72%, and in the fourth region, it rose from 2.46%
to 35.76% for 0 to 100 µM. The exact IC50 value calculated in the GraphPad Prism software
was 53.02 µM. The results were referred to control with 1% DMSO, which was considered
100% viable.
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Figure 9. The cytotoxic effect after AGS cell line treatment with 3 tested using flow cytometry. FL1 channel represents
536/40 filter, FL3 channel 675/20. Fluorochromes were excited by blue laser (488/50 nm).

2.3.2. Morphological Changes Induced by Imine 3

Imine 3 displays sufficient activity to calculate IC50 for AGS (IC50m = 50.24 µM),
HepaRG (IC50 = 312.7 µM), HeLa (IC50 = 355.4 µM), and A172 (IC50 = 526.2 µM). Flow
cytometry of the most promising AGS cell line confirmed IC50 (53.02 µM) and showed a
high percentage of unstained cells (43.72% for 100 µM).

Cellular morphology observation after treatment with 3 was performed for AGS due to
the highest viability decreasing activity on this cell line in the area of potentially promising
applied concentration. Examination of cells was performed in IC50 (50 µM) under a
fluorescence microscope with contrast phase and UV filter using Hoechst 33342 (Figure 10).
Cells after treatment are shown in Figure 10B,b. Additionally, after 72 h, cells treated
with 50 µM broke apart into apoptotic bodies, suggesting that compound 3 inhibits the
growth of AGS cells by inducing apoptosis. The apoptotic bodies are marked with arrows.
For comparison, intact cells with a round nucleus from negative control are presented in
Figure 10A,a. Shrunken cells’ bodies and fragmented DNA after positive control treatment
(1 µM staurosporine) are shown in Figure 10C,c.

2.3.3. Cell Death

To confirm the cell death pathway, annexin V/PI staining was performed. Testing
with annexin V allows observing the early stage of apoptosis when the phosphatidylserine
is translocated from the inner to the outer cell membrane [49]. Propidium iodide can enter
cells with cell membrane integrity loss; therefore, double-stained cells can be marked as late
apoptotic. The results after 24 h incubation with 3 (Figure 11) showed an increasing number
of early (16.18%) and late (21.58%) apoptotic cells. Other changes occurring in the executive
pathway of cell death include degradation of chromosomal DNA [50]. Unstained cells
were considered viable, early apoptotic cells were stained with Alexa Fluor 488 annexin V,
late apoptotic cells were double-stained, and necrotic cells were stained with PI (Figure 11).
Cells incubated with solvent (1% DMSO) were used as a negative control. Positive control
of apoptosis was 1 µM staurosporine. Percentage of viable cells decreased from 93.57% in
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the control group to 60.02% after 24 h incubation, with an increase in the early apoptotic
fraction (from 3.24% in control to 16.18% after 24 h incubation) and the late apoptotic
fraction (from 2.48% in control to 21.58% after 24 h incubation). The fraction of necrotic
cells (stained with PI only) slightly increased (0.71% in the control group and 2.22% in the
group incubated with 3 for 24 h).

Figure 10. Analysis of cell and nucleus morphology of the AGS cell line treated with 50 µM of 3 after 72 h. Pictures were
taken under fluorescence microscopy with 400×magnification; Hoechst 33342 dye was used in the experiment. Pictures
from the UV filter are described in capital letters, pictures of the contrast phase are indicated with small letters. (A,a)—cell
characteristics in negative control (medium with 1% DMSO); (B,b)—cells after treatment; (C,c)—morphological and nucleus
changes in positive control (1 µM staurosporine).
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Figure 11. Alexa Fluor 488-annexin V and PI staining of the AGS cell line after exposure to 3 at
250 µM concentration.

2.3.4. Genotoxicity/DNA Damage

Single- and double-strand DNA breaks were measured using the comet assay. Geno-
toxicity of 3 was determined after 24, 48, and 72 h incubation with IC50 concentration
(50 µM). As shown in Figure 12, the highest DNA damage index (DI) can be found after 72 h
incubation (DI = 259). DI of the control group was within the range of 20 to 52. Following
induction of DNA damage after exposure to 3, the comet assay was used to show increased
DNA damage index from 52 to 183 after 48 h, and from 20 to 259 after 72 h exposure, which
proved that the damage is caused in a time-dependent manner.

Figure 12. Genotoxic effect of 3 after incubation with the AGS cell line at 50 µM concentration. DNA
damage index was calculated based on comet assay results. As a control, a medium with 1% DMSO
was applied.

