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Abstract: The identification of expression quantitative trait loci (eQTL) is an important component in
efforts to understand how genetic variants influence disease risk. MicroRNAs (miRNAs) are short
noncoding RNA molecules capable of regulating the expression of several genes simultaneously.
Recently, several novel isomers of miRNAs (isomiRs) that differ slightly in length and sequence
composition compared to their canonical miRNAs have been reported. Here we present isomiR-eQTL,
a user-friendly database designed to help researchers find single nucleotide polymorphisms (SNPs)
that can impact miRNA (miR-eQTL) and isomiR expression (isomiR-eQTL) in 30 cancer types. The
isomiR-eQTL includes a total of 152,671 miR-eQTLs and 2,390,805 isomiR-eQTLs at a false discovery
rate (FDR) of 0.05. It also includes 65,733 miR-eQTLs overlapping known cancer-associated loci
identified through genome-wide association studies (GWAS). To the best of our knowledge, this is
the first study investigating the impact of SNPs on isomiR expression at the genome-wide level. This
database may pave the way for researchers toward finding a model for personalised medicine in
which miRNAs, isomiRs, and genotypes are utilised.

Keywords: miRNA; isomiR; isomiR-eQTL; miR-eQTL; GWAS

1. Introduction

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by tar-
geting messenger RNAs (mRNAs) [1–3]. The dysregulation of miRNAs has been associated
with various types of cancer, such as prostate, colorectal, lung, lymphoma, glioblastoma
and osteosarcoma [4]. Specific diagnostic miRNA signatures have been reported for several
human cancers through miRNA profiling [2,5]. These miRNA expression signatures may
also provide an alternative approach for classifying cancer subtypes. For example, miRNA
expression profiles can reveal breast cancer subtypes [6–9]. Some SNPs which are associated
with cancer risk may interfere with the function of miRNAs by changing their binding effi-
ciency and specificity to downstream target genes [10,11]. For example, an SNP rs3746444
in the seed region of mature miR-499 disrupts the PI3K/AKT/GSK signalling pathway
and is associated with the increased risk of various cancer types such as cervical squamous
cell carcinoma, breast cancer, acute lymphoblastic leukaemia, gallbladder cancer, gastric
cancer, squamous cell carcinoma of the head and neck, lung cancer, liver cancer, prostate
cancer and colorectal cancer [12]. A miRNA gene can produce multiple miRNA isoforms
that can differ in length and sequence composition known as isomiRs [13]. The isomiRs
can be variations of a given miRNA mature sequence with additional nucleotides either
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at their 5′- or 3′-ends [14]. Alterations in the processing of mature miRNA from primary
and/or precursor transcripts by Drosha and Dicer enzymes can lead to the addition of
nucleotides, particularly at 3′-end yielding the formation of isomiRs [13,15]. IsomiRs can
also be generated from the canonical miRNA sequence via RNA editing and the presence
of SNPs in the mature miRNA sequence [13,15,16].