2.4. Antimicrobial Activity Assay

According to the newest EUCAST (European Committee on Antimicrobial Suscep-
tibility Testing)-validated publication “Clinical Breakpoints and Dosing (v.10.0)”, where
Enterococcus faecalis ATCC 29212 is used as a quality control strain [51], the experiment was
performed employing convergent parameters. The multidrug resistance of enterococci is
well documented. Moreover, it is often associated with the over-expression of multidrug
resistance efflux pumps, such as EmeA, which belongs to the major facilitator superfamily
(MFS) and the ABC-type multidrug resistance transporters. It excludes compounds that are
structurally and functionally unrelated to prevent the cellular entry of drugs from the cell
or the cytoplasmic membrane. Another well-characterized efflux pump in enterococci is
also a homolog of NorA and EfrAB belonging to the ATP-binding cassette (ABC) superfam-
ily of multidrug efflux transporters [52]. Thus, the mechanisms of resistance to cell-wall
active agents (i.e., beta-lactams, glycopeptides, daptomycin) that interfere with protein
synthesis (aminoglycosides, oxazolidinones, streptogramins, macrolides, lincosamides,
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tetracyclines), and agents that interfere with nucleic acid replication, transcription, and
synthesis (quinolones, rifampicin), are determined [53]. Therefore, considering the viru-
lence and resistance of Enterococcus spp., it is crucial that new compounds are analyzed
against this genus, and MIC/MFC or MBC is determined.

All compounds were tested for their antimicrobial activity against a representative
panel of microbials: Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922,
Staphylococcus aureus ATCC 43300, Streptococcus pneumoniae ATCC 49619, Enterococcus faecalis
ATCC 29212, Klebsiella pneumoniae ATCC 13883, and Candida albicans ATCC 10231. The
in vitro antimicrobial activity was screened using the microdilution method [54] and modi-
fied Richards method [55–57].

For investigated compounds 2 and 3, MIC and MBC results for Enterococcus faecalis
29212 were obtained; MIC/MBC/MFC was not detected in the analyzed 1024 ug/mL to
1 ug/mL of other strains. The results are presented in Table 2. For investigated com-
pounds 2 and 3, MIC and MBC results for Enterococcus faecalis 29212 were obtained;
MIC/MBC/MFC was not detected in the analyzed 1024 ug/mL to 1 ug/mL of other
strains. While amine 2 demonstrates weak antibacterial activity against Enterococcus faecalis
ATCC 29212 (MBC = 1024 ug/mL; MIC = 512 ug/mL), imine 3 exhibits much stronger
potential against this strain (MIC = 16 ug/mL), and, moreover, has bactericidal properties
(MBC = 32 ug/mL).

Table 2. In vitro antibacterial activity of compounds 2 and 3 expressed as a minimal inhibitory concentration (MIC) (ug/mL)
and minimal bactericidal concentration (ug/mL).

Strain
Enterococcus

faecalis
ATCC 29212

Streptococcus
pneumonia

ATCC 49619

Staphylococcus
aureus

ATCC 43300

Escherichia
coli

ATCC 25922

Klebsiella
pneumonia

ATCC 13883

Pseudomonas
aeruginosa

ATCC 27853

Candida
albicans

ATCC 10231

MBC
(ug/mL)

2 1024 n/d n/d n/d n/d n/d n/d
3 32 n/d n/d n/d n/d n/d n/d

MIC
(ug/mL)

2 512 n/d n/d n/d n/d n/d n/d
3 16 n/d n/d n/d n/d n/d n/d

3. Discussion

The reaction between chloromethylpyrimidine 1 and p-phenetidine yielded not only the
expected amine 2, but also a bright yellow byproduct separated via column chromatog-
raphy, and submitted to further examination using spectroscopy techniques. The results
strongly suggested that the byproduct might be a new pyrimidine Schiff base 3, which
was confirmed by devising an effective route of synthesizing 3 that exploited the coupling
of aldehyde 4 with p-phenetidine in the presence of a catalytic amount of indium(III)
trifluoromethanesulfonate.