The relationship between isomiR expression and cancer progression is less explored
than between miRNAs themselves [17]. However, a few studies reported a seminal role
of isomiRs in tumourigenesis [18,19]. For example, a higher expression of 5′ isomiR of
hsa-miR-140-3p in breast tumour cell lines led to reduced cell viability, cell proliferation
and migration [20]. Babapoor et al. discovered that the miR-451a isomiR is associated with
an amelanotypic phenotype and has a tumour suppressor effect in melanoma by retarding
cell migration and invasion [21]. SNPs within miRNA genes have the potential to impact
miRNA biogenesis or alter their target specificity [22–24]. For example, miR-196a2-SNP
(rs11614913) in the mature miR-196a2 is associated with the enhanced processing of mature
miR-196a. Moreover, a study reporting binding assays showed that the rs11614913 can affect
the binding of mature hsa-mir-196a2-3p to their target mRNA [24,25]. Fehlmann T. et al. [26]
developed a web-based tool (miRMaster) that aligns raw small RNA-seq data onto the
human genome and reports the mapping of reads overlapping the miRNA precursor
sequences [27]. This study revealed 22,000 potential candidate miRNA precursors with one
or two mature forms. Furthermore, it reported isomiRs showing shifted nucleotides in their
5′ and 3′ sites as well as isomiRs with SNPs or mismatches (mis-miRNAs). The functional
consequences of germline variants have been revealed by expression quantitative trait
loci (eQTL) studies, which have been mainly focused on the regulation of protein-coding
genes. A few recent studies have also explored the association of germline variants with
the expression of long or short noncoding RNAs in cancer [28–30]. On the other hand,
some isomiRs have a distinct role in cancers. They can target different genes compared
to corresponding canonical miRNA [28–30], but there are few studies assessing cancer-
associated isomiRs. The growing number of miRNAs and the importance of isomiRs in
oncogenesis, suggests a need to extend previous studies to further investigate the effect of
SNPs on miRNAs and isomiRs expressions [26]. Previous studies have used The Cancer
Genome Atlas (TCGA) dataset to discover tumour-specific miRNA expression quantitative
trait loci (miR-eQTLs). For example, Freedman et. al. performed eQTL analyses across five
tumour types including breast, colon, kidney, lung and prostate cancers [31]. Li et al. created
a database for ncRNA-related eQTLs across 33 cancer types [29]. However, these studies
do not encompass isomiRs and their eQTLs modulating their expression. Here, using the
miRMaster web-based tool, we performed a genome-wide miR-eQTL and isomiR-eQTL
study by utilising genotypes and miRNA/isomiR expression data. We showed that the
isomiR-eQTL could be independent of the miR-eQTL, 30 tissue cancer types from the TCGA
database. We aimed to reveal the genetic regulation of these newly discovered miRNA and
isomiRs in TCGA cancer types. The isomiR-eQTL field is not yet fully explored in terms
of drawing associations between miRNAs and diverse cancer types. Hence we anticipate
that this database provides informative and valuable information to assess the impact of
SNPs on isomiR expression and biogenesis. We have also implemented a public, searchable
database for the results (https://data.eresearchqut.net/IsomiR_eQTL/index.html; created
on 22 February 2022). This valuable database opens important avenues for future research
in understanding the role of dysregulated miRNAs and isomiRs.

2. Results
2.1. Tumour-Specific miR- and isomiR-eQTL Identification

The generation and processing of the genotype and miRNA-seq data have been
detailed in the method section and Figure 1. This study processed a total of 8618 samples
ranging from 46 Uterine Carcinosarcoma (UCS) samples to 922 breast invasive carcinoma
(BRCA) samples (Table 1). We investigated both canonical miRNAs and isomiRs, including
those that carry one mismatch and those that shifted their 5′ and 3′ terminal sites. Both
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known and novel miRNAs reported by miRMaster and their subgroups were processed to
detect miR-eQTL. We identified a total of 152,671 miR-eQTL and 2,390,805 isomiR-eQTL
considering an FDR < 0.05 (Table 2) across 30 cancer types. Figures 2 and 3 represent the
results of breast and prostate cancer, respectively. The graphs for all cancers are provided
in Supplementary File S1. Manhattan plots depict the associated p-values of multiple
SNPs on autosomal chromosomes for all miR-eQTL (Figures 2A and 3A) and isomiR-
eQTL (Figures 2B and 3B). Considering an FDR < 0.5, we found 236,746 and 24,712 total
miR-eQTL for BRCA and prostate cancer (PRAD) datasets, respectively.
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Figure 1. The pipeline of the miRNA and isomiR-eQTL analysis. The grey boxes show the type
of data, the blue boxes show the methods of analysis, and the green boxes show the results of
this analysis.

Table 1. The number of European samples in each type of cancer in this study. Data for each cancer
type were downloaded from (TCGA) (tumour tissue only), where data for genotype and small-
RNA-seq was available. The samples of non-European populations were excluded via principal
components analysis.

ID Project Primary Site Number of Samples

ACC Adrenocortical Carcinoma Adrenal gland 74
PCPG Pheochromocytoma and Paraganglioma Adrenal gland 145
BLCA Bladder Urothelial Carcinoma Bladder 386

LAML Acute Myeloid Leukaemia Haematopoietic and
reticuloendothelial systems 174

LGG Brain Lower Grade Glioma Brain 496
BRCA Breast Invasive Carcinoma Breast 922

CESC Cervical Squamous Cell Carcinoma and
Endocervical Adenocarcinoma Cervix uteri 244

COAD Colon Adenocarcinoma Colon 419
READ Rectum Adenocarcinoma Rectum 148
ESCA Oesophagal Carcinoma Oesophagus 177
UVM Uveal Melanoma Eye and adnexa 78
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Table 1. Cont.

ID Project Primary Site Number of Samples

HNSC Head and Neck Squamous Cell Carcinoma Larynx, Hypopharynx, Floor of mouth, and
other unspecified parts 496

KICH Kidney Chromophobe Kidney 66
KIRC Kidney Renal Clear Cell Carcinoma Kidney 475
KIRP Kidney Renal Papillary Cell Carcinoma Kidney 270

CHOL Cholangiocarcinoma Liver and intrahepatic bile ducts 349
LUAD Lung Adenocarcinoma Bronchus and lung 488
LUSD Lung Squamous Cell Carcinoma Bronchus and lung 459

OV Ovarian Serous Cystadenocarcinoma Ovary 380
PAAD Pancreatic Adenocarcinoma Pancreas 172
MESO Mesothelioma Heart, mediastinum, and pleura 83
PRAD Prostate Adenocarcinoma Prostate 448
SKCM Skin Cutaneous Melanoma Skin 89

SARC Sarcoma Connective, subcutaneous and other
soft tissues 98

STAD Stomach Adenocarcinoma Stomach 400
TGCT Testicular Germ Cell Tumours Testis 150
THCA Thyroid Carcinoma Thyroid gland 353
THYM Thymoma Thymus 89
UCEC Uterine Corpus Endometrial Carcinoma Corpus uteri 444
UCS Uterine Carcinosarcoma Uterus, NOS 46

Table 2. The number of identified miR and isomiR-eQTL in each cancer type from TCGA tumour tis-
sue data. The miR and isomiR-eQTL were identified by linear regression using MatrixEQTL software.

ID Canonical_miRBase Canonical_miRMaster isomiR_miRBase isomiR_miRMaster

ACC 323 194 47 234
PCPG 894 143 897 47
BLCA 5065 1210 29,315 34
LAML 1785 1 2072 63
LGG 3462 206 6276 69

BRCA 7332 3943 216,467 9004
CESC 1195 10 3374 85
COAD 19,741 6002 572,227 18,393
READ 739 3 1751 108
ESCA 18,651 1669 367,816 139
UVM 1808 0 1438 9
HNSC 4765 21 11,807 7
KICH 241 0 492 23
KIRC 17,522 4486 688,332 15,086
KIRP 2932 34 8060 253

CHOL 8715 115 253,732 656
LUAD 2559 20 20,246 41
LUSC 3768 96 8894 617

OV 5531 60 42,409 1248
PAAD 1160 138 471 90
MESO 56 1 591 18
PRAD 4782 130 19,732 68
SKCM 2144 17 752 12
SARC 331 1 688 79
STAD 7556 514 43,171 225
TGCA 978 79 1168 20
THCA 4612 1 3640 4
THYM 1008 1 7224 2
UCEC 2939 517 21,251 498
UCS 410 55 9177 216
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Figure 2. (A) The Manhattan plots of miR-eQTL. The most significant miRNA is labelled; it includes
the name of the precursor and the miRNA. (B) The Manhattan plot of the isomiR-eQTL. The most
significant isomiR is labelled; it includes the name of the precursor and the isomiR. (C) Density plot
shows the position of all miR and isomiR-eQTL (FDR < 0.05) in the genome. (D) The Venn graph
shows the numbers of miRNA precursors that were discovered in breast cancer samples. (E) Bar
charts show the number of overlap.
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Figure 3. (A) The Manhattan plot of miR-eQTL. The most significant miRNA is labelled; it includes
the name of the precursor and the miRNA. (B) The Manhattan plot of isomiR-eQTL. The most
significant isomiR is labelled; it includes the name of the precursor and isomiR. (C) Density plot
shows the position of all miR and isomiR-eQTL (FDR < 0.05) in the genome. (D) The Venn graph
shows the numbers of miRNA precursors that were discovered in prostate cancer samples. (E) Bar
charts show the number of overlap.
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Density plots show the position of all miR and isomiR-eQTL (FDR < 0.05) in the
genome (Figures 2C and 3C). Figures 2D and 3D represent the number of unique miRNA
precursors found in BRCA and PRAD studies, respectively. These results indicate that
SNPs may impact miRNA processing and isomiR generation.