It appears that the formation of imine 3 as a byproduct during the reaction of
chloromethylpyrimidine 1 and p-phenetidine can be linked with redox properties of the
products of oxidation of p-phenetidine. There are known reactions that exploit N-oxides of
amines, such as pyridine N-oxides [58–60] or another tertiary amine N-oxides [61,62], for
the conversion of chlorides into aldehydes. On the other hand, p-phenetidine is suggested
to form 4-(ethoxyphenyl)-p-benzoquinone imine (4-EPPBQI) as a major product of its
oxidation (Scheme 2) [63,64]. The reactivity of benzoquinone imines has been extensively
studied because of their formation during paracetamol and phenacetin metabolism as
cytotoxic agents involved in several biochemical interactions [65,66]. In addition, they
may undergo reactions that lead to the formation of highly reactive activated oxygen
species, such as superoxide, hydrogen peroxide, or hydroxyl radicals [67], with strong
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oxidative properties. Thus, the proposed hypothesis of the involvement of the oxidation
products of p-phenetidine in imine 3 formation appears entirely plausible, but requires
further investigation. The employment of this reaction for the preparative obtaining of
Schiff bases from chlorides is also an open issue that needs further research.

Scheme 2. Possible mechanism of the 4-EPPBQI formation.

The crystal structures of 2 and 3 were determined by single-crystal X-ray diffraction.
It should be noted that the imine group is attached by an N atom to a pyrimidine ring
in most of the crystal structures of pyrimidine derivative Schiff bases deposited in the
Cambridge Structural Database (CSD, Version 5.39) [68]. To the best of our knowledge,
this is the first time that the X-ray structure of a pyrimidine derivative Schiff base, which
contains a C carbon atom of the –C=N– imine bond attached to a pyrimidine ring, has
been reported. Both compounds differ in conformation, which may be reflected by the
dihedral angles between the pyrimidine ring and the three benzene rings. The conformation
of each molecule is mainly determined by an intramolecular N–H· · ·N hydrogen bond
closing a six-membered ring; however, the hydrogen bond is stronger in 3 than in 2. The
major feature distinguishing the two compounds is their interaction mode and hence their
packing arrangements. Intermolecular N–H· · ·N hydrogen bonds connect molecules in 2
into zigzag chains, and between pyrimidine rings of molecules forming chains there are also
π-π stacking interactions. These chains are further linked by weak C–H· · ·O and C–H· · · F
interactions into a 3D network structure. The molecules in the crystal structure of 3 are
linked by a combination of C–H· · ·O and C–H· · · F interactions into 2D corrugated layers.

The examination of the compounds’ impact on cells showed that both 2 and 3 do not
exhibit toxic activity toward a normal cell line (L-929). Regarding cancer cell lines, amine 2
demonstrated weak anticancer activity only toward HepaRG, whereas imine 3 displayed
much better anticancer properties, especially against AGS (IC50 = 50.24 µM). Annexin V/PI
staining was performed to confirm the cell death pathway of 3. Moreover, to determine the
induction of DNA damage after exposure to compound 3, the comet assay was used, which
showed an increased DNA damage index. The results from annexin V/PI flow cytometry
and comet assay indicate that the decrease of viability observed using neutral red uptake
assay was caused by apoptotic cell death rather than growth inhibition.

For the investigated compounds, MIC and MBC results for E. faecalis 29212 were
obtained. While amine 2 has weak antibacterial activity against E. faecalis ATCC 29212
(MIC = 1024 ug/mL; MBC = 512 ug/mL), imine 3 exhibits much stronger potential against
this strain (MIC = 32 ug/mL) and, moreover, has bactericidal properties (MBC = 16 ug/mL).

Performed studies strongly suggested that the presence of imine instead of the amino
group at position 5 of the 6-methyl-2-phenylpyrimidin-4-amine core is behind its selective
and combined antineoplastic activity against AGS and bactericidal properties against
E. faecalis of the new Shiff base 3. Considering the fact that E. faecalis may be connected
with the carcinogenesis of AGS, compound 3 can be viewed as a valuable structure for
further optimization.
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4. Materials and Methods
4.1. Chemistry

Reagents were purchased and used without purification. Lithium aluminium hy-
dride, reagent grade 95%; pyridinium chlorochromate, 98%; thionyl chloride; silica gel,
200–400 mesh, 60 Å for column chromatography; CDCl3 for NMR spectroscopy; and
p-phenetidine, 98%, were supplied by Sigma Aldrich, Germany. Other reagents were
provided by Chempur, Poland. TLC sheets Alugram SIL G/UV254 were obtained from
Mecherey-Nagel, Germany.

NMR spectra were recorded using a Bruker ARX 300 MHz NMR spectrometer. Chemi-
cal shifts (δ in ppm) are given from internal solvent-CDCl3 7.26 ppm for 1H. Abbreviations
used in NMR spectra: s—singlet, d—doublet, t—triplet, q—quartet, m—multiplet. IR
spectra were recorded with a Thermo Scientific USA Nicolet iS50 FT-IR using the ATR tech-
nique. Elemental analyses were performed using a Carlo-Erba NA-1500 elemental analyzer.
MS spectra were recorded with a Bruker Daltonic Compact using the ESI technique.

5-[(4-ethoxyanilino)methyl]-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine (2)

Preparation began with 0.5 g (1.62 mmol) of [4-(4-fluoroanilino)-6-methyl-2-
phenylpyrimidin-5-yl]methanol (1), which was placed in a round-bottom flask equipped
with a reflux condenser and dissolved in 10 mL of benzene. Then 1 mL of SOCl2 (1.64 g,
13.78 mmol) was added, and the reaction mixture was left at room temperature for 24 h.
After this time, the excess of thionyl chloride and benzene was removed under vacuum,
and the solid residue was washed with 2 mL of cold benzene. Next, the crude product was
inserted into a round-bottom flask equipped with a magnetic stirrer and a reflux condenser
and dissolved in 10 mL of THF. Then 0.69 g (5 mmol) of p-phenetidine was added, and the
mixture was left for 48 h at room temperature. After this time, the mixture was poured
into 50 mL of cold water and then extracted three times with 10 mL of CHCl3. The extracts
were combined and dried with over 2 g of anhydrous MgSO4 for 30 min. The drying agent
was filtered off, and the solvent was removed under vacuum. The crude product was
purified by column chromatography on silica gel using 10% ethyl acetate in CHCl3 as
eluent and crystallized from methanol. The purity of the product was monitored by TLC
using chloroform/ethyl ether (3:1) as eluent.

Product characterization: yield 0.43 g, 62%; solid beige; melting point 163–164 ◦C;
1HNMR (300 MHz, CDCl3): δ (ppm) 1.42 (3H, t, CH3), 2.54 (3H, s, CH3), 3.60 (1H, broad,
NH), 4.01 (2H, q, CH2), 4.27 (2H, s, CH2) 6.77–8.41 (13H, m, arom.), 8.77 (1H, s, NH); FT–IR
(ATR, selected lines): ν (cm−1) 3295 (N–H); MS (ESI) m/z [M + H]+ 429.2036, calculated
m/z 429.2085; analysis (%), calc./found: C 72.88/72.95, H 5.88/5.56, N 13.08/12.74.

4-(4-fluoroanilino)-6-methyl-2-phenylpyrimidine-5-carbaldehyde (4)

Prepration began with 0.5 g (1.62 mmol) of [4-(4-fluoroanilino)-6-methyl-2-phenyl-
pyrimidin-5-yl]methanol (1), which was placed in a round-bottom flask equipped with a
reflux condenser and dissolved in 10 mL of dichloromethane. Next, the suspension of 0.53 g
of PCC (pyridinium chlorochromate; 2.5 mmol) in 10 mL dichloromethane was added.
The resulting mixture was stirred at room temperature for 3 h. The reaction mixture was
then diluted with 10 mL of diethyl ether, and the solution was decanted. The remaining
black resinous polymer was washed with three 5 mL portions of diethyl ether. The extracts
were combined, washed with 10 mL of 2% aqueous hydrochloric acid, and two 10 mL
portions of water, then dried with over 5 g of MgSO4, filtered, and concentrated under
vacuum. The crude product was purified by column chromatography on silica gel using
chloroform as eluent, and then it was crystallized from methanol. The purity of the product
was monitored by TLC using chloroform as eluent.

Product characterization: yield 0.34 g, 68%; yellow solid; melting point 184 ◦C;
1HNMR (300 MHz, CDCl3): δ (ppm) 2.86 (3H, s, CH3), 7.10–8.47 (9H, m, arom.), 10.43 (1H,
s, CH), 11.11 (1H, s, NH); FT–IR (ATR, selected lines): ν (cm−1) 3116 (N–H), 1630 (C=O);
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MS (ESI) m/z [M + H]+ 308.1199, calculated m/z 308.1193; analysis (%), calc./found: C
70.35/70.74, H 4.59/4.29, N 13.67/13.36.