2.2. Identification of miR-eQTL Overlapping GWAS Loci

The integration of the GWAS and eQTL study can help us dissect the genetic mech-
anism of cancers [32]. We used a collection of GWAS data for various cancers, including
bladder, breast, cervical, colon, gastric, head and neck, lung, oral, ovarian, pancreatic,
skin, stomach and thyroid cancers [33], to analyse the potential contribution of miR and
isomiR-eQTL to cancer risk. By using this list of SNPs, we extracted miR and isomiR-eQTL
SNPs that are in linkage disequilibrium (LD) with a cancer-associated SNP identified in
the GWAS catalogue, at r2 > 0.5, LD (r2) calculated using PLINK 1.9 [34], with the data of
the 1000 Genomes phase 3. We identified a total of 5255 tag SNPs related to cancers using
the GWAS catalogue; 219,534 SNPs were in LD with these tag SNPs. By mapping miR
and isomiR-eQTLs to GWAS SNPs (tag SNP + SNPs in LD with tag SNPs), we identified
65,733 miR and isomiR-eQTLs which overlap with known cancer-associated loci (Figures
2E and 3E for the PRAD and BRCA, respectively).

2.3. Some IsomiRs Are Associated with Distinct SNPs Rather Than Their miR Counterparts

We focused on hsa-miR-10b-5p in prostate cancer datasets, given that this miRNA is
known to be associated with extracellular vesicles and has been reported as a potential
prostate cancer biomarker [35]. Firstly, we performed a spearman correlation between
the expression of canonical miR-10a-5p and its five isomiRs. The expression of isomiRs
including hsa-miR-10b-5p_0F_-2T_0:T->A (correlation = 0.57, p-value = 1.89 × 10−43),
hsa-miR-10b-5p_0F_-2T_0:T->C (correlation = 0.61, p-value=1.71 × 10−50) are in mod-
erate (0.5 < r < 0.7) correlation with the expression of the canonical miRNA. There is a
strong (r > 0.7) correlation between the expression of canonical miRNA and hsa-miR-
10b-5p_23:T->A (correlation = 0.79, p-value = 3.1 × 10−106). The expression of miR-10b-
5p_1F_0T_16:A->G (correlation = 0.32, p-value = 5.2 × 10−13) showed a weak correlation
with the canonical miRNA miR-10a-5p. Therefore, it is expected that most of the identified
isomiR-eQTLs exist simply because of the canonical miRNA-eQTL. Next, we employed
CAusal Variants Identification in Associated Regions (CAVIAR) [35] to find causal SNPs
in the miR-eQTL and isomiR-eQTL locus. CAVIAR quantifies the posterior probability of
causality for each variant using a relationship between LD structure and z-score value. We
found that the expression of canonical miRNA miR-10a-5p is associated with rs56040758
(CAVIAR score = 0.32), rs62173678 (CAVIAR score = 0.28), and rs62173675 (CAVIAR
score = 0.20). The CAVIAR analysis yielded rs62173675 (CAVIAR score of 0.42) as the top-
ranked causal-associated SNP with hsa-miR-10b-5p_0F_-2T_0: T->C, which is an isomiR
with moderate expression correlation with the canonical miRNA. Additionally, rs59849938
(CAVIAR score = 0.33) and rs10594040 (CAVIAR score = 0.26) also showed association with
the isomiR. We identified 24 SNPs associated with hsa-mir-10b_hsa-miR-10b-5p_0F_-2T_0:
T->A expression, including rs62173675. The only SNP that is associated with hsa-miR-
10b-5p_23:T->A is rs62173678. We hypothesise that the association of rs62173675 and
rs62173678 with isomiRs is due to the association of these SNPs with the canonical miRNA.
Interestingly, miR-10b-5p_1F_0T_16: A->G showed an association with rs59813559 and
rs142523986, however, neither SNP was associated with the canonical miRNA. Further-
more, no expression correlation was observed between miR-10b-5p_1F_0T_16: A->G and
the canonical miRNA, suggesting that there are seemingly some exceptions where an
isomiR-eQTL association is dependent on nucleotide changes in specific isomiRs.