5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine (3)

Method A
The amount of 0.3 g of 4-(4-fluoroanilino)-6-methyl-2-phenylpyrimidine-5-carbaldehyde

(3) (0.98 mmol) was placed in a round-bottom flask equipped with a reflux condenser and
dissolved in 10 mL of THF. Then 0.2 g of p-phenetidine (1.5 mmol) was added. The reaction
mixture was refluxed for 6 h, then it was cooled down and poured into 25 mL of 2% aqueous
hydrochloric acid. The solution was extracted three times with 10 mL of CHCl3. The extracts
were combined and dried with over 2 g of anhydrous MgSO4 for 30 min. The drying agent
was filtered off, and the solvent was removed under vacuum. The crude product was
purified by column chromatography on silica gel using CHCl3 as eluent. The purity of the
product was monitored by TLC using chloroform as eluent.

Yield: 0.28 g; 66%; yellow solid; melting point: 187–188 ◦C;; 1HNMR (300 MHz, CDCl3):
δ (ppm) 1.46 (3H, t, CH3), 2.81 (3H, s, CH3), 4.09 (2H, q, CH2), 6.97–8.50 (13H, m, arom.), 8.96
(1H, s, CH), 12.75 (1H, s, NH); FT–IR (ATR, selected lines): ν (cm−1) 1642 (C=N); MS (ESI)
m/z [M + H]+ 427.1882, calculated m/z 427.1929; analysis (%), calc./found: C 73.22/73.50,
H 5.44/5.16, N 13.14/13.19.

Method B
The amount of 0.3 g of 4-(4-fluoroanilino)-6-methyl-2-phenylpyrimidine-5-carbaldehyde

(3) (0.98 mmol) was placed in a round-bottom flask equipped with a reflux condenser and
dissolved in 10 mL of THF. Then 0.2 g of p-phenetidine (1.5 mmol) and 2 mg of indium(III) tri-
fluoromethanesulfonate were added. The reaction mixture was stirred at room temperature
for 48 h and processed as in Method A. Yield: 0.40 g; 94%.

Method C
The amount of 0.3 g of 4-(4-fluoroanilino)-6-methyl-2-phenylpyrimidine-5-carbaldehyde

(3) (0.98 mmol) was placed in a round-bottom flask equipped with a reflux condenser and
suspended in 10 mL of methanol. Then 0.2 g of p-phenetidine (1.5 mmol) and 2 mg of
indium(III) trifluoromethanesulfonate were added. The reaction mixture was stirred at room
temperature for 48 h and processed as in Method A. Yield: 0.15 g; 28%.

4.2. X-ray Structural Studies

Compounds 2 and 3 were dissolved in 5 mL of hot methanol and acetonitrile, re-
spectively. The prepared solution of 2 was stirred for about 15 min at 40 ◦C and cooled,
and subsequently, 1 mL of ethanol was added. Then both solutions were closed with a
perforated sealing film and placed in ambient conditions for slow evaporation. Crystals
suitable for X-ray diffraction analysis were obtained after 2–3 days. The diffraction data
for 2 and 3 were collected using a Kuma KM4-CCD κ-geometry automated four-circle
diffractometer equipped with a CCD camera Sapphire 2 and graphite monochromatized
Mo Kα radiation (λ = 0.71073 Å). The data were collected at 100(2) K using an Oxford
Cryosystems cooler. The CRYSALIS program was used for data collection, cell refinement,
and data reduction [69]. The data were corrected for Lorentz and polarization effects. The
structures were solved using direct methods employing SHELXS-97 [70] and refined by
the full-matrix least-squares on F2 with the SHELXL program [71]. All non-H atoms were
refined with anisotropic displacement parameters. The N-bonded H atoms were found in
the difference Fourier maps and refined with Uiso(H) = 1.2 Ueq(N). The remaining H atoms
were found in the difference Fourier maps and the final refinement cycles. Next, they were
treated as a riding model in geometrically optimized positions, with C–H distances in the
range of 0.95–0.99 Å, and refined with Uiso(H) = 1.2 Ueq(C), except methyl groups where
Uiso(H) = 1.5 Ueq(C). The figures were prepared using the DIAMOND program [72].