2.4. Web Interface

The web interface has six main sections based on the overlap with miRBase [36]; an
overview section, miR-eQTL(miRBase), miR-eQTL (miRMaster), isomiR-eQTL (miRBase),
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isomiR-eQTL (miRMaster) and GWAS-related miR and isomiR-eQTL. These can be selected
from the top banner on each page. The result of miRMaster is categorised into six groups
based on the overlap with miRBase [36]. To avoid introducing duplicates derived from the
miRBase and miRMaster eQTL analyses, we used all canonical miRNAs identified using
miRBase and retained only novel miRNAs found by mirMaster. Therefore, miR/isomiR-
eQTLs represented on our webserver using two databases are unique and complementary
(Figure 4).
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tables include SNPs, alleles, SNP position, miRNA and statistical parameters.

Each section provides 30 searchable datasets, one representing each cancer type. The
histogram chart for each section summarises the numbers of miR-eQTLs and isomiR-eQTLs
found. The miR-eQTL table displays the SNP ID of the miR-eQTLs, SNP alleles, SNP
genomic position (hg19), the minor allele frequency (MAF) of SNPs, average call of the
SNPs and the SNP-level quality metric of imputation (Rsq), precursor and miRNA ID,
Columns 9–12 represent the outcome of the statistical analysis of miR-eQTL analysis: β-
value (effect size estimate), state (t-statistic of t-test), p-value, FDR. Datasets for each cancer
type are downloadable from each section in either an excel or CSV format.

3. Discussion

Primary precursor miRNAs (pri-miRNA) are transcribed from the miRNA gene and
then processed into pre-miRNAs in the nucleus. The pre-miRNAs are transported to
the cytoplasm and cleaved into mature miRNAs or isomiRs. IsomiRs can differentiate
from their canonical counterpart in targeting different mRNAs [37]. SNPs in the cis-
regulatory promoter regions of miRNA genes have been shown to regulate the expression of
miRNA [35]. Moreover, SNPs in the mature miRNA sequence may potentially change their
target specificity [38]. Identification of the miR and isomiR-eQTLs that influence a specific
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miRNA and isomiR, may help develop better screening, intervention and preventive
strategies for people at high cancer risk. In this study, we undertook a genome-wide eQTL
analysis to identify the effects of SNPs on miRNA and isomiR expression in the TCGA
dataset of cancer tissues, and incorporated this information in the form of a searchable
database. This database not only includes all miRNA and isomiR reported in miRBase
but also includes miRNA and isomiR that are presented by the miRMaster server [26].
Further, by integrating eQTL data with known cancer-specific GWAS data, we identified
miR and isomiR-eQTLs associated with cancer loci. End users can explore miR and isomiR-
eQTL, and search through the database to interrogate SNPs that can impact miRNA and
isomiRs expression.

Two major cancer types impacting our communities are breast and prostate cancers,
thus we present some additional analysis related to these two cancers. We found an isomiR
associated with breast cancer that is derived from the hsa-miR-99b-5p locus. This miRNA
is reported to suppress liver metastasis in colorectal cancer by downregulating mTOR [39].
Additionally, it can target IGF-1R in gastric cancer [40] and suppress the fibroblast growth
factor receptor 3 gene in lung cancer [41]. In our study, the miR-eQTL of hsa-miR-99b-
5p overlaps with the breast cancer GWAS locus and it may potentially play a tumour
suppressor role. One interesting example of prostate cancer is miRNA-26a-5p. This miRNA
is associated with patient survival and the migration of cancer cells by inhibiting the cell
cycle and triggering apoptosis, consequently exerting an antiproliferative effect in prostate
cancer [42]. These cancer-related miR and isomiR-eQTLs are important candidates for
follow-up functional validation assays and biomarker discovery.

While our database presents the first iso-miR-eQTL database, there are some limi-
tations to our analysis. Our database is reliant on miRMaster and does not address the
caveats associated with this tool. For example, miRNAs with identical sequences that are
generated from different regions cannot be discriminated by the mapping of small RNAs.
Thus, caution needs to be exercised for identical miRNAs. These loci are typically indexed
by 1 to 5 at the end of the precursor name. For example, hsa-mir-941-1, hsa-mir-941-2, hsa-
mir-941-3, hsa-mir-941-4, and hsa-mir-941-5. Results for these duplicated mature miRNAs
possibly represent the sum of expression of up to five distinct identical loci. In these cases,
miR and isomiR association is performed with an expression of these miRNAs with all
corresponding loci. We recommend using miR- and isomiR-eQTLs results for single-copy
genes or duplicated genes with sequence divergence.

Our results show that some SNPs may impact the transcription of the miRNA genes.
These SNPs may be functional variants in cancers that regulate miRNA expression, while
other SNPs may specifically impact the isomiR expression. We also observed the expression
correlation between miRNA and their isomers. As an example, we assessed the correla-
tion of expression between the canonical miRNAs and isomiRs of hsa-miR-10b-5p using
spearman correlation analysis. We found that the expression of its five isomiRs was weak,
moderate, or strongly associated with the canonical miRNA.

Further, we generated a Venn diagram depicting the number of unique miRNA pre-
cursors found by miR- and isomiR-eQTL approaches for all 30 cancers. In prostate cancer,
32 precursors were common for both miR-eQTLs and isomiR-eQTLs suggesting that SNPs
at these loci primarily associate with the canonical miRNA. We also performed a fine-
mapping analysis on the hsa-miR-10b-5p eQTL locus and found that some SNPs are
associated with both canonical and isomiRs. The expression of these isomiRs is in a moder-
ate to strong correlation with their expression profiles. Interestingly, for SNPs only found
to be associated with an isomiR, the expression of the isomiR showed a weak correlation
with that of the canonical miRNA. Further fine-mapping analysis for every e-QTL locus is
required to discover causal SNPs that impact isomiR expression distinctly.



Int. J. Mol. Sci. 2022, 23, 12493 9 of 12

4. Materials and Methods
4.1. Genotype Data, Preprocessing and Imputation

Genotype data (Affymetrix 6.0 arrays) from 30 distinct cancer tumour tissues were
downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga/ accessed on 26 August 2022).
The SNP quality control was performed using genotype data. Individuals with more than
2% missing genotypes were removed. SNPs with call rates < 98% and those SNPs which
are not in Hardy–Weinberg equilibrium (HWE) (threshold p-value < 10−8) were excluded.
The SNPs with minor MAFs < 5% were excluded from further analysis. Since a high level
of heterozygosity shows low sample quality, whereas low levels of heterozygosity may
be due to inbreeding [43], we filtered out the samples with high heterozygosity (mean
heterozygosity ± 3 standard deviation (s.d.)) using PLINK 1.9 and R. All samples were
checked for sex discrepancies between their recorded sex in the dataset and their genetically
determined sex. Genetic studies with individuals of admixed ancestries can confound
genetic associations and may increase spurious outputs [44]. For this reason, individuals
who were outliers of the European population were removed (6 s.d.). Before the impu-
tation, indels or non-biallelic variants and the ambiguous SNPs that did not match the
reference panel, or were duplicates, were excluded using quality control offered by the
Michigan server [45]. The genotype data were imputed using the 1000 Genomes Project
phase 3 reference panel using the Minimac3 software provided by the Michigan Imputation
Server. Analyses were limited to the SNPs with a MAF > 0.5% and a squared correlation
coefficient between imputed allele dosages (the sum of the haplotype dosages of each
haplotype) and masked genotypes r2 > 0.5 [45].