CCDC 2016509-2016510 contains the supplementary crystallographic data for this
article. These data can be obtained free of charge from the Cambridge Crystallographic
Data Centre at www.ccdc.cam.ac.uk/data_request/cif.

www.ccdc.cam.ac.uk/data_request/cif
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4.3. Cells and Cytotoxicity Assay
4.3.1. Chemicals

Dulbecco’s modified Eagle’s medium (DMEM), Eagle’s minimum essential medium
(EMEM), Ham’s nutrient mixture F12, Williams’ medium E, fetal bovine serum (FBS),
Dulbecco’s phosphate-buffered saline (PBS), L-glutamine solution, trypsin-EDTA solution,
penicillin-streptomycin, amphotericin B solution, MEM non-essential amino acid solution,
neutral red solution (3.3 g/L), propidium iodide (PI) solution, fluorescein diacetate (FDA),
Hoechst 33342, staurosporine, and Hoechst 33342 were provided by Merck (Darmstadt,
Germany). Dimethyl sulfoxide (DMSO) was obtained from ALCHEM (Toruń, Poland).

4.3.2. Cell Cultures and Reagent Preparation

L-929 (mouse C3H/An connective tissue), Caco-2 (human Caucasian colon adenocar-
cinoma), A172 (human glioblastoma), AGS (human Caucasian gastric adenocarcinoma),
HepaRG (human hepatoma cell), and HeLa (human cervix epithelioid carcinoma) cell lines
were obtained from the European Collection of Authenticated Cell Cultures (ECACC) and
provided by Sigma Aldrich/Merck (Munich, Germany). All cell lines were cultured in
complete mediums prepared according to the ECACC recommendations and incubated in
a humidified atmosphere with 5% CO2 at 37 ◦C.

The 100 mM stock of 2 and 3 was prepared by dissolving the solid form in DMSO,
which was dissolved to the final concentration. The concentration of DMSO in each sample
did not exceed 1%.

4.3.3. Neutral Red Cell Viability Screening

Neutral red uptake assay was performed according to the protocol [73]. 24 h before
treatment cells were seeded in 96-well plates in 1 × 105 cell/mL of complete medium.
After incubation and attachment of cells, the medium was discarded, and test substances
dissolved in the fresh medium were added to wells. Samples were tested after 24, 48, and
72 h incubation. A neutral red working solution (40 µg/mL) was prepared and incubated
overnight. Immediately before use, it was centrifuged to remove any dye crystals. The
medium from wells was aspirated, and 100 µL of neutral red was added to plates and
incubated for at least 2 h in 37 ◦C and 5% CO2 in a humidified atmosphere. To inspect
the absorption of neutral red to the lysosomes, microscope visualizations were performed.
After incubation, cells were washed with PBS, and destain solution containing ethanol,
deionized water, and glacial acetic acid (50:49:1) was added. Plates were shaken rapidly on a
horizontal shaker at 37 ◦C. Absorption was measured using a Thermo Scientific™ (Waltham,
MA, USA) Multiskan™ GO microplate spectrophotometer at 540 nm. The negative control
was a medium with 1% DMSO, and the positive control was 1 µM staurosporine. Viability
was calculated according to the following formula:

% Viability =
(

ODtest substance −ODblind/ODnegative control −ODblind

)
× 100 (1)

4.3.4. Flow Cytometry

The flow cytometry analysis was performed to determine cell viability after treatment
with a compound showing high proliferation inhibition in neutral red uptake assay. The
test is based on FDA’s ability to pass through an intact cell membrane, where it can
be hydrolyzed by cytoplasmic esterases to fluorescein, a bright green fluorophore [74].
The protocol was based on a double-staining procedure with FDA and PI [75]. For stock
solutions, FDA was dissolved in DMSO and PI in H2O to 1 mM concentrations.

Cells were seeded in a 6-well plate with a density of 1 × 105 cell/well and maintained
at 37 ◦C under 5% CO2 in a humidified atmosphere. After overnight incubation, cells were
treated with a compound diluted to the following concentrations: 100, 80, 40, 10, and 1 µM.
Flow cytometry analyses were performed after 24, 48, and 72 h incubation. For the analysis,
both floating and adherent cells were collected, centrifuged at 1600 rpm, and washed with
PBS. Cells were stained with FDA with a final concentration of 1 µM in PBS, and kept in
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the dark for 15 min. After incubation, cells were centrifuged, resuspended in ice-cold PBS,
and kept on ice until analysis. Directly before testing, samples were stained with a 1 µM PI
solution for 2 min. The acquisition was performed with a CyFlow® space flow cytometer,
and data analyses were performed using the FloMax software (Partec, Münster, Germany).
The percentage of viable cells was calculated based on FDA absorption according to the
following formula:

% ViabilityFDA = (% live cells under experimental conditions/% live cells f rom negative control)× 100 (2)

4.3.5. Microscopic Observation

Morphological changes and DNA fragmentation were examined with an Olympus
IX53 inverted fluorescence microscope after staining with Hoechst 33342 according to
the manufacturer’s recommendations Thermo Scientific (Waltham, MA, USA). Briefly,
cells were seeded in 12-well plates with a density of 1 × 105 cell/mL. After overnight
incubation, the test substance was added in a half-maximal inhibitory (IC50) concentration
and incubated for 24, 48, and 72 h. Before microscopic observation, both adherent and
floating cells were collected, centrifuged, resuspended in PBS containing 1 µg/mL Hoechst
33342 dye. After 10 min incubation in the dark, the morphology of cells and DNA were
visualized using a contrast phase and a UV filter.

4.3.6. Data Processing and Statistical Analysis

Neutral red uptake assay was performed in quadruple (n = 4). Results were calculated
to mean ± standard deviation (SD) using Microsoft Office Excel 2007. The viability in
negative control was compared to 100%. Statistical analyses were performed using the
GraphPad Prism 8.3 for Windows (GraphPad Software, La Jolla, CA, USA, www.graphpad.
com). For IC50 results, non-linear regression analyses were performed, and a sigmoidal
dose-response curve (variable slope) was fitted. Differences between groups and control
were tested using an ANOVA test followed by Dunnett’s post hoc analysis. The significance
was set at p ≤ 0.05.

4.3.7. Annexin V/PI Staining

A quantitative analysis of apoptosis was performed by flow cytometry with Alexa
Fluor 488 annexin V and PI staining (Thermo Scientific Waltham, MA, USA). Briefly,
3 × 105 cells were seeded in 6-well plates. After overnight incubation, the tested com-
pound was added to wells in 5 × IC50 concentration (250 µM). Cells were incubated and
tested after 6, 12, 18, and 24 h, according to the manufacturer’s protocol. After incubation,
cells were harvested, washed with PBS, and resuspended in 1× binding buffer to a final
concentration of 1–5 × 106 cell/mL. Then 5 µL of Alexa Fluor 488-annexin V was added
to 100 µL of cell suspension and incubated in the dark for 15 min. After incubation, the
dye was removed, and cells were suspended in 1 mL of binding buffer. Directly before
analysis, cells were incubated with 1 µL PI for 2 min and analyzed by flow cytometry
(using CyFlow® Space flow cytometer and FloMax software).

4.3.8. Comet Assay

To evaluate DNA damage induced by incubation with 3, alkaline single-cell gel
electrophoresis (comet assay) was performed. Cells were seeded in 12-well plates in a
density of 1 × 105 cell/well. After overnight incubation, the tested compound in IC50
concentration (50 µM) was added. After incubation, cells were harvested, centrifuged, and
resuspended in PBS. The cell suspension was mixed with 1% low melting point agarose
and attached to the slide covered with 1% normal melting point agarose. Subsequently,
slides were incubated in a buffer (pH 10.0) containing 2.5 M NaCl, 10 mM Tris-HCl buffer,
100 mM EDTA, and 1% Triton X-100 for 1 h. Then samples were transferred to alkaline
electrophoresis buffer containing 0.3 M NaCl and 1mM EDTA for a 20 min incubation
followed by electrophoresis performed at 25 V and 300 mA for 20 min. After electrophoresis,

www.graphpad.com
www.graphpad.com
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samples were incubated with a neutral pH buffer (0.4 M Tris-HCl, pH 7.5) for 10 min and
washed with deionized water. After air-drying, samples were stained with Hoechst 33342
and visualized with a fluorescence microscope using a UV filter. The damages were visually
scored from 100 randomly selected cells. Comets were classified according to tail size into
five classes: class zero with no damage, class 1 with low damage, class 2 with medium
damage, class 3 with high damage, and class 4, where almost all DNA was in the tail. Based
on results, the damage index (DI) was calculated according to the following formula:

DI = [(0× n0) + (1× n1) + (2× n2) + (3× n3) + (4× n4)], (3)

where n stands for the amount of each class.