4.2. Expression Data Processing

RNA-seq bam files of 30 distinct cancer tumour tissues were obtained from the TCGA
data portal (https://gdc-portal.nci.nih.gov/ accessed on 26 August 2022). The bam files
were sorted and converted to FASTQ format using samtools and bcftools, respectively.
The FASTQ files were uploaded to the miRMaster website (www.ccb.uni-saarland.de/
mirmaster/ accessed on 26 August 2022), and alignment and quantification were performed
by miRMaster. The miRNA gene expression data were generated by miRMaster for each
sample. The gene annotation files were downloaded from the miRMaster and miRBase
(http://www.mirbase.org/ accessed on 26 August 2022). All miRNAs with an average
expression of <1 read per million (RPM) were excluded. Lastly, the expression files were
quantile normalized using R.

4.3. Identification of miR-eQTLs and isomiR-eQTLs

The Matrix eQTL software (R package) which uses a linear regression model, was
utilised for miR-eQTL analysis. The principal component analysis (PC) was performed
using PLINK 1.9. Then, PC1 to PC10 were used to assign population stratification. The
linear regression model considers the expression values as a dependent variable, and the
SNP genotype (imputation dosage) as the independent variable. The analysis was adjusted
for PC and gender. The associations were calculated for 30 cancer primary tissue samples.
In this analysis, SNPs in the 1 MB distance to miRNA gene on the same chromosome were
chosen. Matrix eQTL performs multiple testing corrections using the Bejamini–Hochberg
method to estimate the FDR.

4.4. Identification of GWAS miR- and isomiR-eQTLs

The list of GWAS SNPs for the available data on 16 cancers, i.e., bladder, breast,
cervical, colon, endometrial, gastric, head and neck, kidney, lung, oral, ovarian, pancreatic,
prostate, skin, stomach, and thyroid was downloaded from the NHGRI website [33]. GWAS
LD regions (1MB distance) were calculated with PLINK 1.9 [34] using the 1000 Genomes
phase 3 reference panel. By using this list of SNPs within 1MB regions around GWAS SNPs,
we extracted miR-eQTL SNPs that were in LD with a cancer-associated SNP identified in
the GWAS catalogue at r2 > 0.5. Figure 1 depicts the workflow used in this study.

https://tcga-data.nci.nih.gov/tcga/
https://gdc-portal.nci.nih.gov/
www.ccb.uni-saarland.de/mirmaster/
www.ccb.uni-saarland.de/mirmaster/
http://www.mirbase.org/
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4.5. Fine-Mapping

We performed a spearman correlation between the expression of canonical miR-10a-
5p and its five isomiRs. We also conducted a fine-mapping approach using CAVIAR
software [46] to clarify whether these isomiR-eQTLs relied on the processing of the canoni-
cal pre-miRNA.

4.6. Database Construction

The miR-eQTL and miR-eQTL-GWAS datasets generated in this study are presented
as an online searchable database using R version 4.1.1 (R Developer Core Team, 2021),
primarily using the ‘DT’ R package (https://rstudio.github.io/DT/ accessed on 26 August
2022), which provides an R interface for the ‘DataTables’ JavaScript library. These tables
are publicly accessible via a web interface at https://data.eresearchqut.net/IsomiR_eQTL/
index.html accessed on 26 August 2022, (Figure 4).

5. Conclusions

Our miR-eQTL data analysis strengthens the interpretation of genome functionality
and provides a valuable framework for the biological understanding of cancer risk. Ex-
ploration of the mechanisms of action of the identified miR-eQTLs in this study could
lead us to discover networks of dysregulated miRNA and isomiRs contributing to can-
cers [47,48]. Further studies are required to investigate the functional impact of these miR
and isomiR-eQTLs. The user-friendly web interface of isomiR-eQTL provides resources
and comprehensive analyses outcomes on the genetic mechanisms of miRNA and isomiR
regulation by SNPs in human cancer. We believe that this database is a valuable resource
for the research community, particularly in the field of isomiR studies.
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