4.4. Antimicrobial Activity Assay

Seven reference strains from ATCC collection (Pseudomonas aeruginosa 27853, Escherichia coli
25922, Staphylococcus aureus 43300, Streptococcus pneumoniae 49619, Enterococcus faecalis 29212,
Klebsiella pneumoniae 13883, and Candida albicans 10231) were used for the antimicrobial activity
assay. For investigated strains, the following antibacterial/antifungal agents were used accord-
ing to the EUCAST examination: levofloxacin, gentamicin, and amphotericin B. Obtained MIC
values were the following: for Pseudomonas aeruginosa 27853, levofloxacin 1 µg/mL; for Strepto-
coccus pneumoniae 49619, levofloxacin 0.001 µg/mL; for Klebsiella pneumoniae 13883, levofloxacin
0.5 µg/mL; for Escherichia coli 25922, gentamicin 2 µg/mL; for Staphylococcus aureus 43300,
levofloxacin 1 µg/mL; for Enterococcus faecalis 29212, levofloxacin 4 µg/mL; and for Candida
albicans 10231, amphotericin B 1 µg/mL. The antimicrobial effect of analyzed compounds was
assessed according to the standard protocol using the microdilution method with spectropho-
tometric measurement (λ = 580 nm at the starting point and after 24 h) [76] according to ISO
20776-1:2019 [54] and modified Richards method [55–57]. After 24 h/37 ◦C in Tryptone soy
broth (TSB) medium incubation, the density of bacterial suspension was measured using a
densitometer, and a proper dilution was prepared (0.005MF, 5 × 105 CFU/mL), where the
range 2–8 × 105 is accepted by CLSI, EUCAST [51]. Afterward, a 96-well microplate was
prepared with a range from 1024 to 1 ug/mL of the specific compound solution. A positive
(TSB+strain) and negative control (TSB) were also included in the test. Microplates were
incubated at 37 ± 1 ◦C for 24 h on the shaker. After this, the aliquots of 50 uL of 1% (m/v)
2,3,5-triphenyltetrazolium chloride (TTC) solution were added in each well. TTC is converted
into red formazan crystals in live microbial cells. MBC/MFC can be observed as the lowest
concentration that did not show microbial growth by visual analysis after 24 h incubation
with TTC (did not change the color to pink). The results were also confirmed by additional
inoculation, where no microbial colony was detected. Thanks to both methods, MIC, MBC, or
MFC can be determined.

5. Conclusions

One of the most serious public health problems is the expansion of antibiotic resistance
of fundamental pathogenic bacteria. However, the rate of increase in the problem of the
antimicrobial antibiotic resistance surveillance system is frightening. Moreover, cancer
is the second serious problem where mortality has exponentially increased. Thus, the
promotion of research activities concerning effective new antimicrobial and anticancer
drugs is a priority at the moment.

Two newly obtained compounds, 5-[(4-ethoxyanilino)methyl]-N-(4-fluorophenyl)-6-
methyl-2-phenylpyrimidin-4-amine (2) and 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorop
-henyl)-6-methyl-2-phenylpyrimidin-4-amine (3), were characterized using spectroscopic
and X-ray crystallography methods. The X-ray analysis showed that both compounds differ
in conformation and interaction modes. In the crystal structures, the molecules are linked
into chains with N–H· · ·N hydrogen bonds or C–H· · ·O interactions in 2 or 3, respectively.
Biological tests have shown that 3 can be recognized as an antimicrobial agent against
E. faecalis (MIC—16 µg/mL, MBC—32 ug/mL). Moreover, IC50 = 53.02 µM for AGS treating
by compound 3 was determined, Performed studies strongly suggested that the presence
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of the imine instead of the amino group at position 5 of the 6-methyl-2-phenylpyrimidin-
4-amine core is behind its selective and combined antineoplastic activity against gastric
adenocarcinoma, probably via the apoptotic route, and bactericidal properties against
E. faecalis of the new Shiff base 3. Considering the nexus between E. faecalis infections
with the carcinogenesis of AGS, compound 3 can be viewed as a valuable structure for
further optimization.

Supplementary Materials: The following are available online: Figure S1. ESI-MS spectrum of the
unknown byproduct (3) obtained during the synthesis of compound; Figure S2. MS/MS spectrum
of the unknown byproduct (3); Figure S3. Enlargement of the MS/MS spectrum and fragmentation
pattern of structure proposed for the 11 unknown byproduct; Figure S4. Comparison of the isotopic
distribution of the unknown byproduct (3) with the [C26H23FN4O+1]+ 13 pattern; Figure S5. IR
spectrum of the unknown product (3); Figure S6. 1HNMR spectrum of amine; Figure S7. IR spectrum
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